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Abstract
Cardiac hypertrophy is controlled by a complex signal transduction and gene regulatory network,
containing multiple layers of crosstalk and feedback. While numerous individual components of
this network have been identified, understanding how these elements are coordinated to regulate
heart growth remains a challenge. Past approaches to measure cardiac myocyte hypertrophy have
been manual and often qualitative, hindering the ability to systematically characterize the
network's higher-order control structure and identify therapeutic targets. Here, we develop and
validate an automated image analysis approach for objectively quantifying multiple hypertrophic
phenotypes from immunofluorescence images. This approach incorporates cardiac myocyte-
specific optimizations and provides quantitative measures of myocyte size, elongation, circularity,
sarcomeric organization, and cell-cell contact. As a proof-of-concept, we examined the
hypertrophic response to α-adrenergic, β-adrenergic, tumor necrosis factor (TNFα), insulin-like
growth factor-1 (IGF-1), and fetal bovine serum pathways. While all five hypertrophic pathways
increased myocyte size, other hypertrophic metrics were differentially regulated, forming a
distinct phenotype signature for each pathway. Sarcomeric organization was uniquely enhanced by
α-adrenergic signaling. TNFα and α-adrenergic pathways markedly decreased cell circularity due
to increased myocyte protrusion. Surprisingly, adrenergic and IGF-1 pathways differentially
regulated myocyte-myocyte contact, potentially forming a feed-forward loop that regulates
hypertrophy. Automated image analysis unlocks a range of new quantitative phenotypic data,
aiding dissection of the complex hypertrophic signaling network and enabling myocyte-based
high-content drug screening.
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Introduction
Cardiac hypertrophy is the growth of individual cardiac myocytes in response to stress.
Physiologic stresses like exercise and pregnancy cause an adaptive, reversible hypertrophy
while pathologic stresses such as myocardial infarction lead to maladaptive hypertrophy and
heart failure [1]. But major challenges remain in identifying, understanding, and ultimately
controlling the molecular circuits that regulate heart growth [2]. Rather than acting through a
common mechanism, these pathways form a dense web of interactions that has eluded
therapeutic approaches to date [3]. The complexity of cardiac signaling networks indicates
that integrative systems approaches will be critical for understanding and treating heart
failure [4, 5].

Cultured neonatal rat ventricular myocytes have been widely used to study the signaling
pathways that initiate cardiac hypertrophy [6]. While neonatal myocytes cannot replicate the
native 3D environment and later stages of heart failure, most hypertrophic pathways and
genes studied in vivo were first implicated in cultured cells [7]. Previous approaches to
imaging hypertrophy in cultured myocytes have been low-throughput and subjective, which
has generally limited individual studies to a single node or pathway. Systems-wide analysis
of hypertrophy networks will require new quantitative, scalable phenotypic screening
approaches [2]. One such approach is high-content cell imaging [8], which has emerged in
the pharmaceutical industry for improved target validation compared with traditional
biochemical screens [9]. Similarly, systems analyses of the myocyte hypertrophy network
may benefit from automated imaging approaches that are amenable to testing larger numbers
of pharmacologic or genetic perturbations.

Here, we develop a method for automated image analysis that enables high-content imaging
of cardiac myocyte hypertrophy. In addition to myocyte size, several additional hypertrophic
phenotypes are quantified including myocyte elongation, sarcomeric organization, and cell-
cell contact. As a proof of principle, we measured phenotypic responses to five main classes
of hypertrophic pathways: α-adrenergic, β-adrenergic, cytokine (tumor necrosis factor,
TNFα), growth factor (insulin-like growth factor-1, IGF-1), and serum (fetal bovine serum,
FBS) targeted pathways. Our image analysis approach reveals that while these pathways
share a common response in myocyte size, their regulation of other hypertrophic metrics is
remarkably distinct.

