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ABSTRACT

An approach to infer the unknown microbial popu-
lation structure within a metagenome is to cluster
nucleotide sequences based on common patterns in
base composition, otherwise referred to as binning.
When functional roles are assigned to the identified
populations, a deeper understanding of microbial
communities can be attained, more so than gene-
centric approaches that explore overall functional-
ity. In this study, we propose an unsupervised,
model-based binning method with two clustering
tiers, which uses a novel transformation of the
oligonucleotide frequency-derived error gradient
and GC content to generate coarse groups at the
first tier of clustering; and tetranucleotide frequency
to refine these groups at the secondary clustering
tier. The proposed method has a demonstrated im-
provement over PhyloPythia, S-GSOM, TACOA and
TaxSOM on all three benchmarks that were used for
evaluation in this study. The proposed method is
then applied to a pyrosequenced metagenomic
library of mud volcano sediment sampled in
southwestern Taiwan, with the inferred population
structure validated against complementary
sequencing of 16S ribosomal RNA marker genes.
Finally, the proposed method was further validated
against four publicly available metagenomes,
including a highly complex Antarctic whale-fall
bone sample, which was previously assumed to be
too complex for binning prior to functional analysis.

INTRODUCTION

Binning methods place metagenomic sequences into
taxon-specific bins to infer the underlying population

structure of a sequenced metagenomic library. When sub-
sequently combined with the functional information
obtained through genomic analysis of each bin, a
sampled microbial community can be analysed in light
of the roles assigned to each constituent population and
the interactions between them. The primary challenge in
doing so is the assignment of anonymous metagenomic
sequences to an unknown, and potentially large, set of
microbial populations within the sample. This is depend-
ent on the taxonomic resolution at which sequences are
classified and the accuracy at which such classification is
possible. Attempts to address this problem have adhered
to two dominant strategies: classifying sequences based on
similarity to a reference set of nucleotide or protein se-
quences; and grouping sequences based on inherent
patterns, also referred to as signatures, in nucleotide
base composition.
Although binning methods based on sequence similarity

are able to classify short-read metagenomic sequences (1),
they are computationally intensive—either during training
or execution—and, more critically, they can yield biased
results for novel metagenomes depending on the reference
database used. These methods also include approaches
which search for universally conserved marker genes,
such as partial 16S rRNA genes (2), within a metagenome.
Such methods can provide an accurate indication of the
types of populations within the sample (3) but are not
suitable for binning because of their low assignment
coverage, which is less than 0.01% of a typical
metagenome (4).
On the contrary, binning methods that are based on

conserved, population-specific signatures in nucleotide
base composition are typically unbiased. These signatures
take advantage of the non-random ordering of nucleotide
bases in a DNA sequence (5), which is presently under-
stood to be mediated by mechanisms related to DNA
repair and replication, mutational tendencies and conser-
vation of dinucleotide ordering (6). While early studies
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confirmed differences in the guanine–cytosine (GC)
content between unrelated populations, current binning
methods make use of higher order base composition stat-
istics, referred to as nucleotide frequency. The earliest of
these nucleotide frequency signatures (6) was motivated by
an observation that dinucleotides in a DNA molecule are
highly conserved and biased between different microbial
genomes (7). More recently, it has been found that
tetranucleotide frequency represented a more conserved,
species-specific signature (8), which led to further investi-
gation into the tetramer composition of prokaryotic
DNAs (9–12).
Given these signatures, machine learning methods

which group related sequences based on nucleotide fre-
quency can be categorized as either supervised or unsuper-
vised (13). Unsupervised learning methods operate in the
absence of prior knowledge and are less prone to biases—
such as those of similarity-based methods—that hinder the
classification of novel sequences, which is a general
limitation of purely supervised methods that conflicts
with the intended exploratory nature of metagenomics.
Unsupervised methods can also use the support of
multiple sequences to infer the presence of microbial
populations or clades which manifest as clusters. This is
in contrast to supervised classification of individual se-
quences irrespective of other related sequences that are
available in a metagenome. Characterizing the functional
potential of microorganisms that cannot be isolated in
pure culture [more than 99% (14)] is thus more readily
addressed using unsupervised, exploratory strategies.
Of these unsupervised methods, the self-organising map

(SOM) and its various extensions have shown good per-
formance in grouping higher order frequencies calculated
on metagenomic sequences (5,15,16). The primary goal of
unsupervised methods is cluster discovery (i.e. population
discovery), where the accuracy of the resulting clusters will
be influenced by the ambiguity in cluster distributions
caused by noise. To the best of our knowledge, there
does not exist a binning method that explicitly handles
such noise. This can necessitate semi-automatic or
manual cluster selection due to ambiguous cluster
boundaries (17,18). In contrast, parametric, model-based
clustering methods (19) can resolve such ambiguous
cluster distributions, including cluster overlap which is a
common yet critical problem among relatively complex
metagenomes.
These issues translate to three key goals that are ad-

dressed in this study. First, we acknowledge that
grouping metagenomic sequences using nucleotide fre-
quency is known to be limited by the number of distinct
microbial populations in a metagenome (9), which means
that the discrimination between a large number of popu-
lations in a species-rich (complex) metagenome is
anticipated to be low in taxonomic resolution. In order
to alleviate this limitation, we introduce a two-tiered clus-
tering framework, where we first group sequences coarsely
using a novel transformation of the oligonucleotide
frequency-derived error gradient (11) and GC content.
Given that there may still be multiple populations in
each of these coarse groups—but of lower species
richness than the original complex metagenome—we

anticipate that subsequent refinement using nucleotide fre-
quency will produce more accurate bins at higher taxo-
nomic resolution. Secondly, we address issues related to
ambiguity in cluster distribution using a model-based clus-
tering framework. Thirdly, in addition to evaluating the
performance on simulated benchmarks, we validate our
proposed method on real metagenomic data sets.

This article is organized as follows: the ‘Materials and
Methods’ section describes the data used for benchmark-
ing and evaluation and introduces the proposed
two-tiered, model-based clustering framework. The
‘Results’ section reports the performance of the
proposed method on benchmark data, followed by the
analysis of a novel pyrosequenced library of a mud
metagenome. In addition, the proposed framework is
validated against four real-world metagenomes, including
an analysis of an Antarctic whale-fall bone sample, which
has previously not undergone binning prior to down-
stream analysis. The published annotations, available for
two of these publicly available metagenomes, are used as
reference labels to estimate the performance of the
proposed framework. The ‘Discussion’ section elaborates
on the performance of the clustering approach and
compares it to similarity-based techniques, emphasizing
both the advantages and disadvantages of the proposed
framework. Finally, possible directions for further im-
provement to the proposed framework are outlined.

