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Abstract
There is convincing evidence that particles produced 
by the wear of joint prostheses are causal in the peri-
prosthetic loss of bone, or osteolysis, which, if it pro-
gresses, leads to the phenomenon of aseptic loosening. 
It is important to fully understand the biology of this 
bone loss because it threatens prosthesis survival, and 
loosened implants can result in peri-prosthetic fracture, 
which is disastrous for the patient and presents a dif-
ficult surgical scenario. The focus of this review is the 
bioactivity of polyethylene (PE) particles, since there is 
evidence that these are major players in the develop-
ment and progression of osteolysis around prostheses 
which use PE as the bearing surface. The review de-
scribes the biological consequences of interaction of PE 
particles with macrophages, osteoclasts and cells of the 
osteoblast lineage, including osteocytes. It explores the 
possible cellular mechanisms of action of PE and seeks 
to use the findings to date to propose potential non-
surgical treatments for osteolysis. In particular, a non-
surgical approach is likely to be applicable to implants 

containing newer, highly cross-linked PEs (HXLPEs), for 
which osteolysis seems to occur with much reduced PE 
wear compared with conventional PEs. The caveat here 
is that we know little as yet about the bioactivity of HX-
LPE particles and addressing this constitutes our next 
challenge.
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INTRODUCTION
Total hip replacement (THR), although a highly suc-
cessful procedure, can fail prematurely for a number of  
reasons. The most common cause of  failure of  THR 
in the mid- to long-term is aseptic loosening associated 
with peri-implant bone loss (termed osteolysis)[1,2]. Revi-
sion THR is considerably more difficult than primary 
THR and carries a higher rate of  morbidity and mortality. 
The loss of  bone stock jeopardises surgery to revise the 
prosthesis and reconstruct the joint. Furthermore, when 
osteolysis has weakened the bone to the extent that peri-
prosthetic fracture occurs, the result is not only devastat-
ing to the affected individual but is also extremely chal-
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lenging surgically, with poor long-term success rates in 
rebuilding the fractured bone, especially in the pelvis. Un-
less implants can be made to last longer in patients, the 
numbers of  revision surgeries will continue to increase 
because of  population aging, increasing life expectancies 
and a growing expectation of  joint replacement surgery 
by young, active individuals with arthritic joints. 

POLYETHYLENE WEAR PARTICLES 
AS A CAUSE OF PERI-PROSTHETIC 
OSTEOLYSIS 
The concept that particulates released from prosthetic 
components by wear of  the articular surfaces are impor-
tant causative agents in peri-prosthetic osteolysis is well 
accepted[3], although other factors are also likely to be 
important, including access of  particles to bone sites and 
hydrostatic pressure[4,5]. Most commonly, hip prostheses 
have metal or ceramic on polyethylene (PE) articulations. 
It is now well established that PE, metal[6], alumina[7] 
and polymethylmethacrylate (PMMA) particles[8] all have 
bioactivity and could therefore be involved in the events 
leading to osteolysis. Evidence suggests that PE wear 
particles may be most important in peri-prosthetic bone 
loss around articulations with PE linings[9-11]. Our own 
results show that wear of  PE bearing surfaces correlates 
strongly with the extent of  osteolysis, and that patients 
with a high volumetric wear rate exhibited the greatest 
progression of  lesion volume[12]. This review will there-
fore focus on PE as a key agent of  bone loss in osteoly-
sis and on the bioactivity of  particulates of  this material. 
In addition, the review will deal exclusively with THR. 
Wear-related osteolysis also occurs adjacent to total knee 
replacements in the medium to long-term (reviewed by 
Gupta et al[13]) but the features of  this are sufficiently dis-
tinct as to require separate consideration.