Methods
Cardiac myocyte hypertrophy experiments

Neonatal ventricular myocytes were isolated from 1-2 day old Sprague-Dawley rats using
the Neomyts isolation kit (Cellutron, Baltimore MD). All procedures were performed in
accordance with the Guide for the Care and Use of Laboratory Animals published by the US
National Institutes of Health and approved by the University of Virginia Institutional
Animal Care and Use Committee. Myocytes were initially cultured in plating media
(Dulbecco Modified Eagle Media, 17% M199, 10% Horse Serum, 5% Fetal Bovine Serum,
100U/mL penicillin, and 50 mg/mL streptomycin) on 35-mm glass-bottom dishes (MatTek,
Ashland, MA) at a density of 750,000 cells/dish. Two days after isolation, myocytes were
switched to serum-free maintenance media (Dulbecco Modified Eagle Media, 19% M199,
1% ITSS, 100U/mL penicillin, and 50 mg/mL streptomycin) for 24 hours. Then myocytes
were rinsed and cultured in serum-free maintenance media containing one of five
hypertrophic stimuli (1 μM isoproterenol, 100 μM phenylephrine, 10 ng/mL TNF-α, 10 ng/
mL IGF-1, or 15% FBS) or negative control (serum-free media alone) for 48 hours, with
solutions changed at 24 hours.
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After 48 hours of hypertrophic agonist, myocytes were fixed with 4% paraformaldehyde for
20 minutes and then permeabilized with 0.1% Triton-X for 2 minutes. Using a 1% bovine
serum albumin (BSA) in PBS solution, myocytes were blocked for 45 minutes. Then mouse
anti-α-actinin primary antibody (Sigma-Aldrich, St. Louis MO) at a concentration of 1:200
was applied to the myocytes for 1 hour. Using a 2% donkey serum in PBS solution,
myocytes were blocked for 30 minutes. Then Alexa Fluor-680-conjugated donkey anti-
mouse secondary antibody (Invitrogen, San Diego CA) at a concentration of 1:200 was
applied to the myocytes for 1 hour. Finally, myocytes were double-stained with DAPI and
SlowFade with DAPI (Invitrogen, San Diego CA).

Myocytes were imaged using an Olympus IX81 inverted microscope with 20X PlanApo
0.85 NA oil objective, Orca-AG CCD camera (Hamamatsu, Bridgewater, NJ), and IPLab
software (Scanalytics, Fairfax, VA). The α-actinin channel was acquired using an 480/40
excitation filter with 200 ms exposure time and recorded at 535/50-nm. The DAPI channel
was acquired using a 350/50-nm excitation filter with 20 ms exposure time and recorded at
460/50-nm (Chroma filters; Optical Insights, Santa Fe, NM).

Automated image analysis
The algorithm for automated myocyte segmentation is composed of 6 main phases, which
are outlined in Figure 1. In the first phase (Figure 1-1), the algorithm loads images of nuclei
(stained using DAPI) and α-actinin, a myocyte-specific cytoskeletal protein. A median filter
with an appropriately sized window (4 pixels in the experiments presented here) is applied
to the α-actinin image to improve cell segmentation performance, and then all images are
background-subtracted using a manual threshold that is constant across all image sets. In the
second phase (Figure 1-2), nuclei are identified and segmented using an Otsu threshold of
the DAPI image. The Otsu threshold is the optimum threshold in an intensity histogram that
minimizes the variance between background and foreground pixels [10]. Next, the minor
population of cardiac fibroblasts and other nonmyocytes is removed by filtering out nuclei
that do not contain nuclear α-actinin signal (Figure 1-3). Some neonatal cardiac myocytes
are binucleated, which causes difficulty for our nucleus-based cell segmentation. Therefore,
in the fourth phase adjacent nuclei in the same cell are merged (Figure 1-4). Myocyte nuclei
are dilated by a suitable margin width (3 pixels in this case), re-identified, and then eroded
by the same margin width to restore their original size.

In the fifth phase (Figure 1-5), cardiac myocyte cell boundaries are segmented and
identified. Cell-background discrimination is based on an Otsu threshold of the α-actinin
image. Then cell-cell boundary segmentation is performed using a nuclear propagation
approach, in which the nucleus of each cell is used as the initial seed and then the algorithm
propagates the cell boundary outward [11]. The final boundary between adjacent cells is
determined using an equation that combines information about local minima (valleys) in the
α-actinin image and the distance of the boundary from the nucleus (see Supplementary
Methods). In the final phase (Figure 1-6), myocytes touching the edge of the image are
removed. This is performed by creating a 1-pixel wide image border and then identifying
myocytes that overlap with the border. Nuclei of myocytes touching the image edge are also
removed at this stage. Once myocyte segmentation is complete, these objects can be used for
subsequent shape and intensity-based measurements.