MATERIALS AND METHODS

Data sets

The proposed clustering framework is evaluated on
three in silico-simulated benchmark metagenomes. Such
benchmarks enable the standardization of performance
measures for comparative examination of different
binning methods (20). In addition to two publically avail-
able benchmarks (20), a new benchmark has been con-
structed to address performance criteria that are not
handled by the two existing benchmarks (this new bench-
mark is also made available for public use). The binning
method is then used to analyse a novel metagenome
sampled from the sediment of a mud volcano located in
southwestern Taiwan. Moreover, the proposed framework
is further validated against four publicly available
metagenomes.

Benchmark data sets. The two publically available bench-
marks selected for this study represent metagenomes of
different complexity and were originally constructed
using random, variable-length samples of 113 fully
sequenced microbial genomes (20). The dominant strains
of the low-complexity (simLC) data set have a maximum
coverage of �5.19�, flanked by strains with coverage less
than 1.2�. The medium complexity data set (simMC)
simulates three dominant strains represented with 3.48�
to 2.77� coverage. As per the recommendation by
Mavromantis et al., simulated contigs >8 kb are used for
benchmarking. Due to an insufficient number of such
contigs that meet the criteria for binning of the
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high-complexity (simHC) data set, it has been excluded
from the benchmark tests.

In its place, a third benchmark was constructed using
eight completely sequenced bacterial genomes—
Thiobacillus denitrificans ATCC 25259 (NC_007404),
Granulibacter bethesdensis CGDNIH1 (NC_008343),
Pelotomaculum thermopropionicum SI (NC_009454),
Prochlorococcus marinus MIT9303 (NC_008820),
Desulfitobacterium hafniense Y51 (NC_007907), Bacillus
halodurans C-125 (NC_002570), Streptococcus gallolyticus
UCN34 (NC_013798), Mycoplasma arthritidis 158L3-1
(NC_011025)—and one simulated bacterial chromosome.
The modal GC content estimates of the selected set of
genomes were approximately 60, 50 and 40%, which
allows for examination of grouping a large set of se-
quences into a moderate number of populations with
closely matched GC content—a case not handled by the
two above-mentioned benchmarks. The simulated contigs
were sampled from both strands of each genome, with the
selection of sample length based on a power law distribu-
tion. The resulting benchmark contained a total of 40 000
sequences with a minimum sequence length of 301 bp,
maximum length of 3000 bp and an average length of
947 bp.

Novel mud volcano metagenome. The sample was collected
in 2009 from a single core of sediment surrounding a a
terrestrial mud volcano, located near a fault-line in
southwestern Taiwan. The bulk DNA was isolated from
the core at a depth of 30 mm. The data set was sequenced
using 454 Life Sciences FLX Titanium pyrosequencer and
assembled into 45 055 contigs (minimum length: 89 bp,
maximum length: 15 716 bp and average length:
510.0 bp). The complexity of the sampled community as
given by the Chao-1 (21) 3% estimator is 984.142 (confi-
dence interval 888.177–1115.23).

Four publically available metagenomes. Moreover, we
have selected four publicly available metagenomes that
represent distinct sampling environments, DNA extrac-
tion protocols and sequencing methodologies to validate
the proposed framework on real-world data. Three of
these data sets represent the real-world equivalents of
the model communities that constitute the simLC and
simMC benchmarks. These include, in order of complex-
ity, an enhanced biological phosphorus removing (EBPR)
sludge (22), an acid mine drainage (AMD) biofilm (23)
and an endosymbiont community of the Mediterranean
gutless worm (GWE) (17).

The EBPR metagenome contains 96 563 contigs
totalling 100.27Mb, with sequence lengths ranging from
168 bp to 1631 bp and an average length of 1039 bp. The
AMD data set contains 180 713 sequences (181.57Mb)
with a minimum sequence length of 115 bp, maximum
sequence length of 5449 bp and a mean sequence length
of 1005 bp. The GWE data set contains 5016 contigs with
a cumulative length of 42Mb, assembled from an original
set of 281 448 reads.

The fourth metagenome is a deep-sea Antarctic
whale-fall bone (WF-B) sample that has not undergone
binning prior to functional analysis because of its high

complexity (24). The sequenced WF-B library contains
40 549 sequences with a total length of 41.27Mb with se-
quences ranging between 141 bp and 7720 bp with a mean
sequence length of 1018 bp.

Proposed method

In this study, a two-tiered clustering framework is
proposed (Supplementary Figure S1), which uses two
sets of nucleotide base composition signatures to group
anonymous metagenomic sequences into populations, or
groups of related populations, that correspond to the
underlying population structure of a sampled microbial
community. It is demonstrated that when two signatures
capture different characteristics of base composition they
can be used to group sequences differently, and in cases
where these groups are mutually exclusive and at different
taxonomic resolutions, such features can be arranged hier-
archically to increase the taxonomic resolution at which
the population structure is inferred. Intuitively, the signa-
ture that results in a more coarse grouping of sequences
(Tier 1) is processed prior to the signature which is known
to produce more discriminant groups (Tier 2) but requires
a relatively low diversity metagenome to do so.
In accordance with the above, we propose a novel clus-

tering scheme at Tier 1 based on the oligonucleotide fre-
quency derived error gradient (OFDEG) (11) for coarse
grouping, and tetranucleotide frequency at Tier 2 for re-
finement (Figure 1). This selection is justified by
comparing the performance of these features to four
other features which have shown exemplary performance
in other metagenomic binning studies. At both tiers, a
proposed model-based clustering framework is used to
group sequences based on each respective feature set, as
outlined in the following section.

Model-based clustering framework. A Gaussian mixture
model (25) is assumed for the distribution of feature
vectors at both tiers of the framework—the assumption
of normality was verified using random 5kb fragments of
124 bacterial and archaeal genomes using the Shapiro–
Wilk test, �=0.01 (Supplementary Figure S2). We have
used the MCLUST implementation of the Gaussian
mixture model (26), which uses the Expectation–
Maximisation algorithm for estimating the parameters of
the mixture model, and a Bayesian Information Criterion
(BIC) for model selection. This implementation allows un-
constrained and arbitrary shaped clusters, which can
handle cases where the relative abundance of constituent
populations is not uniform.

Handling noise in metagenomic data sets. A critical con-
sideration in dealing with metagenomic data is various
forms of noise, which affect cluster distributions in any
feature space. In this study, we introduce a ternary cat-
egorization of noise in metagenomic data:

. Category I (C-I): fragments of unrelated, or distantly
related, genomes can have highly similar composition-
al signatures. In such cases, sequences within a bin
may be incorrectly assumed to have originated from
the same clade. This will increase the number of false
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positives at lower taxonomic ranks (poor resolution),
and will ultimately affect the overall specificity of
binning.