EFFECT OF SIZE, MORPHOLOGY AND 
CHEMICAL FORM OF PE PARTICLES
Most of  the investigative studies into PE particles to 
date are of  conventional ultra high molecular weight 
PE (UHMWPE), with some more recent studies of  PE 
that has been cross-linked by various methodologies. It 
is clear that the size of  PE particles is a factor in cell re-
sponses in vivo[14] and in vitro. A comparison by Matthews 
et al[15] showed that human monocyte-like cells were 
most responsive to particles in the size range 0.21-7.2 
μm, depending on the readout, with larger particles of  
88 μm evoking little response. The morphology of  par-
ticles also appears to contribute to cellular responses, 
with UHMWPE debris with a roughened surface and a 
fibular shape provoking a greater response in terms of  
inflammatory cytokine production in a murine inflam-
mation model than particles with a smooth surface and a 
globular shape[16]. The clinical evidence cited above show-
ing strong relationships between PE wear and osteolysis 

is for implants that contain conventional UHMWPE. In 
order to reduce wear and as a consequence also reduce 
osteolysis, highly cross-linked PEs (HXLPE) have been 
developed (reviewed in[17]), which are now used almost 
universally in hip replacements. Although measurable 
wear still occurs, HXLPE components do show greatly 
reduced rates of  wear, both in hip simulators and in 
clinical use[18,19]. However, while the use of  HXLPE has 
reduced the early incidence of  osteolysis compared with 
conventional PE[20], it has not eliminated the problem, 
with osteolysis still being observed 5-7 years after THR 
with prostheses containing HXLPE bearings[21-24]. It will 
therefore be important to understand the bioactivity of  
HXLPE particles in comparison with conventional PE 
particles, since there is a paucity of  data so far. Endo 
et al[25] found that higher percentages of  small wear 
particles, namely those in the 0.1-1µm range, were pro-
duced during laboratory wear of  cross-linked PE than 
conventional PE. These authors also found that smaller 
numbers of  HXLPE particles than for conventional PE 
were required to stimulate cytokine production from 
macrophages, possibly because of  the higher percentage 
of  smaller particles of  HXLPE and the increased abil-
ity of  cells to phagocytose smaller particles[15]. HXLPE 
particles may interact with cells differently, since Illgen 
et al[26] showed that crosslinked PE particles had altered 
bioactivity, which was unrelated to particle size. Particles 
of  PE were crosslinked by electron-beam irradiation in 
nitrogen at 10 and 40 MRad to produce particles of  the 
same size but with different extents of  crosslinking. The 
crosslinked particles produced more inflammation and 
osteolysis (35%) in a murine calvarial osteolysis model 
than did control non-crosslinked particles (9%). Finally, 
endotoxin adherent to wear particles is also involved in 
the biological responses to these particles[27]. Taken to-
gether, these data strongly suggest that the bioactivity of  
PE particles depends on the size and material properties 
of  the PE.

PE PARTICLES IN PERIPROSTHETIC 
TISSUES
Bone that is removed by the osteolytic process is replaced 
by a granulomatous connective tissue consisting of  nu-
merous cell types, including monocytes, macrophages, 
lymphocytes, endothelial cells and fibrohistiocytic infiltra-
tion in association with particulate debris[28-32]. Jacobs et 
al[30] have also made the point that these cells are often 
in close association with osteoblasts and osteoclasts so 
that elucidating the biology of  periprosthetic bone loss 
requires taking into account the coordinated actions of  
all these cell types. Takagi et al[29] administered fluorescent 
label to patients prior to revision surgery for loose hip 
prostheses and found by histological analysis that sites of  
osteolysis were characterized by a unique high turnover 
bone remodeling. They reported evidence of  osteoclastic 
resorption accompanied by increased mineral apposition 
rate and bone formation rate, producing apparently im-
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mature bone matrices with poor bone quality, contain-
ing abundant osteocytes. In the granulomatous tissues 
adjacent to PE containing prostheses, PE particulates are 
found in large numbers, usually engulfed by cells with a 
macrophage appearance[33,34]. Kobayashi et al[35] analysed 
peri-implant tissue from patients having revision knee re-
placement surgery and concluded that PE particles were 
most concentrated at sites of  osteolysis. We and others 
have probed the molecular milieu of  the tissue at sites 
of  osteolysis and the factors identified combine to pres-
ent a distinct catabolic profile. Matrix metalloproteinases 
(MMP), including MMPs-1, 2, 3, 9 and MT1-MMP, are 
abundant in this tissue and show an imbalance with their 
respective endogenous inhibitors[36,37]. The interface tis-
sues around failed prostheses have also been found to 
be acidic and to contain high levels of  the collagenase 
cathepsin K[38]. Production of  these matrix degrading 
enzymes is likely secondary to the large number of  cyto-
kines, many proinflammatory, which have been identified 
in these tissues. These include interleukin (IL)-1α and β, 
IL-2, IL-6, IL-11, macrophage colony stimulating factor 
(M-CSF), monocyte chemoattractant protein (MCP)-1, 
macrophage inflammatory protein (MIP)-1α, transform-
ing growth factor β, tumor necrosis factor (TNF)-α, 
granulocyte macrophage (GM)-CSF, platelet derived 
growth factor and interferon γ[31,39-43]. In addition to these 
factors, we have shown that an accumulation of  PE par-
ticles is also frequently associated with a marked increase 
in receptor activator of  nuclear factor-κB (RANK) and 
RANK ligand (RANKL) expression[34,40]. It is now estab-
lished that the activated RANKL/RANK ligand-receptor 
complex promotes physiological osteoclast differentiation 

