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Introduction
Phosphatidylinositol Phosphate (PIP) kinases are responsible for the production of the lipid
signaling molecule phosphatidylinositol 4,5-bisphosphate, PI4,5P2. PI4,5P2 can directly
affect the function of an array of signal transduction pathways by interactions with PI4,5P2
effectors. PIP kinases modulate PI4,5P2 sensitive pathways by controlling the generation of
PI4,5P2 through interactions between PIP kinases and protein partners which target the PIP
kinases to specific sub-cellular compartments. In addition, the protein partners are often
themselves PI4,5P2 regulated proteins. PIP kinase targeting in this manner allows for the
spatial and temporal generation of PI4,5P2 to affect specific signaling pathways.
Identification of these protein partners has allowed for the determination of many molecular
mechanisms of PI4,5P2 signaling. Recently, a nuclear speckle targeted non-canonical
poly(A) polymerase, Star-PAP, has been defined to have a functional interaction with the
type Iα PIP kinase to process select mRNAs for their 3’ end formation. Star-PAP contains a
poly(A) polymerase catalytic and core domains (PAP) though differs from the canonical
PAP due to its unique domain arrangement and phosphoinositide regulation. Star-PAP is a
duel specificity polymerase that harbors in vitro poly(A) polymerase activity that is
stimulated by PI4,5P2, and also embodies features of Terminal Uridylyl Transferase
(TUTase) in both of its domain arrangement and its in vitro ability to transfer UMP to
cellular RNA including the small nuclear RNA U6. The Star-PAP complex of proteins
contains a number of cleavage and polyadenylation components, an active PIPKIα capable
of generating de novo PI4,5P2, and the PI4,5P2 sensitive protein kinase CKIα. CKIα can
directly phosphorylate Star-PAP and in conjunction with PIPKIα, is required for expression
and maintenance of the Star-PAP target mRNA HO-1. HO-1 mRNA encodes the
cytoprotective enzyme heme oxygenase-1, which is an important detoxifying enzyme
involved in protection from reactive oxygen species and cellular oxidative stresses. HO-1 is
upregulated in response to oxidative stress through increase in transcription, placing Star-
PAP, PIPKIα and CKIα as mediators of oxidative cellular stress response. Taken together,
the Star-PAP complex represents a focal point for nuclear phosphoinositide signaling where
Star-PAP, PIPKIα and CKIα can synergize to regulate the 3’ end formation of select
mRNAs.

© 2008 Elsevier Ltd. All rights reserved.
§Correspondence raanders@wisc.edu Tel.:608-262-3753 Fax.:608-262-1257.
Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Adv Enzyme Regul. Author manuscript; available in PMC 2012 March 13.

Published in final edited form as:
Adv Enzyme Regul. 2009 ; 49(1): 11–28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Type I PIP kinases generate PI4,5P2 to regulate signaling events
Phosphatidylinositol phosphate (PIP) kinases are lipid kinases that function to generate
phosphoinositide signaling molecules, which play critical roles throughout the life cycle of
metazoans (Gardocki et al., 2005). The type I PIP kinases, PIPKIα, -β, -γ are PI-4’-
phosphate 5’-kinases that synthesize the signaling molecule PI4,5P2 utilizing PI4P as a
substrate (Heck et al., 2007). Over the last decade a wealth of accumulated evidence has
indicated that the different phosphorylated PIs serve not only as intermediates in the
synthesis of the higher phosphorylated phosphoinositides, but also as regulators of different
protein targets in their own right. Type I PIP kinases generate the lion’s share of PI4,5P2 in
the cell, though these three isoforms display distinct sub-cellular targeting and function (Fig.
1). PIPKIα targets to membrane ruffles and nuclear speckles, PIPKIβ targets to a perinuclear
region, and PIPKIγ targets to focal adhesions. This mechanism of synthesis is a mode of
regulating where and when PI4,5P2 is generated and acts to tightly control PI4,5P2 regulated
signal transduction(Doughman et al., 2003).

