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Abstract
The number of patients with osteoporosis or type 2 dia-
betes mellitus (T2DM) is increasing in aging and western-
ized societies. Both disorders predispose elderly people 
to disabling conditions by causing fractures and vascular 
complications, respectively. It is well documented that 
bone metabolism and glucose/fat metabolism are etio-
logically related to each other through osteocalcin action 
and Wnt signaling. Bone fragility in T2DM, which is not 
reflected by bone mineral density (BMD), depends on 
bone quality deterioration rather than bone mass reduc-
tion. Thus, surrogate markers are needed to replace the 
insensitivity of BMD in assessing fracture risks of T2DM 
patients. Pentosidine, the endogenous secretory recep-
tor for advanced glycation endproducts, and insulin-like 
growth factor-I seem to be such candidates, although 
further studies are required to clarify whether or not 
these markers could predict the occurrence of new frac-
tures of T2DM patients in a prospective fashion.
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BONE METABOLISM AND GLUCOSE/FAT 

METABOLISM ARE ASSOCIATED WITH 

EACH OTHER THROUGH THE ACTION 

OF OSTEOCALCIN AND WNT SIGNALING
Although osteoporosis and type 2 diabetes mellitus 
(T2DM) are traditionally viewed as separate disease enti-
ties that increase in prevalence with aging, accumulating 
evidence indicates that there are similar pathophysiologi-
cal mechanisms underlying them.

Osteocalcin (OC), one of  the osteoblast-specific se-
creted proteins, has several hormonal features and is se-
creted in the general circulation from osteoblastic cells[1,2]. 
Recent animal studies have shown that uncarboxylated 
OC (ucOC) action is related to bone metabolism and glu-
cose metabolism and fat mass[3,4]. Lee et al[3] have shown 
that OC functions as a hormone that improves glucose 
metabolism and reduces fat mass, because OC-deficient 
mice aggravate these processes. Moreover, Ferron et al[4] 
have shown that recombinant ucOC administration regu-
lates gene expression in β cells and adipocytes (including 
adiponectin expression), and prevents the development of  
metabolic diseases, obesity, and T2DM in wild-type mice 
fed a high-fat diet. Several clinical studies including our 
own[5-8] have recently shown that serum OC level is associ-
ated with glucose and total adiponectin levels, fat mass, as 
well as atherosclerosis parameters in humans. We have re-
cently shown that serum OC level is negatively correlated 
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with plasma glucose level and atherosclerosis parameters 
in T2DM patients[5]. Kindblom et al[6] have shown that OC 
level is inversely related to plasma glucose level and fat 
mass in elderly non-DM persons. Fernández-Real et al[7] 
have shown that serum OC level is positively associated 
with insulin sensitivity in non-DM subjects. Pittas et al[8] 
have shown that serum OC concentration is inversely as-
sociated with fasting plasma glucose (FPG), fasting insu-
lin, homeostasis model assessment for insulin resistance, 
high-sensitivity C-reactive protein, interleukin-6, body 
mass index (BMI), and body fat in cross-sectional analy-
ses. They also have found that OC levels are associated 
with changes in FPG in prospective analyses. We also have 
found that ucOC is negatively associated with plasma glu-
cose level and fat mass, and positively with adiponectin in 
T2DM patients[9]. These experimental and clinical findings 
suggest that bone metabolism and glucose/fat metabolism 
are etiologically related to each other through the action 
of  ucOC or OC (Figure 1). 

Wnt signaling is also thought to be a common patho-
genetic feature of  osteoporosis and DM. Mani et al[10] have 
shown that a single missense mutation in low-density lipo-
protein receptor-related protein 6, the co-receptor for the 
Wnt-signaling pathway, is genetically linked to osteopo-
rosis as well as DM, hyperlipidemia, and coronary artery 
disease. In addition, several studies have documented that 
T-cell-specific transcription factor (TCF)-4, the partner of  
β-catenin in the canonical Wnt-signaling pathway, is the 
strongest T2DM susceptibility gene[11-14]. Manolagas and 
other researchers have suggested that antagonism of  Wnt 
signaling by oxidative stress diverts β-catenin from TCF- 
to Forkhead box O (FoxO)-mediated transcription, and 
contributes to the development of  osteoporosis as well 
as insulin resistance and hyperlipidemia[15-18]. Activation 
of  FoxO by reactive oxygen species in early mesenchymal 
progenitors also leads to decreased osteoblastogenesis by 
diverting β-catenin away from Wnt signaling[19], the mech-
anism of  which might be implicated in DM-related bone 
fragility that is described in the following section. 