and activity[44]. The expression and activity of  RANKL is 
known to be induced by a number of  proinflammatory 
cytokines factors and there is evidence[40,45] that TNF-α 
can greatly enhance RANKL activity. The implication of  
this is that RANKL expression, induced in cells in the in-
flammatory tissue in response to prosthetic wear particles, 
could promote the influx of  osteoclast precursors and 
drive osteoclastic differentiation and activity, thus pro-
moting osteolysis. In support of  this, RANKL inhibitors 
appear to be a promising treatment modality for particle-
induced osteolysis (see below). Confirmation that the 
pathological changes seen in tissues adjacent to osteolysis, 
and osteolysis itself, are caused by PE particles, has been 
obtained by the demonstration in animal models that infu-
sion of  PE particles recapitulates many of  the phenomena 
described above. For example, intramedullary infusion of  
PE particles in murine models resulted in reduced bone 
volume[46] and formation of  proliferative fibrous tissue 
with increased expression of  IL-1, IL-6 and TNF-α[11]. 

PE PARTICLES AND MACROPHAGES
As reviewed previously[47], the prevailing view of  the cel-
lular mechanism of  particle-induced osteolysis is that 
macrophages in the periprosthetic tissues phagocytose 
wear particles and become activated, releasing an array 
of  cytokines, leading to increased osteoclastic resorption 
of  the adjacent bone and the production of  the granu-
lomatous tissue that fills the resorbed space (Figure 1). 
Experiments performed to better understand the interac-
tion between PE particles and monocyte/macrophages 
are challenging because of  the extreme hydrophobicity 
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Figure 1  Multi-cellular effects of polyethylene wear particles, following their release from the bearing surface, resulting in osteolysis. Polyethylene (PE) 
engulfment by monocytes and macrophages, and possibly other cells including fibroblasts, as described in the text, causes their activation and release of pro-inflam-
matory cytokines, prostaglandins and matrix degrading enzymes. These and other factors promote differentiation of macrophages into bone resorbing osteoclasts. 
PE effects on osteoblastic lineage cells (osteoblasts, lining cells and potentially osteocytes) following contact with and/or engulfment of particles include promotion 
of a catabolic phenotype, up-regulation of potent chemotactic agents for osteoclast precursors and osteoclastogenic mediators. The responses in each cell type are 
indicated by boxed arrows. RANKL:receptor activator of nuclear factor-κB ligand; OPG: osteoprotegerin; M-CSF: macrophage colony stimulating factor; MMPs: Matrix 
metalloproteinases.
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of  PE particles, reflected by the relatively small num-
ber of  reports. However, Ren et al[48] performed elegant 
experiments to investigate whether responses to PE 
particles were by resident or infiltrating macrophages. In 
a mouse model of  UHMWPE-induced osteolysis and 
using a bioluminescent approach to monitor systemic 
migrating macrophages in vivo, it was found that infusion 
of  particles stimulated systemic migration of  remotely 
injected macrophages, leading to net bone loss at the site 
of  PE particles. Evidence that PE particles directly affect 
macrophages comes from a study by Horowitz et al[49], in 
which J774 macrophage-like cells exposed to PE particles 
produced increased TNF-α, prostaglandin (PG)E2 and 
IL-6. In addition, it was shown that conditioned media 
from the macrophages exposed to PE particles increased 
the release of  45Ca from pre-labelled mouse calvariae, 
which could be prevented by co-addition of  pamidronate 
bisphosphonate. An important role for macrophages 
is also inferred from a study by Ren et al[50], in which 
depletion of  macrophages using clodronate significantly 
reduced inflammation in a mouse air pouch model of  
UHMWPE-induced tissue inflammation. Together, these 
experiments provide proof  of  principle that macrophages 
exposed to PE particles release mediators that can stimu-
late bone resorption. Finally, we[51,52] and others[53] have 
shown that macrophages isolated from peri-prosthetic tis-
sues that have phagocytosed wear particles, are themselves 
capable of  differentiating into bone resorbing osteoclasts. 