. Category II (C-II): fragments of genomes with large
intra-genomic variation in base composition are more
likely to be outliers of the true cluster distribution, or
in extreme cases form small satellite clusters. These can
be regarded as false negatives, which will reduce the
sensitivity of binning.

. Category III (C-III): for distinct organisms that share
common characteristics in base composition clusters
may partially overlap, causing ambiguity in cluster
membership of sequences.

The extent of each form of noise varies depending on
the metagenome under analysis. In some cases, the noise

can be implicitly alleviated by the selection of robust
features. Where this is not possible, alternative strategies
are possible. For instance, noise of C-I form can be
reduced by adopting a multitiered clustering strategy
where, in a two-tiered scheme, the feature at Tier 2 can
be used to distinguish fragments that appear similar at
Tier 1. C-II noise can be reduced by prefiltering the dis-
tribution of feature vectors prior to clustering, and also
by applying post-processing constraints on cluster models
to restrict membership of ambiguous sequences. C-III
noise can also be handled with the application of post-
processing constraints by estimating the regions of
cluster overlap using the parameterized cluster models.
Provided that features are non-redundant, these forms
of noise can be assumed to be uncorrelated and
can therefore be handled independently at each tier.
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Figure 1. The motivation for the two-tiered clustering framework and the features used therein: (A) the PCA projection of the tetranucleotide
frequency of random fragments of nine genomes results in poor discrimination between each genome type—shown here for the first two principal
components for visualization and is also applicable when considering the first three principal components. (B) However, the nine genome types are
found to form two coarse groups in the OFDEG and GC content space. (C and D) When the tetranucleotide frequency of fragments is computed
with respect to each group, the discrimination between each genome type is more clearly evident.
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Formal descriptions of these noise reduction schemes are
described in the following section.

Prefiltering. The nearest-neighbour variance estimation
(NNVE) (27) method was used to estimate the proportion
of noise in violation of model assumptions. Alternative
prefiltering methods can be used; the NNVE method
was chosen for its simplicity and robustness. The NNVE
method requires the specification of an initial noise
estimate and a neighbourhood size. These were estimated
using the benchmark data sets, see Supplementary Figure
S3. Sequences that were identified as noise using NNVE
were removed from the data set prior to clustering.

Post-processing cluster models with the application of
constraints. Reducing C-II noise: the distance between
each feature vector and the centre of a cluster is given
by the exponential of the Mahalabonis distance (28),
which takes into account the density of feature vectors
within a cluster. A minimum threshold em on this
distance is used to restrict cluster membership to se-
quences within close proximity to the cluster mean,
given by:

�i: exp
1

2
ðfji � �iÞ

>��1i ðfji � �iÞ

� �
� �m; ð1Þ

where�i is the mean of cluster i, fji is the j-th feature vector
assigned to cluster i, �i is the covariance matrix of cluster i
and di2 [0, 1]. We have found that em=0.20 is adequate
in removing sparsely distributed outliers and is sufficient
for most metagenomic data sets, while for a set of heavily
concentrated and overlapping clusters em& 0.5 is
required.

Reducing C-III noise: the second form of constraint is
applied to the probability of cluster membership zi.
Sequences which cannot be assigned to a cluster with a
probability greater than a predefined threshold will not be
included in the final classification. This can be convenient-
ly formulated in terms of the uncertainty in classification
of a sequence, given by:

U: 1� max
0�i5N

zi�f g5 �u; ð2Þ

where U 2 [0, 1], and depending on the degree of overlap
0.10� eu� 0.50. The bounds were determined empirically
and reflects the degree of cluster overlap. For data sets
that cannot be resolved with eu< 0.50, the clusters are
considered degenerate and cannot be used for meaningful
downstream analysis, as the assignments to a cluster
would be worse than pure chance. An analogue to this
form of constraint is that of Ref. (16) which was used to
constrain label propagation.

Proposed Tier 1 clustering. As described above, coarse
clustering at Tier 1 is facilitated by a novel transformation
of OFDEG (see Supplementary Methods 1 for a
description of OFDEG) and GC-content. The OFDEG
measure provides a more stable estimate of a genomic
signature in a compact 1D representation of the
underlying oligonucleotide frequency content in a DNA
sequence. It essentially measures the degree of biasing in

the composition of oligonucleotides in a sequence, in a
conceptually similar, yet fundamentally different,
manner to measurements of sequence entropy. Small-
scale noise will be less influential in the computation of
OFDEG, given that the bootstrap sampling procedure
provides a better estimate of the variation in nucleotide
base composition than the standard way of computing
nucleotide frequencies. The properties of OFDEG
suggest that noisy biases that can occur in metagenomic
DNA (either through sequencing errors or features of the
community under investigation) will not significantly
affect its meaningfulness as a representative genomic
signature. Its conservation over varying sequence lengths
is relatively consistent with standard nucleotide frequency.
However, the sparsity of the oligonucleotide occurrence
vector has a more profound effect on the computation
of OFDEG (due to a decrease in linearity) than classical
nucleotide frequency statistics. The combination of
OFDEG and GC content (henceforth referred to as O-
GC) has been shown to group related sequences [refer to
(11) and Supplementary Figure S4].
Taxonomic resolution: when the number of different

populations in a sample increases, the way in which
O-GC groups fragments becomes important. For
instance, the GC content of a sequence is used primarily
for clustering metagenomes of low diversity and high
coverage, since its discriminatory power reduces as the
species diversity within a metagenome increases (9).
Similarly, OFDEG measures the relative magnitude of
biases in base composition rather than specific oligomer
over-/under-representation. As such, unrelated sequences
can have an approximately equivalent OFDEG value. For
example, the OFDEG value would be equivalent for a
sequence containing only A/T when compared with a
sequence containing only G/C, despite the sharp
contrast in base composition. This measure of the
relative magnitude of biases is, however, remarkably
consistent within genomes as well as between fragments
of a genome. It is not a necessary requirement that the
groups produced by O-GC contain only related
populations. The populations within a group may or
may not be related (such composite groups will be
refined at Tier 2), but if sequences from distinct
populations are not grouped by O-GC—i.e. have distinct
base composition—they can be assumed to be unrelated
(7). Therefore, both OFDEG and GC can be used to
coarsely group anonymous sequences.
Proposed transformation of the O-GC distribution: a

novel characteristic of sequences in O-GC space is that
they are distributed along a 1D manifold—
Supplementary Figure S5 shows the mean O-GC values
of 124 bacterial and archaeal genomes computed in 5 kb
increments over total of 1Mb for each genome; the
selected genomes (12) represent diverse taxa, with GC
content ranging from 20% to 80%. Using standard least
squares regression, the manifold can be expressed as a
quadratic polynomial (R2=0.9474, for 4-mer basis on
OFDEG) of the form,