FRACTURE RISK IN T2DM IS NOT 
REFLECTED BY BONE MINERAL DENSITY
Many clinical studies have also investigated the association 
between DM and osteoporosis, given that these disor-
ders affect a large proportion of  the elderly population. 
Although bone mineral density (BMD) is considered as 
a gold standard for evaluating fracture risk in non-DM 
osteoporosis, accumulating evidence has shown that pa-
tients with T2DM have a high fracture rate in spite of  the 
absence of  BMD reduction. A recent meta-analysis has 
shown that T2DM patients have higher hip BMD than 
non-DM controls (z-score: 0.27), despite an increased risk 
of  hip fracture (1.4-fold)[20], which suggests that BMD val-
ues do not reflect bone fragility in T2DM. Another meta-
analysis also has shown that hip fracture risk of  T2DM 
patients was increased by 1.7-fold[21]. 

In contrast, little is known about the risk of  vertebral 
fracture (VF) and its association with BMD. We examined 

Japanese T2DM patients and non-DM controls about this 
issue[22,23]. We have found that the presence of  T2DM is 
an independent risk factor for prevalent VFs in women 
(OR = 1.9) as well as men (OR = 4.7) after adjustment for 
age, BMI and lumbar BMD by logistic regression analysis. 
BMD at any site, however, is not significantly associated 
with the presence of  prevalent VFs in T2DM patients, in 
contrast to the significant association in controls. Compar-
ison of  T2DM patients with and without VFs showed no 
significant differences in BMD values, bone markers, or 
diabetes status. Receiver operating characteristic analysis 
has shown that the absolute lumbar, femoral neck, and ra-
dial BMD values for detecting prevalent VFs were higher 
in T2DM patients than controls, whereas their sensitivity 
and specificity were lower. Figure 2 shows the distribution 
of  lumbar BMD as a function of  age in T2DM women. 
In the control subjects, those with VFs (black dots) were 
clearly grouped in the region with higher age and lower 
lumbar BMD. In contrast, T2DM subjects with VFs were 
scattered widely and there was no association with age 
or lumbar BMD. Thus, T2DM patients might have an 
increased risk of  VFs independent of  BMD or diabetic 
complication status, which suggests that bone quality, but 
not bone mass, define bone fragility and cause hip and 
vertebral fractures in T2DM.

SURROGATE MARKERS FOR ASSESSING 
FRACTURE RISK IN T2DM
BMD is not sensitive enough to assess the risk of  os-
teoporotic fractures in T2DM, therefore, the etiology of  
DM-related bone fragility and diagnostic markers other 
than BMD need to be explored. 

Pentosidine
Formation of  advanced glycation end products (AGEs) 
results from sequential non-enzymatic chemical glycoxi-
dation of  protein amino groups[24], collectively called the 
Maillard reaction. AGEs accumulate in various tissues in-
cluding kidney, brain, and coronary artery atherosclerotic 
plaques during normal aging, whereas hyperglycemia re-
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Figure 1  When osteocalcin was administered to obese mice, it in-
creased insulin secretion, and decreased blood glucose level, fat mass, 
and triglyceride level. In humans, serum carboxylated and uncarboxylated 
osteocalcin levels were positively correlated with insulin sensitivity and adi-
ponectin level, whereas they were negatively correlated with blood glucose 
level, fat mass, and atherosclerosis index. Thus, osteoporosis and diabetes 
are pathophysiologically related to each other through osteocalcin (OC) ac-
tion in mice and humans.

Yamaguchi T. Bone fragility and diabetes



sults in an accelerated rate of  AGE formation, which sug-
gests that AGEs have a pivotal role in the development of  
complications in DM patients[25,26]. In addition, previous 
studies have revealed that AGEs accumulate in bone tis-
sue as well[27,28], and that receptor for AGE (RAGE) is 
expressed in human bone-derived cells[29], which suggests 
that AGEs are associated with DM-related bone fragility. 