PE PARTICLES AND OSTEOCLASTS
Although it is possible that wear particle-activated mac-
rophages present in granulomatous tissue participate 
directly in bone degradation in periprosthetic osteolysis, 
bone resorption is more likely a function of  osteoclasts 
recruited to sites of  osteolysis and activated by the os-
teoclastogenic molecules that are expressed in abundance 
at such sites. These molecules, listed above, comprise 
chemoattractants that result in the influx of  osteoclast 
precursors, thought to be cells of  the monocyte lineage, 
and cytokines that stimulate osteoclast differentiation. 
It is generally acknowledged that the major pathway of  
osteoclastogenesis is the production of  RANKL by os-
teoblastic stromal cells[54,55] and ligation of  RANKL to its 
cognate receptor, RANK, on the surface of  osteoclast 
precursors, stimulating these cells to differentiate into 
mature, active osteoclasts capable of  resorbing bone. 
The natural antagonist of  RANKL is osteoprotegerin 
(OPG), whose role is to negatively regulate the activity 
of  RANKL, and therefore bone resorption. Other cell 
types, including fibroblasts[56,57], osteocytes[58] and acti-
vated T cells[59], also produce RANKL and are capable of  
stimulating osteoclastogenesis. We have shown that the 
RANKL pathway is subverted in a range of  pathologies 
characterised by bone loss, including peri-implant oste-
olysis[34,60-62]. Studies on healthy and pathologic synovial 
tissues show that a number of  cell types may be impor-
tant in the ectopic production of  RANKL in the tissues 
adjacent to localized bone loss. Importantly, there is evi-

dence for a reduction of  the OPG:RANKL ratio in PE-
induced osteolysis, seen for example in experiments in 
which mouse calvariae were implanted with PE particles, 
associated with reduction of  bone volume[63] and in peri-
prosthetic human tissues[31].

Various cytokines collaborate with RANKL to pro-
mote osteoclast formation, in particular M-CSF, which 
is an essential co-activator of  osteoclastogenesis from 
immature precursors[54,64]. However, we recently showed 
that RANKL and M-CSF alone were not sufficient for 
osteoclast differentiation of  osteoclasts from a murine 
macrophage cell line RAW 264.7 and that other cytokines 
and steroidal hormones were essential in this process. 
Indeed, in a defined culture medium in the absence of  
serum, osteoclast formation from primary cells, such as 
human peripheral blood mononuclear cells, did not oc-
cur at all, despite the presence of  high concentrations of  
RANKL, M-CSF and other co-factors[65], underscoring 
the likely significant contributions of  the complex milieu 
present in peri-prosthetic granulomatous tissue. 