�4 ¼ �t
2 � �tþ �; ð3Þ
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where, for OFDEG calculated using a dimer basis
�=0.954, �=�1.878 and �=1.851; and for a tetramer
basis �=1.916, �=�3.753 and �=2.691, assuming that
O-GC has been scaled by the standard deviation of the
range of OFDEG and GC content within the sample.
Note that Equation (3) cannot be used to directly
compute OFDEG given a value of GC content, since
fragments of full genomes have OFDEG values that are
distributed about these manifolds.
An ordination technique using principal curves (PCs)

(29) is then applied to the O-GC distribution to capture
the non-linear geometry of points in O-GC space. Without
doing so, the Gaussian model estimation tends to produce
incorrect estimates of cluster distribution, particular in
the mid-GC content range where the true cluster
distribution tends to depart from the assumptions
of normality and cannot be captured by a standard
Gaussian parameterization. As such, points in O-GC
space are projected onto a new coordinate system that
captures the non-linear variation of points along a PC
(Supplementary Figures S6 and S7). Based on simulations
and data experience, the pre-generated PC, as given by
Equation (3), is a valid approximation to the general
O-GC distribution of different metagenomic data sets.
Furthermore, metagenomes that have a strong GC bias
lack a sufficient number of sequences over a wide range
of GC content to accurately estimate a PC.
The projection of points in O-GC space onto the new

space defined by the PC follows a two stage procedure.
First, we define a sequence in O-GC space as Fi=(fgc,
fofdeg), which corresponds to its GC content and
OFDEG value, respectively. The orthogonal projection
of each Fi onto the PC is defined as the intersection of
Fi on the PC (at Pi=(ug, vg)) under the constraint that the
normal at Pi intersects Fi. This normal for any point along
the PC can be easily formulated using Equation (3), and is
given by:

ui� ¼ �
1

2�fgc � �
u� � fgc
� �

þ fofdeg: ð4Þ

The intersection of the normal to the g4 curve, 	: �4 ¼ ui� ,
corresponds to the coordinates of the desired projection
onto the PC:

	 ¼ u�
� �3

2�2
� �

þ u�
� �2

3��ð Þ

þ u� �
2 þ 2��þ 1� 2��fofdeg

� �
þ ��� fgc � �fofdeg
� �

;

ð5Þ

where the required solution u?� is given by the cubic root
such that it fullfils:

u?� ¼ min u1� � fgc

��� ���; u2� � fgc

��� ���; u3� � fgc

��� ���n o
; ð6Þ

where ug
n satisfies f=0, 8n=1. . . 3 and u?� 2 R

2.
Given a function �4: Fi!Pi, the transformed vertical

coordinate in the new space is given by:

U ¼ 
 Fi � �4 Fið Þ
�� ��; ð7Þ

where 
 determines the sign of the transformed
coordinate:


 ¼
�1 if fgc 5 �

�
2� fgc 5 u�

�1 if fgc 4 �
�
2� fgc 4 u�

þ1 otherwise

;

8<
: ð8Þ

which in other words identifies the set of all points which
are concave in relation to g4 (+1) and those which are
not (�1). The transformed horizontal coordinate is then
given by:

V ¼
Xm
i¼0

�4 Fið Þ � �4 Fi�1ð Þ
�� �� ð9Þ

where V is monotonic and positive, and assumes that all
coordinates are presorted in ascending order of fgc. Given
points in this new space (defined by U and V), the mixture
model can then be estimated on a more representative
cluster distribution of O-GC, in order to generate the
required set of coarse groups for Tier 2 refinement.

Tier 2 refinement using tetranucleotide frequency. Given
the clusters obtained at Tier 1 using PC-mapped O-GC,
the tetranucleotide frequency for each sequence is
computed within the context of each Tier 1 cluster,
which is treated as self-contained metagenome of lower
diversity than the original data set. In doing so, the
aggregate tetranucleotide frequency profile is computed
for each sequence and its reverse complement to remove
strand bias (9). PCA is applied to the resulting feature
vectors for dimensionality reduction, to simplify model
estimation during clustering, and to alleviate density
estimation requirements in the original high-dimensional
space. This resulting PCA projection reduces the original
feature space to three dimensions using the first three
principal components of the PCA—this projection was
found to accurately represent meaningful cluster
distributions of the data sets considered in this study.
The clusters that result from Tier 2 refinement are
referred to as bins. The following section reports the
quality of clustering that can be expected when applying
this two-tiered framework to simulated and real-world
data.

RESULTS

Performance on benchmark data

The quality of coarse clustering at Tier 1 using O-GC is
compared with the performance of four other features
(details of these features can be found in Supplementary
Methods 2) to justify its use at Tier 1. The designation of
features are as follows: ODDS : dinucleotide odds ratio;
TNF : tetranucleotide frequency; MOMN-TNF : maximal
order Markov-normalized TNF; ZSN-TNF : z-score
normalized TNF; O2-GC : OFDEG calculated using a
dimer basis, and GC content; and O4-GC : OFDEG
calculated using a tetramer basis and GC content. The
results at Tier 1 are then used to justify the selection
of TNF for the refinement of coarse groups at Tier 2.
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The benchmark performance at Tier 2 is subsequently
compared with PhyloPythia (30), TaxSOM (31),
TACOA (32), and S-GSOM (16), which also use
nucleotide frequency as means to infer the underlying
microbial population structure. It is shown that the
proposed clustering framework improves the taxonomic
resolution and accuracy of binning on the benchmarks
considered.

Accuracy and selection of features at Tier 1. The results
indicate O4-GC as the best candidate for coarse grouping
at Tier 1, given that it performed best overall for the more
complex simMC and sim-BG benchmarks (Table 1). It is
apparent that the model-based framework is in its own
respect an accurate method when using only one tier (as
it aptly removes sequences which cause errors in cluster
distribution). However, for increasingly complex samples
the limitations of feature sets become apparent, and
requires the use of the secondary tier to increase the
taxonomic resolution of bins. The features based on
TNF were found to probe deeper into the population
structure at lower taxonomic ranks (attempting species-
level classification), but were found to be limited in
sensitivity due to C-II noise. For instance, when using
TNF discrimination between clusters containing the
Desulfitobacterium hafniense Y51 and the Pelotomaculum
thermopropionicum, SI sequences became difficult, with an
observed tendency for over-specification of cluster
structure due to residual C-II noise. In contrast, O4-GC
tends to group sequences more coarsely with higher
sensitivity (parsimonious classification), and so is a more
suitable candidate for primary grouping.