Several experimental studies have shown that AGEs 
have a negative impact on bone. AGEs inhibit the syn-
thesis of  type 1 collagen and OC, as well as mature bone 
nodule formation in osteoblasts[30-32]. We have previously 
demonstrated that the combination of  high glucose and 
AGEs additionally or synergistically inhibits the miner-
alization of  osteoblastic cells, through glucose-induced 
increase in expression of  RAGE[33]. These findings sug-
gest that AGE accumulation in bone causes osteoblastic 
dysfunction. AGEs are also known to increase osteoclast 
activity. Previous in vitro and in vivo experiments[34] have 
indicated that the number of  resorption pits is increased 
when osteoclasts are cultured on AGE-modified dentin 
slices, and that AGE-bone particles are resorbed to a 
much greater extent than non-AGE bone particles when 
implanted subcutaneously in rats. In addition, RAGE 
knockout mice display a decreased number of  osteoclasts 
as well as a significantly higher bone mass compared to 

wild-type mice[35]. AGEs accumulation inhibits the dif-
ferentiation and mineralization of  osteoblasts, while it en-
hances the activity of  osteoclasts, which possibly leads to 
uncoupling of  bone turnover and resultant bone fragility. 

AGE accumulation in bone is also negatively associ-
ated with material properties[27,28,36]. Collagen crosslinks 
are known to play crucial roles in the determination of  
bone strength[37]. AGE-type crosslinks, which are formed 
spontaneously by non-enzymatic glycation and oxidation 
reactions, are thought to be associated with brittleness 
of  collagen fibers[38,39], whereas physiological (enzymatic) 
crosslinks strengthen links of  collagen fibers, and lead to 
the enhancement of  bone strength[28,40]. Spontaneously 
diabetic WBN/Kob rats have been reported to display 
a decrease in enzymatic crosslinks and an increase in 
AGE-type crosslinks despite the lack of  BMD reduc-
tion, which results in deterioration of  bone strength[41]. 

Among the few AGEs characterized to date, pento-
sidine is one of  the well-known AGEs and is chemically 
well defined[42-44]. Because the formation of  pentosidine 
requires both glycation and oxidation, serum pentosidine 
levels are considered to be a useful marker for glycoxida-
tion. Several studies have revealed that pentosidine content 
in cortical or trabecular bone from vertebra or femur is 
negatively associated with mechanical properties[27,28,36], and 
that pentosidine content of  cortical and trabecular bone 
derived from patients with femoral neck fracture is higher 
than that of  age-matched controls[45,46]. However, assess-
ment of  pentosidine content in bone is not easily done in 
clinical situations, because invasive procedures like bone bi-
opsy are necessary for preparing specimens. A recent study 
has revealed that content of  pentosidine in plasma shows 
a significant linear correlation with that in cortical bone[47], 
which suggests that serum pentosidine level could be used 
as a surrogate marker for its content in bone and could 
evaluate bone strength. We have previously shown that 
serum pentosidine levels are associated with prevalent VFs 
in postmenopausal women with T2DM (OR = 2.50 per 
SD increase, Table 1)[48]. This association is independent 
of  BMD, which suggests that it might reflect bone qual-
ity rather than BMD. In addition, an observational cohort 
study has shown that urine pentosidine levels are associated 
with increased clinical fracture incidence in those with DM 
(relative hazard 1.42 per SD increase in log pentosidine)[49]. 
Therefore, serum and urine pentosidine levels might be 
useful for assessing fracture risk in T2DM women, for 
which BMD or traditional bone markers are insensitive.