The automated cell segmentation algorithm was implemented using the open-source
MATLAB-based CellProfiler software package [12]. Detailed steps of the algorithm are
provided in Supplementary Table S1. The algorithm and example raw image data from this
manuscript are freely available for download at http://bme.virginia.edu/saucerman/.
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Manual segmentation
To assess the accuracy of the automated myocyte segmentation, manual segmentation was
performed by two separate researchers blinded to the results of other segmentation results.
As in the automated myocyte segmentation, pre-processing and automated nucleus
segmentation was provided so that the only free variable was the cell segmentation itself.
The performance of the segmentation was evaluated using the precision, recall and F-score
of pixel overlap [13]. Subsequent comparisons of phenotypic metrics were performed
automatically based on the manual segmentations.

Quantifying Hypertrophic Phenotypes
Cell area and cell perimeter were selected as metrics of cell size, while elongation and
circularity were selected as metrics of cell shape. Elongation is the ratio of the major axis
length to the minor axis length of a best-fit ellipse. Thus, a circle is defined to have an
elongation of 1. Circularity is calculated as 4π*Area/Perimeter2. A circle has a circularity of
1 and all other shapes have circularities < 1. Circularity is used to characterize cell
roundness with smaller circularity values indicating either elongation or increased cell
protrusions. Sarcomeric organization was quantified using the pixel Uniformity within
individual cells [14]. Cell-cell contact was quantified by the percentage of each myocyte's
border that is shared with neighboring cells. Due to non-normal distributions of myocyte
phenotypes, statistical significance was assessed by Kruskal-Wallis non-parametric analysis
of variance followed by Dunn's multiple comparisons post-test in GraphPad Prism. P < 0.05
was considered significant.

Results
Automated cell segmentation accurately identifies myocyte morphology

Several features of the automated cell segmentation algorithm (described above in Methods)
were particularly important for accurate identification of cardiac myocytes. As shown in
Figure 2A, thresholding the α-actinin channel before cell segmentation enabled more precise
identification of cell-background borders. This is a challenging issue in α-actinin-labeled
myocytes due to the complex periodic structure of the myofilaments. We evaluated several
algorithms for automated segmentation of myocyte boundaries including watershed, active
contours [15], and Otsu thresholds [10]. We found that a nucleus-propagation segmentation
approach [11] was most robust for α-actinin-labeled cardiac myocytes (Figure 2B).
However, the nucleus-propagation segmentation requires a single nucleus per cell, and
neonatal myocytes are occasionally bi-nucleated. This could cause a single bi-nucleated cell
to be incorrectly identified as two separate cells. We found that merging adjacent nuclei
enabled correct segmentation of binucleated myocytes (Figure 2C).

To assess the accuracy of automated segmentation, two researchers manually segmented 100
myocytes from a range of conditions (see Methods). As shown in Figure 3, under control
conditions or regions of lower cell density the segmentation is straightforward. Under
conditions of hypertrophy or higher regional cell density, automated segmentation is more
challenging but the algorithm performs reasonably well. The most rigorous method to
evaluate image segmentation is to evaluate the pixel overlap between individual automated
and manual segmented cells [13]. As shown in Table 1, average precision (positive
predictive value) is 89% and average recall (sensitivity) is 85%, producing an overall
segmentation performance F-score of ~85%, which meets or exceeds the performance of
previous cell segmentation studies [13, 16].

Automated segmentation can also be validated by the phenotypic metrics derived from the
segmentation. As shown in Figure 4, the mean absolute error in cell area and cell perimeter
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is ~13%. While average error in cell area falls to ~1% due to cancelling over- and
underestimations, average error in perimeter remains ~10%. We hypothesize that the
consistently higher perimeters are caused by the pixel-by-pixel resolution of the algorithm,
while manual segmenters have lower visuomotor resolution. This hypothesis is supported by
inspection of magnified views provided in Supplementary Figure 1. Measures of elongation
and circularity are shown in Supplementary Figure 2. The calculated error for circularity is
high compared to the other metrics since it is a function of area and perimeter.