TNF-α is also present in the tissues adjacent to peri-
prosthetic osteolysis and has been reported to synergise 
with RANKL in promoting osteoclast formation[45]. It 
has also been claimed that, in the presence of  M-CSF, 
TNF-α is sufficient for inducing human osteoclast dif-
ferentiation from arthroplasty macrophages[53]. By im-
munohistochemical analysis of  tissues associated with 
osteolysis obtained at revision surgery, RANK, RANKL 
and TNF-α were all found to be strongly expressed by 
large multinucleated cells containing PE wear debris[40]. 
Control synovial tissue stained weakly for these cyto-
kines. A strong statistical correlation was found between 
the parameters of: volume of  bone lost (determined by 
quantitative computed tomography; r = 0.65, P = 0.01); 
PE wear debris (number of  particles; r = 0.67, P < 0.01), 
RANK (r = 0.67, P < 0.01), RANKL (r = 0.81, P < 0.01) 
and TNF-α (r = 0.65, P = 0.01) expression. In the same 
study, it was shown that RANKL and TNF-α synergise to 
increase the volume of  bone resorbed. These data sug-
gested that the interaction of  TNF-α and RANKL may 
promote osteoclast activity associated with PE particles 
and perhaps that therapies targeting TNF activity may be 
useful to treat peri-implant osteolysis.

Chemokines are involved in the recruitment of  many 
types of  cells but it is those that are involved in the recruit-
ment of  monocytes/macrophages and lymphocytes that 
are likely to be most important in peri-prosthetic osteoly-
sis. Chemokines present in periprosthetic tissues include 
MCP-1, MIP-1α, RANTES and IL-8, whose release is 
stimulated by wear particles and which are chemotactic for 
monocytic osteoclast precursors[66]. Finally, RANKL expres-
sion itself  is stimulated by many of  the pro-inflammatory 
cytokines that are found in the peri-implant tissues. The 
above effects of  PE particles are summarised in Figure 1.

PE PARTICLES AND CELLS OF THE 
OSTEOBLAST LINEAGE 
PE particles can interact with cells of  the osteoblast 
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lineage indirectly via products released by PE activated 
macrophages[67]. There is also evidence of  direct effects 
of  PE particles on osteoblasts. Exposure of  osteoblast-
like cells to PE was shown to induce changes in the rate 
of  cell proliferation[68-70], to decrease alkaline phospha-
tase activity[69], and to increase the production of  osteo-
clastogenic mediators, such as PGE2

[69], IL-6[71,72], GM-
CSF, RANKL[73] and nitric oxide[74]. The nature of  the 
response may be dependent on the way in which the PE 
particles are presented to the cells and to the maturation 
state of  the osteoblasts[74]. However, the overall effect 
of  PE particles on osteoblasts is one of  promoting a 
phenotype that is anti-anabolic and pro-osteoclastic. For 
example, UHMWPE particles increased the release of  
RANKL from human osteoblasts, while inhibiting their 
expression of  OPG. Consistent with this, conditioned 
media from the PE-treated osteoblasts strongly pro-
moted osteoclastogenesis from human peripheral blood 
mononuclear cells[73]. Given the extreme hydrophobicity 
of  the particles, we developed a 3-dimensional type I 
collagen gel culture system, allowing long-term culture 
of  osteoblastic cells in the continued juxtaposition of  
PE particles in a bone connective tissue-like matrix. 
This system allowed human bone-derived osteoblasts 
obtained at joint replacement surgery to undergo dif-
ferentiation into a mature osteocyte-like phenotype over 
a 21-28 day culture period[58,75]. Following release of  the 
cells from the gel, it was evident that PE particles could 
form close contacts with these cells and in some cases 
appeared to be engulfed[58]. Importantly, cells exposed to 
PE particles showed an increase in mRNA expression of  
the late osteoblast/osteocyte markers E11, dentin matrix 
protein 1 and the gene encoding sclerostin (SOST) and 
increased expression of  several of  the genes discussed 
above to be associated with osteoclast formation and 
activity (RANKL, M-CSF and IL-8), with a concomitant 
decrease in the expression of  OPG[58]. Furthermore, it 
appeared that under the influence of  PE, the key tran-
scription factor RUNX2 in these cells switched from 
controlling matrix production genes (type Ⅰ collagen) 
to inducing the expression of  genes associated with os-
teoclast recruitment, differentiation and activation. This 
study provided further evidence that PE particles switch 
mature osteoblastic cells from an anabolic to a catabolic 
phenotype, a concept further supported by the finding 
that PE particles induced expression of  RANKL mRNA 
in the mouse osteocyte cell line, MLO-Y4. Overall, our 
results suggest that PE particles act directly on cells of  
the osteoblast lineage to induce a change in the pheno-
type of  mature osteoblasts and osteocytes[58], consistent 
with the net loss of  bone near orthopedic implants. 