Selecting the Tier 2 feature-set given O4-GC at Tier 1. The
Tier 1 cluster solutions were examined for mutual

redundancy using the Adjusted Rand Index (ARI) (33).
The results of pairwise comparisons of cluster structure is
shown in Table 2. The most unique grouping of sequences
was given by ZSN-TNF with an ARI between 0.53 and
0.58 when compared with all other feature sets with the
exception of MOMN-TNF. The ZSN-TNF and MOMN-
TNF cluster solutions were highly similar (ARI=0.96),
suggesting that Markov-normalization has a unique effect
on cluster distribution in comparison to unnormalized
nucleotide frequency. However, given that the accuracy
and coverage of these two feature sets were subpar, they
cannot be considered for Tier 2 separation. Instead, it was
observed that O2-GC and O4-GC had a mutual ARI of
0.99, but approximately 800 unique sequences were not
included in each respective cluster solution, noting that
there is some difference between the two features which
is most likely a function of noise rather than cluster
structure. The O4-GC and TNF feature sets constitute
the largest proportion of accurately classified sequences,
with O4-GC classifying 3076 sequences and TNF
classifying 3834 sequences. Given that only 2021
(52.71%) of sequences in TNF had correspondence to
O4-GC at an ARI of 0.86, they are sufficiently non-
redundant and can therefore be applied hierarchically.

Benchmark performance using the proposed two-tiered
clustering framework. Given Tier 1 clusters based on
O4-GC, phylogenetic refinement using TNF was found
to increase the accuracy and resolution of clusters by
approximately 20%. The additional clustering tier
largely corrects for the C-II noise specific to TNF.
Performance on the simLC and simMC data sets The

two-tiered clustering framework retained the single cluster
solution for simLC. A larger number of sequences were,
however, filtered during the additional filtering stage at

Table 2. Pairwise comparisons of the cluster structure produced by each compositional feature

MOMN-TNF ODDS (%) O2-GC (%) O4-GC (%) TNF (%) ZSN-TNF (%)

MOMN-TNF 1.00 (–) 0.87 (32.82) 0.71 (27.45) 0.72 (23.38) 0.88 (26.45) 0.96 (35.99)
ODDS – 1.00 (–) 0.70 (44.66) 0.70 (45.81) 0.90 (46.71) 0.53 (46.71)
O2-GC – – 1.00 (–) 0.99 (77.71) 0.89 (51.10) 0.55 (55.82)
O4-GC – – – 1.00 (–) 0.86 (52.71) 0.56 (58.35)
TNF – – – – 1.00 (–) 0.58 (63.24)
ZSN-TNF – – – – – 1.00 (–)

The reported values are the ARI values between clustered feature sets; the number of sequences in correspondence between cluster solutions is shown
in parentheses.

Table 1. A comparison of features at Tier 1 of the clustering framework revealed O4-GC as the most suitable feature for Tier 1 separation

Ranking Feature simLC simMC (family) simMC (species) sim-BG Average performance

1 O4-GC 100.00 100.00 87.00 79.49 91.62
2 O2-GC 100.00 100.00 87.02 73.89 90.23
3 TNF 100.00 77.42 100.00 75.32 88.19
4 ODDS 100.00 100.00 87.82 62.23 87.51
5 ZSN-TNF 100.00 77.72 97.30 70.05 86.27
6 MOMN-TNF 100.00 77.67 98.74 59.49 83.96

The accuracies reported here are the F-scores for each cluster solution.
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Tier 2. A total of 45 sequences (1.35Mb) were classified
with sensitivity and specificity equal to 100%. For simMC,
the sensitivity and specificity at the rank of species was
also 100%. The two clusters identified at Tier 1 were
subsequently resolved into the three bins representing
the three species types in the simMC benchmark.
Performance on the sim-BG data set: all nine genome

types were correctly identified with an average sensitivity
of 0.995 and a specificity of 1.000 at the rank of species. A
six cluster solution given by O4-GC at Tier 1 was resolved
into nine bins corresponding to each genome type in the
data set. Bins with less than 30 sequences were rejected
due to insufficient cluster support. The residual error in
the final output was caused by sequences of
Prochlorococcus marinus MIT9303, with five sequences
(0.51%) identified as C-I noise.

Comparison of benchmark performance with current
binning methods. The taxonomic resolution of the bins
produced by each method differed. For the low
complexity (simLC) data set, all methods, with the
exception of the species-specific model of PhyloPythia,
performed with sensitivity and specificity greater than
0.95 for the simLC data set and were able to recover the
single cluster solution. However, neither of the existing
methods were able to achieve perfect discrimination
between the single-cluster solution and low abundance
noise—the additional filtering stage proposed at Tier 2
of the binning framework was able to remove such
ambiguous sequences.
Notably, for the more complex benchmarks, TACOA

was not able to produce species-specific assignments,
rather it classified most sequences at the rank of
superkingdom, offerring a limited insight into the
underlying population structure of the simulated
metagenome. Similarly, TaxSOM was not able to
classify most sequences at the rank of species, but it was
able to separate sequences into multiple coarse groups.
S-GSOM could produce accurate results using
tetranucleotide frequency but was limited to assignments
at higher taxonomic ranks, such as family or order. False
classes were also identified by S-GSOM, indicating overly
specific assignments. This was similarly observed when
estimating the mixture model of the proposed method
using only TNF at Tier 1, which highlights the benefit of
preclustering the data set using O4-GC prior to clustering
with TNF.
Such limitations were also applicable to PhyloPythia.

For instance, using a P-value threshold of 0.5,
PhyloPythia was not able to separate the
Bradyrhizobiaceae family into its two constituent
populations, but did achieve a sensitivity and specificity
of 1.00 for the predicted rank of order. When using a
different threshold (P=0.85), it was able to resolve
three classes but did so with a reduction in sensitivity to
0.40. Using the species-specific mode of PhyloPythia also
recovered the three dominant populations, but again with
low sensitivity. Nevertheless, PhyloPythia and TaxSOM
were able to achieve the highest accuracy of the existing
methods, which in both cases were still lower than
the accuracy of the proposed framework (Figure 2).

The overall percentage improvement of the proposed
framework over PhyloPythia and TaxSOM is 78.41 and
17.55% in sensitivity, respectively; and 0.13 and 9.47% in
specificity, respectively.

The number of sequences assigned by each method
were, however, similar. With reference the complex, sim-
BG data set, PhyloPhythia was able to assign 536
sequences (10.60%) at the taxonomic rank of each
simulated population; TaxSOM was able to assign 1527
sequences (27.68%) at the rank of each population; while
the number of assignments made by the proposed method
(984, 17.51%) was situtated between the two.

Generally, it was observed that the performance of
currently available methods is limited in distinguishing
between closely related populations, and offers similar
results to those given when using only one tier of the
proposed clustering framework. This highlights the
benefits to taxonomic resolution of bins that are
obtained when using two non-redundant feature sets. In
cases where a particular population is under-represented,
the existing methods such as PhyloPythia and TaxSOM
are more suitable, since the proposed framework
requires sufficient sample sizes for each population to be
clustered. However, the exploratory nature of the
proposed framework allows unbiased characterization of
metagenomes, potentially biased training is not required,
and is better suited to inferring the underlying population
structure of novel metagenomic samples. This is further
validated in the following sections by clustering real-wold
metagenomic sequences.