Key advantages to automated myocyte segmentation are reproducibility and speed. As
shown in Figure 3, there is some degree of inter-observer variability in manual myocyte
segmentations. There is also potential for bias if the observer segmenting myocytes is not
blinded to the condition. In contrast, the automated algorithm objectively performs
segmentations and is completely reproducible. Another consideration is speed. Manual
segmentation took on average 1.2 minutes/cell. Overall in this study 6895 cells were
analyzed which would take ~138 hours to perform manually. In contrast the algorithm
processes these cells in ~ 2 hours without user intervention.

Differential effects of hypertrophic pathways on myocyte size and shape
We next applied the automated segmentation algorithm to examine the hypertrophic
response to receptor stimulation. β-adrenergic, α-adrenergic, tumor necrosis factor (TNFα),
and insulin-like growth factor (IGF-1) signaling pathways have all been implicated in
myocyte hypertrophy [2, 3]. These pathways were chosen as they represent distinct arms of
the overall hypertrophic signaling network and are differentially associated with
physiological and pathological hypertrophy. We hypothesized that while all of these
pathways increase cell area, their diverse signaling mechanisms would result in divergent
effects on other phenotypes relevant to cardiac hypertrophy. Myocytes were treated with a
receptor agonist for one of these pathways for 48 h: 1 μM isoproterenol (ISO), 100 μM
phenylephrine (PE), 10 ng/mL TNFα, 10 ng/mL IGF-1, or 15% FBS. Hypertrophic
responses were quantified by myocyte area and perimeter (metrics of cell size) as well as
elongation and circularity (metrics of cell shape) (see Figure 5).

As expected, each of the four hypertrophic agonists increased both cell area and cell
perimeter (Figure 6). Note that the error bars in Figure 6 denote the 25-75th percentile range
to illustrate the substantial heterogeneity at the single cell level. Excluding serum which
contains a wide range of different growth factors, PE elicited the largest response in cell area
and perimeter. But these agonists also affected cell shape, with decreasing circularity (or
roundedness) in response to all five conditions. In contrast to the other morphological
measures, cell elongation decreased significantly only in TNFα-treated myocytes. There was
a trend towards increased elongation of PE-treated myocytes. A representative image for
each condition is shown in Supplementary Figure 3.

Quantifying differential regulation of sarcomeric organization
In addition to myocyte size and shape, change to sarcomeric organization (increased or
decreased regularity of sarcomere striations) is another phenotypic metric commonly
associated with cardiac hypertrophy [17, 18]. However, sarcomeric organization is typically
evaluated only qualitatively from representative images. We sought to develop a robust
quantitative measure of sarcomeric organization using image texture analysis. Several
measures of α-actinin image texture were tested, including Uniformity, Correlation,
Contrast, and Fourier transforms [14]. When compared to manual scoring of 100 myocytes
by two different researchers on a 1-4 scale, Uniformity had a Spearman rank correlation
coefficient of -0.46, while Contrast and Correlation had coefficients of 0.41 and -0.26
respectively (see Supplementary Figure 4).
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Uniformity is a measure of local homogeneity and has values ranging from 0 to 1, with a
value of 1 representing completely uniform α-actinin labeling (see Supplementary Methods).
Myocytes with highly organized sarcomeres exhibit sharp transitions in α-actinin intensity
between z-lines, resulting in low Uniformity. Here, we calculated 1-Uniformity in order to
transform this measure into a metric that positively correlates with sarcomeric organization
(Figure 7A). Among the five hypertrophic stimuli, PE and serum stimulation resulted in a
dramatic increase in sarcomeric organization, while IGF-1 did not affect sarcomeric
organization (Figure 7B). Representative images are shown in Supplementary Figure 5.
These results indicate that 1-Uniformity is a quantitative measure of sarcomeric organization
and that hypertrophic pathways differentially regulate sarcomeric organization.