INVOLVEMENT OF THE INNATE IMMUNE 
RESPONSE IN THE RESPONSE TO PE 
PARTICLES
Little is known about the way in which PE particles in-
teract with cells or how this interaction is transduced into 

intracellular signals. It appears that particles need to be 
phagocytosed to elicit a signal in macrophages and os-
teoclasts, and possibly also osteoblasts and osteocytes, as 
discussed above. It is possible that cells first interact with 
PE particles via proteins adsorbed to the particle surface, 
rather than with the PE material itself, either with endo-
toxin[27] or other proteins[76]. There is evidence that activa-
tion of  Toll-like receptors (TLRs) may contribute to the 
biological activity of  the wear particles. Maitra et al[77], in 
a study which explored the cellular mechanisms of  inter-
action of  UHMWPE with peripheral blood monocytes, 
found that polymeric alkane UHMWPE breakdown 
products with side chain oxidation directly bound and 
activated the TLR1/2 signalling pathway. They showed 
that phagocytosis of  particulates in the larger micron- 
and nanometer sized range induced enlargement, fusion 
and disruption of  endosomal compartments, resulting 
in lysosomal damage and enzymatic leakage with release 
of  cathepsins S and B, as well as caspase 1 activation 
and processing of  pro-IL-1 and pro-IL-18. The authors 
reported that the two processes of  TLR activation and 
phagocytosis synergistically initiated a strong inflamma-
tory response associated with cell death and extracellular 
matrix degradation. Hao et al[78] reported that heat-shock 
protein (Hsp) expression was elevated when monocytes 
were exposed to UHMWPE particles. They showed that 
TLR4 was involved in the recognition of  particles and 
subsequent induction of  intracellular signalling cascades 
and that anti-sense oligonucleotide down-regulation of  
TLR4 expression suppressed cytokine production in 
both exogenous Hsp60- and particle-stimulated cultures. 
Adherent endotoxin was found to be important in the 
activation of  monocytes with titanium particles[27]. Mice 
that were ‘endotoxin resistant’ due to a mutation in TLR4 
were less responsive to endotoxin coated titanium parti-
cles than cells from wild-type mice were. Taken together, 
the extant studies point to the innate immune response 
as being responsible for at least some of  the cellular re-
sponses to PE and other wear particles, with a possible 
role for both adherent endotoxin (and other proteins) 
interacting with TLRs.

NON-SURGICAL TREATMENT OF 
OSTEOLYSIS
With conventional PE, large volumetric osteolysis is al-
most always accompanied by considerable wear of  the 
PE liner, and in this case liner replacement at revision 
surgery is indicated. In the case of  implants with HX-
LPE liners, acetabular osteolysis occurs with relatively 
little obvious wear due to the wear resistant nature of  
this material. Thus, while there may currently be limited 
opportunities to treat osteolysis from conventional PE 
non-surgically, such an approach may be feasible with 
HXLPE, the caveat being that we know very little to date 
about the bioactivity of  HXLPE particles.