Analysis of a novel pyrosequenced metagenomic
library of a mud volcano sample

The mud volcano sample represents a relatively GC-rich
metagenome, with a large number of contigs composed of
50–60% GC and a smaller set of contigs composed of
approximately 40% GC. A total of 438 contigs (13.98%)
were prefiltered prior to Tier 1 clustering. Subsequent
clustering at Tier 1 revealed two groups (M1 and M2),
representing the dichotomous GC bias in the sample,
with modal GC content of clusters at 45.79 and 55.81%,
respectively. The clusters contained 1466 (3.46Mb) and
1229 (2.24Mb) sequences, and following the application
of post-processing constraints, 27.08 and 33.36% of these
sequences were removed as noise from each respective
cluster. Nevertheless, over 1Mb of sequence was
retained in both M1 and M2 (2.65 and 1.49Mb)
allowing for further refinement at Tier 2. At Tier 2,
secondary prefiltering of M1 removed 437 sequences
(40.88%) as noise, whereas M2 was estimated to contain
only 54 sequences (6.59%) as noise. Both clusters were
further separated, with M1 separating into two subclusters
(M1-1, M1-2) and M2 separating into three subclusters
(M2-1, M2-2, M2-3). The M1-1 (964 985 bp) and M1-2
(305 247 bp) bins represent two AT-rich populations,
centred at approximately 47% GC and 41% GC,
whereas M2-1 (54.89% GC), M2-2 (57.98% GC) and
M2-3 (54.12% GC) were all GC-rich, with 463 917,
364 820 and 90 811 bp of sequence in each bin. The
smallest of these, M2-3, contained only 56 contigs and
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was considered as potential noise or an indication of
under-represented clade.

For each Tier 2 bin, translated protein sequences of
genes predicted using MetaGene (34) were compared
against the NCBI non-redundant (NR) database using
BLASTP (e-value: 10�5). The results were then processed
using MEGAN (35) with a minimum support of 20 and a
minimum bit-score of 100 (Table 3). In each bin, there was
significant support for a specific genome type (Table 3).
The anticipated phylogenetic diversity of the sampled
methanogenic ecosystem is consistent with the predicted
taxonomic assignments. Furthermore, the identified
organisms all respire anaerobically, which is consistent
with the depth at which the sample was taken.

The Algoriphagus-like organism found in M1-2 has
previously been isolated from a similar environment
(36), and is a member of the Bacteroidetes phylum that
contributes to carbon cycling through the degradation of
polysaccharides and macromolecules. Similarly, the
Marinobacter clade identified in M2-2 is also involved in
carbon cycling, and is known to proliferate in nitrogen-
and phosphorus-rich environments. It is anticipated that
other gammaproteobacteria are contained within M2-2,
given additional assignments to an Alcanivorax-like
clade. The Alkaphilus metalliredigens-like bacterium
represents an obligate anaerobe capable of iron reduction,
while the mesophilic bacterium Pelobacter carbinolicus is
commonly found in carbon- or sulphur-rich environments
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Figure 2. Comparison of the proposed framework against the two next-best binning methods, PhyloPythia and TaxSOM, on the low complexity
(simLC), medium complexity (simMC) and the medium–high complexity (sim-BG) benchmark data sets. The sim-BG benchmark, in particular,
highlights the percentage improvement over PhyloPythia and TaxSOM at 78.41 and 17.55% in sensitivity, respectively; and 0.13 and 9.47% in
specificity, respectively.
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and occurs in syntrophy with other methanogens. These
result agree with the local geochemistry of the sample,
where it was found that sulphate and methane levels
decreased. These bacterial clades played a role in the
methanotrophic reaction to oxidize the methane and
also reduce iron compound.
The predicted taxonomic content of the bins were

verified using complementary sequencing of 16S
ribosomal RNA genes (Supplementary Data 1). The
resulting phylogenetic characterization of the sample
revealed a clear correspondence to the predicted taxons
within each bin, with discrepancies in only the taxonomic
rank of assignments. In this regard, MEGAN was found
to be overly specific, while the 16S analysis produced
conservative predictions of sample diversity. The
Alkaliphilus metalliredigens-like bin was instead identified
as a Clostridiaceae class; similarly, the Algoriphagus-like
bin was identified as Cyclobacteriaceae; the Pelobacter-like
bin was classified as an unidentified Desulfurmonadales,
indicating a potentially novel environmental clade; and
M2-2 was correctly identified as Marinobacter, and also
accounts for the remaining Gammaproteobacteria that
could not be refined due to insufficient sequence
coverage. Several unclassified bacteria were found in the
16S rRNA survey, which could potentially be linked to
M2-3. Furthermore, the additional phylotypes identified
in the survey that were not represented in any of the bins
was due to an under-representation of those genome types
in the sequenced metagenomic library. For instance,
sequences belonging to the Bacillariophyta clade were
found among contigs shorter than 1000 bp, but were
deemed insufficient in number to form a distinct cluster.
The four detected bins represented distinct yet typical

roles that were expected in the mud volcano environment
(Supplementary Data 2). This observation was further
supported by geochemical analysis of the sample (data
not shown), where activities of methane oxidation and
sulphate reduction were detected which constitute a
common biogeochemical profile seen in aquatic sediment
environments (37). Bin M1-1, closely related to Alkalipilus
metalliredgens QYMF (abbreviated as QYMF), showed a
higher proportion of sequences related to selnoamino acid,
in accordance with the complete genome of QYMF.
KEGG analysis also revealed that M1-1 may be active in
the consumption of methane in the environment, a feature
which still remains poorly understood for QYMF. The
KEGG profile of M2-1 was closely clustered near M1-1,
which has close affiliation to Pelobacter carbinolicus. This
bacterium is a typical iron and sulphur-reducing anaerobic

organism and syntrophically enables the use of methane to
generate hydrogen as energy (38). Such physiological
characteristics are in accordance with the detected
KEGG profiles, as well as the geochemistry of the
sample. Similar to M2-1, M1-1 also shares a role in
methane consumption but has another important role in
sulphur reduction, which was shared to a much greater
extent by M2-2. M2-2 was found to be closely related to
Marinobacter aquaeolei, a facultative mixotrophic iron
oxidizer found in anaerobic environments (39). This
bacterium has a strong capability for iron oxidation and
iron acquisition, and plays an important role in
geochemical element cycles in similar niche environments
(40). M1-2 was closely related to Algoriphagus sp. PR1, but
contained few sequences carrying genes responsible for
sulphur and methane metabolisms. Notably, many of the
Algroiphagus species have previously been isolated from
mud or soil (36); however, the role of the bacterium in
sediment is not yet known. The KEGG profile analysis
of these four bins has illustrated the accuracy of the
proposed framework on novel data. This means more
detailed information can be extracted for in-depth
interpretation of an environmental sample.