Differential effects of hypertrophic pathways on cell-cell contact
While analyzing the hypertrophic response, we noticed that some conditions appeared to
cause clustering of myocytes, resulting in increased cell-cell contact. To quantify cell-cell
contact, we measured the fraction of each myocyte's boundary that is shared with
neighboring myocytes. For example a myocyte with no neighbors has 0% cell-cell contact,
while a completely surrounded cell has 100% cell-cell contact (Figure 8A). The degree of
cell-cell contact is expected to depend on average cell density and to correlate with
increasing cell area. Indeed, serum, ISO, and PE significantly increased cell-cell contact
compared to serum-free conditions. But changes to cell-cell contact were not explained by
increased cell area alone. Inspection of ISO-treated cells in Figure 3 suggests nonrandom
distribution of myocyte coverage. Further, TNFα and IGF-1 increased cell area but either
did not change or trended towards decreased cell-cell contact. While myocytes do not
regulate cell-cell contact in the normal adult heart, this appears to indicate either paracrine or
contact-dependent cell-cell communication that is differentially regulated by hypertrophic
pathways.

Hypertrophic pathways have distinct phenotypic signatures
By integrating the above data into a single framework, we can begin to identify more
complex relationships between hypertrophic pathways and phenotypic metrics. Highly
correlated phenotypic metrics may be regulated by shared mechanisms in the relevant
signaling pathways (“guilt by association”), whereas differentially regulated phenotypic
metrics may indicate unique signaling mechanisms. Figure 9 illustrates the median effect of
each hypertrophic agonist on the 6 phenotypic metrics. Cluster analysis was performed using
a Euclidean distance metric to identify correlations in both phenotypic metrics and
perturbations. The same qualitative dendrogram was obtained when clustering using a
Manhattan distance metric (see Supplementary Methods). Strikingly, each particular
phenotypic metric and each hypertrophic agonist had a qualitatively unique response pattern,
or phenotypic signature. IGF-1 and TNFα were the most closely correlated hypertrophic
agonists, but with qualitatively different effects on sarcomeric organization. The most
closely correlated phenotypic metrics are cell area and cell perimeter, which is reasonable as
they are both measures of cell size.

While all hypertrophic agonists increased cell area, increased cell perimeter and decreased
cell circularity, they did so do different degrees. For example ISO strongly regulated area
but had a weaker effect on perimeter and circularity. Other hypertrophic metrics were
regulated by agonists in opposite directions. Myocyte elongation was increased by PE yet
decreased by TNFα. This indicates that unlike cell size, myocyte elongation is enhanced by
mechanisms distinct to α-adrenergic signaling. Cell-cell contact was enhanced by ISO and
PE yet decreased by IGF-1, indicating that cell-cell contact may be regulated by
mechanisms that are shared by α- and β-adrenergic pathways but distinct from IGF and
TNFα pathways. Sarcomeric organization (1-Uniformity) was strongly enhanced by PE yet
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unaffected by TNFα and IGF-1. This indicates that sarcomeric organization may be
regulated by mechanisms specific to α-adrenergic signaling. Thus while cell size appears to
be coordinately regulated by shared pathway mechanisms, cell shape and sarcomeric
organization are more specifically regulated by distinct pathways. These complex
relationships indicate that quantifying cell shape and texture metrics adds substantial new
information above cell size alone.

Discussion
New unbiased phenotypic screening approaches are needed to more systematically
characterize the hypertrophic signaling network and identify novel therapeutic targets [2].
Previous work has demonstrated high-content imaging of cancer cell lines and other cell
types [8, 12], which enables systematic perturbation studies such as genome-wide RNA
interference [19, 20]. Here, we developed an automated image analysis approach optimized
for high-content imaging of cardiac myocyte hypertrophy. A related assay for screening
miRNAs for effects on myocyte area was recently published [21]. Novel myocyte-specific
features of our segmentation approach include smoothing and thresholds for segmenting
despite irregular α-actinin patterns and merging of adjacent nuclei for binucleated myocytes.
In addition to measuring cell area, this algorithm allowed measurement and quantitative
validation of a number of new phenotypic metrics related to hypertrophy including
perimeter, circularity, elongation, sarcomeric organization, and cell contact. As a proof-of-
concept, the image analysis approach was tested by comparing the phenotypic response to
five distinct classes of hypertrophic pathways: α-adrenergic, β-adrenergic, cytokine (TNFα),
growth factor (IGF-1), and serum pathways. Despite a common qualitative increase in cell
area under all conditions, these pathways exhibited divergent regulation of cell shape,
sarcomeric organization, and cell-cell contact. Simultaneous quantification of multiple
phenotypes in individual cardiac myocytes can aid identification of both common elements
among hypertrophic pathways and phenotype-specific regulatory mechanisms.