Bisphosphonates are a class of  drug with the dual 
features of  potent anti-resorptive efficacy and high up-
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take in the skeleton. While most commonly prescribed 
for the treatment of  osteoporosis, Paget’s disease and for 
certain types of  cancer, wider applicability including the 
treatment of  peri-prosthetic osteolysis has also been pro-
posed[79]. Indeed, several bisphosphonates show promise 
as therapeutic agents for particle-induced bone loss. Alen-
dronate has proved efficacious in both rat[80] and dog[81] 
models of  PE-induced periprosthetic osteolysis. Similarly, 
the bisphosphonate TRK-530 suppressed bone loss in 
a rat model of  continuous infusion of  PE particles into 
the bone and reduced the expression of  inflammatory 
mediators[82]. Pamidronate was able to prevent resorption 
of  explanted calvariae exposed to conditioned medium 
from PE-treated macrophages[49]. In a clinical case study,  
O’Hara et al[83] reported that oral alendronate halted the 
progression of  osteolysis over the course of  1 year prior 
to revision surgery to replace the PE liner. By virtue of  
what is currently understood regarding the general mech-
anism of  action of  bisphosphonates, these data suggest 
that osteoclasts represent a valuable potential target to 
prevent or treat osteolysis. Thus, other treatment strate-
gies that target osteoclasts may also be applicable. For ex-
ample, it is possible that anti-RANKL strategies could be 
effective in blocking osteolysis. In support of  this, OPG 
has been shown to suppress both UHMWPE[84] and tita-
nium[85] particle induced osteolysis in the mouse calvarial 
model. Interestingly, RANK:Fc, an alternative approach 
to blocking RANKL action, was also effective in the cal-
varial model, where it also allowed restoration of  bone 
lost by osteolysis[86]. Another therapeutic approach to 
osteolysis may be to treat the underlying inflammation, 
which creates a catabolic environment, including the pro-
duction of  RANKL and MMPs. Approaches to this that 
have been experimentally successful include local treat-
ment with the inflammatory suppressor, IL-10, which 
prevented a fibrotic reaction and allowed bone growth in 
the presence of  PE particles[87]. Also, anti-TNF-α gene 
therapy was able to inhibit a resorptive response to tita-
nium particles in the mouse calvarial model[88], although 
administration of  the TNF antagonist etanercept to pa-
tients with peri-prosthetic osteolysis produced equivocal 
results, perhaps because the study was underpowered[89]. 
Such a targeted approach in human patients may be inef-
fectual, or at least not generally applicable, because of  the 
multi-factorial nature of  the inflammatory response to 
particles, as discussed above. MMP inhibitors have also 
been suggested for use in the context of  osteolysis[36], 
given the abundance of  MMPs in periprosthetic tissues. 
However, anti-MMP approaches have proven disappoint-
ing to date[90], perhaps awaiting more specific agents or 
better methods for local application. Perhaps, as sug-
gested by Schwarz[91], prophylactic treatment immediately 
post operatively to optimise the osseo-integration of  the 
implant and therefore reduce access to the bone of  wear 
particles, may inhibit the initiation and progression of  
particle-induced osteolysis.

One of  the potential problems of  a non-surgical ap-
proach to the treatment of  osteolysis associated with 

HXLPE liners may be the problem of  replacing the lost 
bone. It is noteworthy that while some agents have been 
shown to promote bone formation in the context of  par-
ticle induced mouse calvarial osteolysis[92,93], it remains to 
be seen if  these or other approaches will be effective in 
more refractory skeleton of  the aging human adult. Of  
the new and emerging anabolic agents in bone, sclerostin 
antagonists to date appear promising, with evidence of  
widespread new bone growth throughout the skeleton 
in both healthy bone and in a number of  conditions of  
bone loss[94].

CONCLUSION
This review shows that we have come a long way in 
understanding the bioactivity of  PE particles and the 
mechanisms by which an accumulation of  these particles 
elicits a characteristic tissue response leading to bone 
loss around PE-containing implants. This knowledge 
is important because it has the potential to enable non-
surgical approaches to managing PE-induced osteolysis, 
particularly in implants containing the newer HXLPEs, 
for which osteolysis seems, from observations so far, to 
occur without substantial PE wear. The caveat here is 
that we currently know little about the bioactivity of  HX-
LPE particles, and our next task needs to be to address 
this knowledge gap. It will also be important to address 
the issue of  bone regrowth in a non-surgically treated in-
dividual.
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