Validation against publicly available metagenomes

In all cases, the proposed framework was able to recover
the dominant underlying population structure of the
sampled microbial communities (Table 4). The results on
the WF-B metagenome further indicate that the proposed
method is effective in grouping sequences that was
previously not expected to be possible (24). For the AMD
and GWE data sets, published sequence assignments were
used as a reference for evaluation. For all other data sets, a
combination of BLAST andMEGANwas used to estimate
the taxonomic content of each bin.

Enhanced biological phosphorus removing sludge. A total
of 899 contigs (26.17%) were binned, from an initial set of
3435 contigs that did not contain ambiguous base calls.
Two distinct groups were identified at Tier 1 (E1 and E2),
and did not separate further at Tier 2. A total of 357 genes
were predicted in E1, of which 226 returned no significant
hits to NR (BLASTP, e-value: 10�5); while 1163 genes
were predicted in E2, of which 606 returned
no significant hits. E1 was subsequently identified by
MEGAN as a gammaproteobacteria, similar to the
Thiothrix-like species originally identified in the EBPR
metagenome using 16S rRNA alignments (22) and is
consistent with the dominant flanking population of the

Table 3. A summary of the two-tiered binning approach applied to the novel mud volvano metagenome

Bin Candidate (Min support: 20) Assigned Not assigned (%) No hits (%) Total

M1-1 Alkaliphilus metalliredigens QYMF 61 165 (14.34) 628 (54.56) 1151
M1-2 Algoriphagus sp. PR1 24 128 (30.55) 234 (55.85) 419
M2-1 Pelobacter carbinolicus DSM 2380 22 80 (12.18) 365 (55.56) 657
M2-2 Marinobacter aquaeolei VT8 41 54 (8.90) 347 (57.17) 607
M2-3 Unknown – 55 (39.57) 84 (60.43) 139

The predicted taxonomic assignments were estimated by post-processing blastp hits (e-value: 10�5) using MEGAN with a minimum support of 20
and a minimum bitscore of 100.
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EBPR sample. E2 was identified as Candidatus
Accumulibacter phosphatis clade IIA str. UW-1,
corresponding to the dominant population within the
EBPR sample.

Acid mine drainage biofilm. A two cluster solution was
selected at Tier 1 despite a maximum BIC for four
clusters, due to marginal improvement in the BIC (less
than 0.001%) for mixtures of more than two components.
The resulting clusters comprised an AT-rich group (A1:
GC=37.57%, 893 contigs, 4.77Mb) and a GC-rich
group (A2: GC=57.07%, 596 contigs, 4.20Mb),
corresponding to the two dominant Ferroplasma and
Leptospirillum species groups, respectively. The sensitivity
and specificity of the Tier 1 clusters is 100% at the rank of
Order. At Tier 2, the Ferroplasma group divided into a bin
containing the Ferroplasma Type I and II genome types
(A1-1) and a bin containing the Thermoplasmatales
archaeon Gpl cluster (A1-2). The Leptospirillum Group
III genome type (A2-2) is distinguished from the
Leptospirillum Group II genome type (A2-1). In both
cases, the specificity of the bins was retained at 100%.
The contigs that were not assigned to A2-1 and A1-2,
require alignment to a reference genome for correct
classification due to the mosaic structure of the genomes
in the AMD sample (23) and cannot be assigned using
base composition—this was similarly observed in Ref.

(18). The original binning methodology which used
domain knowledge of reference genomes (23) is indicative
of this.

Endosymbionts of the Mediterranean gutless worm. The
original set of 4793 contigs was reduced to 4262
ungapped contigs (20.08Mb) following the removal of
contigs with ambiguous bases. Four clusters were found
at Tier 1 (G1, G2, G3, G4), with G3 being the only cluster
to separate further at Tier 2 (G3-1, G3-2) corresponding
to the d4 and g3 endosymbionts, respectively. It was
observed that sequences of the d1 endosymbiont were
distributed over two bins (G1 and G2), indicating the
presence of an additional d-proteobacterial clade.
Further analysis verified, however, that although there
are significant differences at the nucleotide level, there
was insufficient evidence to support differences at the
functional level. When we applied the scaffold
information, it was observed that the contigs in each of
the two d1 bins mapped to the same scaffold (22.34%).
This is in contrast to the d1 and d4 bins where this occurred
for 5.63% of scaffolds; and the g1 and g3 bins where
scaffolds were formed using only the sequences within
each respective bin. Therefore, E1 and E2 were
combined into one bin. Moreover, a total of 236 contigs
were binned using the proposed method that were
previously classified as unknown (17). These additional

Table 4. Summary of the validation of the proposed framework on real-world metagenomes

Sample Taxon Rank Bins

A1-1 A1-3 A2-1 A2-2

Acid mine drainage Ferroplasma Genus 99 0 0 0
Thermoplasma archaeon Species 24a 59 0 0
Leptospirillum group III Species 0 0 93 23a

Leptospirillum group II Species 0 0 0 28
GC content (%) 37.73 37.80 59.18 54.48
Length (Mb) 1.87 0.49 0.48 2.07

G1-1 G3-1 G3-2 G4-1

Gutless worm d1-proteobacteria Class 277 10 0 2
d4-proteobacteria Class 14 153 0 4
g1-proteobacteria Class 3 2 0 50
g3-proteobacteria Class 2 1 75 0
Unknown – 102 51 6 77
GC content (%) 55.68 55.97 62.48
Length (Mb) 3.74 1.14 1.76 0.30

W1-1 W1-2 W1-3 W1-4 W2-1 W2-2 W2-3

Antarctic whale fall bone Alteromonadales Order 649 21 10 5 0 0 0
Psychrobacter Genus 0 666 0 9 0 0 0
Flavobacteriales Order 0 0 1601 9 0 0 0
Unidentified – – – – 302 – – –
Actinobacteria Class 0 0 0 0 22 0 0
Rhodobacterales Order 0 0 0 5 11 83 44
Sphingomonadales Order 0 0 0 0 0 0 324
GC content (%) 41.16 44.54 35.04 44.70 57.91 56.96 57.97
Length (Mb) 0.43 0.49 1.07 0.26 0.12 0.13 0.39

The gutless worm community revealed 236 additional contigs that have been classified. The apparent noise in the classification could be traced back
to the BLAST-based assignments given in Ref. (17). The whale fall bone sample shows good separation at the rank of order.
aSequences correspond to mosaic genome types that require alignment to a reference genome for correct classification and cannot be separated by
nucleotide frequency (18,23); nevertheless, all bins were classified with perfect specificity.
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sequences could potentially address questions that were
left open in the original publication.