Regulation of cardiac myocyte shape
Increases in myocyte area have been well documented for α-adrenergic [22], β-adrenergic
[23], TNFα [24] and IGF-1 [25] receptor pathways. But while all five hypertrophic
pathways stimulated increases in cell area and perimeter, we found that cell shape metrics of
myocyte elongation and circularity were differentially regulated. Changes to elongation
were modest, but TNFα decreased myocyte elongation while ISO and PE tended to cause
myocyte elongation. Differential regulation of myocyte elongation has been of substantial
interest due to its in vivo relevance to concentric and eccentric cardiac hypertrophy [1, 2].

Myocyte circularity decreased in response to all agonists in a manner that was inversely
proportional to cell perimeter. ISO had a strong effect on area but a weaker effect on
circularity, while TNFα had a larger effect on circularity than area. Circularity was
previously used to quantify myocyte shape changes in response to substrate stiffness [26],
and here we found that hypertrophic pathways can distinctly regulate elongation and
circularity. Decreased circularity without a corresponding increase in elongation occurred
when myocyte protrusions were not aligned in a particular direction, such as for TNFα,
IGF-1 and serum.

Regulation of sarcomeric organization
Enhanced sarcomeric organization is often considered a hallmark of the hypertrophic
response [17]. But some forms of hypertrophy cause sarcomeric disarray, decreasing
contractile efficiency in hypertrophic cardiomyopathy [18, 27]. While sarcomeric
organization in cultured myocytes has previously been measured only qualitatively [17, 28],
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we developed a novel quantitative measure of sarcomeric organization based on image
texture of α-actinin immunofluorescence. Sarcomeric organization was strongly enhanced
by α-adrenergic signaling or serum and unaffected by IGF-1 signaling. These results are
consistent with data that Gq-coupled pathways enhance sarcomeric organization via Rho and
myosin light chain phosphorylation, which are regulated independently from cell size [28].

Regulation of cell-cell contact
Previous studies have shown that myocyte plating density can modulate hypertrophic
signaling pathways due to enhanced paracrine or contact-dependent cell-cell
communication. In particular β-adrenergic stimulation of hypertrophy [23] and p38
regulation of ANF expression [29] have been reported to require higher cell densities.
Serendipitously, we observed that some hypertrophic agonists appeared to induce myocyte
clustering, resulting in enhanced cell-cell contact. Therefore we developed a quantitative
measure of cell-cell contact, finding that serum, β-adrenergic, and α-adrenergic signaling
strongly enhanced cell-cell contact. In contrast, IGF-1 decreased cell-cell contact despite
increasing cell area. Increased cell-cell contact was not strongly correlated with increased
cell area, indicating distinct regulation. These results suggest a potential positive feed-
forward loop, where α- and β-adrenergic signaling enhance cell area directly by intracellular
signaling and indirectly by enhancing cell-cell contact. While increased myocyte-myocyte
contact is not clearly relevant to adult hypertrophy in vivo, cardiac myocyte migration and
aggregation is an important aspect of developmental heart growth [30] and the spontaneous
assembly of engineered heart tissues [31].

In summary, we developed an automated image analysis approach for simultaneously
quantifying multiple hypertrophic metrics from immunofluorescence images of cardiac
myocytes. Automated image analysis is a critical step for the development of phenotypic
screens that allow systematic and quantitative analysis of crosstalk in the cardiac
hypertrophy signaling network. These approaches may also be potentially extended to
human stem-cell derived cardiac myocytes [32] for high-throughput drug screening
applications [9].

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Automated image analysis method for cardiac myocyte hypertrophy

• New quantitative measure of sarcomeric organization

• TNFα and α-adrenergic signaling have opposite effects on myocyte elongation.

• Sarcomeric organization is uniquely enhanced by α-adrenergic signaling.