Endogenous secretory RAGE
RAGE belongs to the immunoglobulin superfamily of  
cell-surface receptors and is capable of  interacting with 
multiple ligands, including AGEs[50]. When transgenic mice 
that overexpressed human RAGE in vascular cells were 
crossbred with a transgenic line that developed insulin-
dependent DM shortly after birth, more progressive 
histological changes of  DM nephropathy were observed 
compared to controls[51], which confirms that RAGE is 
associated with the development of  DM complications. 
Endogenous secretory RAGE (esRAGE) is a splice variant 
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Figure 2  Distribution of bone mineral density in subjects with and without 
vertebral fractures (black dots and open circles, respectively) as a func-
tion of age. BMD: Bone mineral density; T2DM: Type 2 diabetes mellitus.
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of  one of  the naturally occurring secretory forms, and is 
known to carry all of  the extracellular domains but lacks 
the transmembrane and cytoplasmic domains[52]. esRAGE 
in the extracellular space is thought to act as a decoy recep-
tor that binds AGEs and reduces the activity of  intercellu-
lar signal pathways via RAGE[52]. Indeed, administration of  
a genetically engineered murine soluble RAGE suppresses 
the development of  diabetic atherosclerosis in a dose-
dependent manner in streptozotocin-induced apoE-null 
DM mice[53]. These experimental findings suggest that en-
hanced RAGE activity is clinically linked to reduced bone 
strength in DM patients. Given the neutralizing nature of  
esRAGE, it is possible that the ratio of  serum esRAGE to 
AGE levels could be linked to clinical bone problems, such 
as fractures, more prominently than either parameter alone. 

We have found that the esRAGE/pentosidine ratio 
in T2DM patients with VFs is significantly lower than in 
those without VFs. Multivariate logistic regression analysis 
adjusted for age, height, weight, hemoglobin A1c, serum 
creatinine, DM duration, therapeutic agents, DM compli-
cations, osteoporotic risk factors, and lumbar BMD iden-
tified the serum esRAGE level and esRAGE/pentosidine 
ratio as factors associated with the presence of  VFs, in-
dependent of  BMD in men (OR = 0.46 and 0.34, respec-
tively) and in women (OR = 0.32 and 0.14, respectively) 
(Table 1)[54]. These results show that serum esRAGE level 
and esRAGE/pentosidine ratio are more useful than 
BMD for assessing the risk of  VFs in T2DM patients. 

Insulin-like growth factor-I
Bone remodeling is regulated by systemic hormones 
and locally produced factors, which both act in concert 
to maintain bone mass[55-57]. Insulin-like growth factors 
(IGFs) are synthesized in osteoblasts and are among the 
most important regulators of  bone cell function due to 
their anabolic effects on the skeleton[58]. The key role of  
the IGF system in the local regulation of  bone formation 
is demonstrated by the finding that about 50% of  basal 
bone cell proliferation can be blocked by inhibiting the 
actions of  IGFs that are endogenously produced by bone 
cells in serum-free culture[59]. In osteoblast-specific knock-

out mice for IGF-I receptor, a significant reduction in tra-
becular bone mass and deficient mineralization have been 
observed[60]. In contrast, circulating IGF-I, which is mainly 
produced in the liver via regulation by growth hormone 
and diet, acts in an endocrine manner, which also activates 
bone remodeling and exerts anabolic effects on bone 
tissues[61-63]. Liver-specific IGF-I gene null mice show a 
marked reduction in bone volume, periosteal circumfer-
ence, and medial lateral width, which suggests that circu-
lating levels of  IGF-I also directly regulate bone growth 
and density[64]. Indeed, our clinical studies have shown that 
serum IGF-I levels are positively associated with BMD 
and inversely with the risk of  VFs in postmenopausal 
non-DM women[65,66]. These findings suggest that serum 
IGF-I levels could be clinically useful for assessing bone 
mass and the risk of  VFs in the non-DM population.

IGFs are also thought to be linked to the pathogenesis 
of  DM-related complications[67]. Impaired production 
of  IGFs could also cause bone complication in DM by 
diminishing bone cell function[58]. An in vivo study has 
demonstrated that IGF-I levels in serum and cortical 
bone are significantly reduced in spontaneously diabetic 
Goto-Kakizaki rats, which display a significant decrease 
in BMD in the long bone metaphyses and vertebrae[68]. In 
contrast, several in vitro studies have shown that the stimu-
latory actions of  IGF-I on osteoblasts are blunted by high 
glucose concentrations or AGEs. High glucose concentra-
tions significantly impair the proliferative and functional 
responses of  osteoblastic MG-63 cells to IGF-I[69]. AGEs 
also significantly decrease IGF-I secretion in osteoblastic 
MC3T3-E1 cells[70]. Thus, high glucose concentrations or 
AGEs might cause resistance of  osteoblasts to IGF-I ac-
tions in the local environment. 