Antarctic whale fall bone. Due to the phylogenetic
diversity of the sample [in the order of 100 or so
species (24)], the bins were identified at rank of order,
with two exceptions at the rank of class and genus. The
WF-B sample revealed two clusters (after prefiltering
10.77% of sequences as noise) at Tier 1, which represented
two distinct groups with approximately 40.28% (W1) GC
and 57.04% GC (W2) content, each containing 4508
(5.44Mb) and 1883 (2.26Mb) sequences, respectively. At
Tier 2, the W1 cluster split into four distinct bins (W1-1,
W1-2, W1-3 and W1-4), the largest of which (W1-3)
contained 1.07Mb of sequence accounting for the largest
bin in the data set. It was also found to have the most
pronounced deviation (5.24%) from the estimated GC
content of the Tier 1 clusters. The W2 cluster separated
into three bins (W2-1, W2-2 and W2-3), which were all
found to be of lower abundance than the W1 bins.
Inspection of the taxonomic content in each bin revealed
a dominant cohort of Flavobacterales (W1-3), with
flanking populations consisting of Alteromonadales
(W1-1), Psychrobacter (W1-2) and Sphingomonadales
(W2-3, Alphaproteobacteria) in addition to an unidentified
clade (W1-4), and an under-represented Actinobacteria bin
(W2-1). These findings were consistent with the 16S
analysis conducted by Tringe et al. (24).

DISCUSSION

The proposed two-stage model-based clustering approach
has demonstrated improved performance on both
simulated and real-world, low-to-medium complexity
metagenomes in comparison to currently available
binning methods. The use of multiple processing levels
with additional noise handling, enables the separation
of sequences at finer taxonomic resolutions and with
higher accuracy than currently available compositional
binning methods. Model-based clustering improves the
accuracy of sequence assignments while the two tiered
framework is shown to increase the resolution at
which these assignments are made—the complementary
filtering strategy maintains the integrity of the clusters at
each tier.

Comparison against similarity-based methods

Binning metagenomic data prior to BLAST and MEGAN
analysis was found to be beneficial. Doing so reduces the
number of queries to process, thereby reducing the overall
computational time to conduct a search against a
database, given that all sequences need not be supplied
to BLAST, but only sequences that are confidently
assigned to each cluster model. Using post-processeing
methods such as MEGAN eliminates the majority of
ambiguity in the distribution of best BLAST hits (20,35),
but for largely novel genes these assignments were found
to be low in specificity. As such, many of the volcano mud
bins contained a large number of unassigned sequences.
These sequences could not be assigned by MEGAN but

were able to be classified using the binning method.
Similarly, a number of assignments made by MEGAN
were not present in bins, such as hits to sequences
shorter than the cutoff length for clustering. As such,
both methods are observed to produce meaningful yet
complementary classifications. Thus, both methods could
eventually be combined into one pipelined binning
approach.

Generally, however, the BLAST analysis confined to
each bin reduces the likelihood of these and other
spurious assignments of low abundance organisms,
which can lead to errors in classification. The resulting
assignments provided more accurate estimates of a bin’s
taxonomic content. Regardless of the number of
represented organisms in databases, unsupervised
methods that use nucleotide base composition will
perform consistently. This is further highlighted in the
comparison of the 16S rRNA marker gene analysis to
the taxons assigned using MEGAN. It is observed here
that MEGAN tends to over-specify the phylogenetic
assignment of the bins by assigning sequences to lower
level ranks, when in fact the 16S rRNA analysis showed
that higher order ranks are more probable. Therefore, the
BLAST/MEGAN assignments serve only as a guide,
rather than comprising definitive evidence of the
presence of specific genome types, as indeed the lineage
may be unknown or novel. The reliance on BLAST hits as
ground truth from which to annotate a cluster or to model
a metagenomic data set should thus be reduced.

PCA projected nucleotide frequency

The percentage of cumulative variation explained in the
first three principal components is directly correlated with
the dimensionality of the features. The odds ratio has the
highest percentage of variation for all benchmark data
sets, followed by tetranucleotide frequency. The variation
of MOMN-TNF and ZSN-TNF are less than 10% for all
data sets, and the lower accuracy is indicative of PCA’s
inability to represent meaningful cluster structure in those
feature sets. For metagenomic samples with a small
number of dominant species at sufficiently high
coverage, this would not significantly affect cluster
distribution (as seen in the simLC and simMC data
sets), as they are as likely as other features to capture
some form of phylogenetically meaningful clusters, albeit
with lower accuracy. For increasingly complex samples,
the compound effects of being unable to uniquely
capture the cluster structure of a taxonomic clade result
in the poor discrimination of genome types. Attempts at
pre-filtering the PCA projected space prior to clustering
does not alleviate this poor cluster structure and so is
presumed independent of C-II noise. Caution should
thus be exercised when attempting to cluster metagenomic
sequences based on the PCA of higher order nucleotide
frequencies.

Limitations and future directions

Due to the consideration of contigs >1000 bp (13,41), the
proposed method will perform better on metagenomes
with a minimum N50 contig length of 1–1.5kb.
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Moreover, multiple refinement stages result in
approximately 20% of sequences assigned to bins—this
is comparable to the number of assignments made by
other compositional binning methods; however, the
assignments made by the proposed method are of higher
accuracy. For the data sets considered in this study, the
proportion of classified sequences is still sufficient for
further downstream analysis and functional annotation,
as given by the number of full and partial gene calls in
each bin. Consequently, a natural extension is to use this
highly accurate subset of sequences to construct robust
classifiers for the unassigned set of sequences. Given that
there is a sufficient number and length of sequence
(>100 kb) in the bins that have been found in this study,
the potential for classification exists (30). It is anticipated
that the cluster models generated using the proposed
model-based clustering framework will result in more
accurate classification than other methods, which use
sample-specific training data.

The proposed method was able to find multiple bins in
two other whale fall samples (24), but verification using
BLAST and MEGAN was problematic. Whether this was
due to the high complexity of the samples, or biased
assignments based on sequence similarity, or a
combination of both was unclear. Similarly, metagenomic
samples of the Hawaii Ocean time-series (42) were not
separable at Tier 1, due to low coverage for the large
number of closely related species in the samples,
emphasizing that population coverage does affect cluster
formation and is typical of binning methods which use
density estimation for clustering. However, with the
current trend of sequencing producing longer read
lengths at higher throughput and at lower costs, these
limitations will be alleviated. Unsupervised binning
methods are, therefore, anticipated to be increasingly
more competetive against methods based on sequence
similarity for inferring the phylogenetic origin of
anonymous metagenomic sequences.
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