• α- and β-adrenergic pathways enhance myocyte-myocyte contact.
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Figure 1. Approach for automated image segmentation of cardiac myocytes
(1) Acquire images, primarily containing neonatal ventricular myocytes (MYO) but some
fibroblasts (FB). Myocyte-specific α-actinin is labeled by immunofluorescence, while DNA
is labeled with DAPI. (2) Smooth and threshold the α-actinin channel. Segment nuclei in the
DAPI channel by Otsu thresholding. (3) Remove fibroblast/nonmyocyte nuclei. (4) Merge
adjacent nuclei to form binucleates. (5) Segment myocyte boundaries by propagating from
the nucleus outwards. (6) Eliminate myocytes touching the image border. The end result is a
quantified nucleus and cell boundary for each myocyte.
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Figure 2. Improvements to myocyte segmentation due to thresholding, merging adjacent nuclei,
and nucleus-propagating segmentation steps
Myocyte segmentation is shown both with and without each of three algorithm steps: A) α-
actinin thresholding, B) nucleus-propagation segmentation and C) merging adjacent nuclei
of binucleated myocytes. Each step is particularly beneficial to accurate segmentation of
cardiac myocytes.
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Figure 3. Visual comparison of automated and manual myocyte segmentation
Representative images from control conditions and isoproterenol (ISO) treatment are shown.
Myocytes were segmented either using the automated segmentation algorithm or manually
by 2 separate researchers (Manual 1 and Manual 2).
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Figure 4. Quantitative comparison of automated and manual myocyte segmentation
Automated and manual segmentation for 100 myocytes from a combination control,
isoproterenol, and serum-treated conditions were compared. A) Absolute percent error in
myocyte area and perimeter compared with manual segmentation 1 or 2. B) Percent error in
myocyte area and perimeter compared with manual segmentation 1 or 2. Error bars are +/-
SE.
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Figure 5. Cell shape phenotypes quantified by automated segmentation
Representative images are shown with myocytes that exhibit either small or large cell area,
perimeter, elongation, or circularity. Elongation is the ratio of major-axis length to minor-
axis length of a best-fit ellipse. Circularity is 4π*Area/Perimeter2.
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Figure 6. Differential effects of diverse hypertrophic agonists on cell shape phenotypes
Myocytes were serum-free (SF) or treated with isoproterenol (ISO), phenylephrine (PE),
tumor necrosis factor-alpha (TNFα), insulin-like growth factor (IGF-1) or serum for 24 h.
For each condition, cell area, perimeter, elongation and circularity were quantified. Error
bars represent the 25-75th percentile range while the dot represents the median. *P<0.05
compared to control (SF). Number of myocytes analyzed for each condition was SF: 617,
ISO, 639, PE: 534, TNFα: 883, IGF-1: 984, serum: 228.
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Figure 7. Automated measurement of sarcomeric organization
A) Representative image of myocytes with low and high sarcomeric organization, along
with corresponding quantification of intracellular contrast, a texture-based measure of
sarcomeric organization. B) Effects of hypertrophic agonists ISO, PE, TNFα, IGF-1 and
serum on intracellular contrast. Error bars represent the 25-75th percentile range while the
dot represents the median. *P<0.05 compared to control (SF).
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Figure 8. Automated measurement of cell-cell contact
A) Representative image of myocytes along with the percent of each cell's perimeter that is
shared with its neighbors. B) Differential effects of hypertrophic agonists ISO, PE, TNFα,
IGF-1 and serum on cell-cell contact. Error bars represent the 25-75th percentile range while
the dot represents the median. *P<0.05 compared to control (SF).
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Figure 9. Hypertrophic agonists cause distinct forms of myocyte hypertrophy
Effects of ISO, PE, TNFα, IGF-1 and serum are plotted against median changes in myocyte
phenotype metrics quantified by automated segmentation. Phenotype metrics are cell area,
perimeter, elongation, circularity, sarcomeric organization, and cell-cell contact.
Hypertrophic agonists and phenotype metrics were grouped by hierarchical clustering.
While all agonists increased cell area, they had qualitatively different effects on elongation,
sarcomeric organization, and cell-cell contact.
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