In T2DM patients, however, the relationship between 
serum IGF-I levels and bone metabolism has been little 
documented. We have indicated that serum IGF-I levels 
are significantly and inversely associated with the presence 
of  VFs in postmenopausal T2DM women (OR = 0.44 
per SD increase) in a fashion independent of  age, body 
stature, DM status, renal function, insulin secretion, or 
lumbar BMD (Table 1)[71]. Accordingly, circulating IGF-I 
might have a protective effect on VFs, and this effect 
might be related to bone quality but not to BMD in post-
menopausal T2DM women. Thus, serum IGF-I levels as 
well as esRAGE and pentosidine might be useful for as-
sessing the risk of  VFs in T2DM women. 

FRACTURE RISK ASSESSMENT OF T2DM 
PATIENTS IN CLINICAL PRACTICE
As a result of  the ineffectiveness of  BMD in assessing 
fracture risks in T2DM, the major clinical problems are 
how to assess the risks and when to start therapy for pre-
venting fractures in daily practice. Although the above-
mentioned markers are potential candidates for such 
purposes, it is unclear whether or not they could predict 
the occurrence of  new fractures in T2DM patients in a 
prospective fashion.
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Table 1  Odds ratio of surrogate markers for the presence of 
prevalent vertebral fractures

Presence of vertebral fractures

OR (95% CI) P

Pentosidine (male) 0.79 (0.41-1.52) 0.47
Pentosidine (female) 2.50 (1.09-5.73) 0.03
esRAGE (male) 0.46 (0.25-0.84)   0.012
esRAGE (female) 0.32 (0.16-0.67)   0.002
IGF-I (female) 0.44 (0.23-0.81)   0.009

Multivariate logistic regression analysis was performed with the presence 
of vertebral fractures as a dependent variable and each of levels of serum 
insulin-like growth factor (IGF)-I, C-peptide, osteocalcin, and uNTX adjusted 
for age, duration of diabetes, body weight, height, creatinine, albumin, and 
HbA1c as independent variables. esRAGE: Endogenous secretory receptor 
for advanced glycation end product; OR: Odds ratio; CI: Confidence interval.
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In contrast, the presence of  prevalent VFs could be 
used for the assessment of  bone quality in individual pa-
tients, because a large study on the incidence of  VFs in 
postmenopausal osteoporosis has shown that patients with 
previous VFs were more likely to suffer from new VFs[72,73] 
and hip fractures[72] independent of  BMD, than those with-
out VFs, during a study period of  several years. A patient 
history of  non-VFs is also an established risk factor for 
additional fractures[74]. We found that 38% of  T2DM men 
and 31% of  T2DM women had prevalent VFs by X-ray 
films, and that 16% each of  T2DM men and women had 
a history of  previous non-VFs[23]. Thus, if  T2DM patients 
undergo spinal X-ray examination or are questioned about 
their fracture histories, it is likely that about half  of  them 
will be identified as those who have bone fragility and need 
osteoporosis treatment for fracture prevention. These pro-
cedures are simple and are recommended for all physicians 
who are engaged in T2DM treatment.

Recently, the fracture risk assessment (FRAX) algo-
rithm has been developed by the WHO, which could 
assess the fracture risk of  an individual even if  BMD is 
not measured[74,75]. This algorithm integrates the influence 
of  several well-validated risk factors for fractures that are 
independent of  BMD, therefore, it might be useful for 
the case-finding strategy that identifies diabetic patients at 
high risk for fracture.

CONCLUSION
The fact that BMD is not useful for assessing fracture risks 
in T2DM seems problematic, because T2DM populations 
are increasing in every country. T2DM patients may drop 
out from fracture prevention if  doctors diagnose osteo-
porosis based on BMD values alone. Practitioners should 
be aware of  the importance of  detecting pre-existing VFs 
and fracture histories by spinal X-ray examination and 
interview, respectively. These procedures could broaden 
the spectrum of  osteoporosis treatments into the T2DM 
population. Simultaneously, further studies are needed to 
clarify whether surrogate biochemical markers such as pen-
tosidine, esRAGE, and IGF-I, as well as the WHO FRAX 
algorithm, could be useful for predicting prospectively the 
occurrence of  new fractures in T2DM patients, with sensi-
tivity and specificity comparable to those of  BMD in non-
DM osteoporosis.
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