Of the vast assortment of lipids present in eukaryotic cells, phosphoinositides play highly
specialized roles to regulate a diverse set of signaling events. The large number of
specialized membrane compartments in eukaryotes results in organized and polarized
structural arrangements within the cell. To regulate this organization and maintain integrity,
cells require a pool of adaptable lipid messages that can undergo rapid modifications for
which soluble messages are not suitable. In this model, phosphoinositide lipid messengers
are specifically labeled for delivery to a particular membrane compartment where they can
orchestrate targeting and fusion with other compartments, or regulate compartmental
assembly of specific components through direct regulation of their functions. When the sub-
cellular destination has been reached by the signaling lipid and function carried out, the
phosphorylated species undergoes dynamic dephosphorylation and re-phosphorylation
events that generate a variety of phosphorylated isoforms of the lipid messenger, which can
be re-routed to alternative sub-cellular locations to carry out specialized functions.

Phosphoinositide signaling through PI4,5P2
Phosphoinositides function in signal transduction pathways to regulate a number of
processes in eukaryotic cells. Traditionally, phosphatidylinositol (PI) which constitutes a
minor component ~10% of total membrane lipid (Cohn et al., 1988), is anchored in a
membrane lipid-bilayer via its acyl chains leaving its inositol head group exposed and
accessible for phosphorylation by the family of PIP kinases. Phosphorylation of PI can
generate seven different phosphorylated PIPn species, each with their own signaling
capacity (Clarke, 2003). Receptor stimulation of the plasma membrane PI cycle is well
characterized (Alb et al., 1996) and leads to the production of lipid second messengers, such
as PI4,5P2. PI4,5P2 is a versatile molecule in that it has potent signaling strength to initiate
downstream events(McLaughlin and Murray, 2005; McLaughlin et al., 2002), as well as
bind to activate or repress enzymes(Brockman and Anderson, 1991; Sciorra et al., 1999).
Additionally, PI4,5P2 can be converted to PI3,4,5P3, which is a potent signaling
molecule(Insall and Weiner, 2001). PI4,5P2 can be dephosphorylated at the 4’ or ‘5 position
of the inositol ring(Wiradjaja et al., 2007) to generate pools of PI4P or PI5P(D'Angelo et al.,
2008). Furthermore, PI4,5P2 can be metabolized by PI-specific lipases, PLC enzymes, to
generate diacylglycerol (DAG) and soluble second messengers such as inositol-1,4,5-
trisphosphate, (IP3) that triggers calcium fluxes(Chu and Stefani, 1991; Wang et al., 2004),
which exerts a strong influence on signaling events(Irvine, 1992). IP3 can be phosphorylated
by a family of inositol multi-kinases that can generate up to ten different soluble inositol
polyphosphate second messengers, which can modulate a number of signaling pathways in
the cell(York et al., 2001). Phosphoinositide-based signaling cascades via PI4,5P2 has been
shown to mediate not only transmission of hormones and neurotransmitters but also other
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cellular mechanisms including assembly of the actin cytoskeleton (Janmey and Stossel,
1987; Lassing and Lindberg, 1985), regulating interactions between cytoskeletal proteins
and the plasma membrane(Anderson and Marchesi, 1985), vesicular trafficking(Czech,
2000; Downes et al., 2005; Huijbregts et al., 2000; Wenk and De Camilli, 2004), secretion
(Hay et al., 1995; Martin, 2001), cell motility/cytoskeletal assembly(Janmey, 1994; Niggli,
2005; Yin and Janmey, 2003), regulation of ion channels (Delmas et al., 2005; Li et al.,
2005), apoptosis(Mejillano et al., 2001), and the regulation of nuclear events (Boronenkov et
al., 1998; Cocco et al., 1987; Gonzales and Anderson, 2006; Gozani et al., 2003; Irvine,
2003; Irvine, 2006; Macbeth et al., 2005; Mellman et al., 2008; Osborne et al., 2001; York
and Majerus, 1994; Zhao et al., 1998).

Roles for nuclear phosphoinositides
The understanding of events regulated by nuclear phosphoinositides has lagged behind those
in the cytosol and at the plasma membrane. Nuclear PI signaling was initially proposed
when it was shown that nuclear PI and PI4P kinase activities were seen in preparations that
were enriched with nuclear membranes (Smith and Wells, 1983; Irvine, 2002). Direct
evidence of a nuclear phosphoinositide cycle was first demonstrated in MEL cells, mouse
erythroleukaemia cells, when a nuclear pool of PI4P and PI4,5P2 were metabolized
differently from lipids in the cytosol (Cocco et al., 1987). It was later shown that differential
cellular stimuli with agents such as bombesin, a mitogenic stimulus(Irvine, 2003; Watt et al.,
1991) or IGF-1(Divecha et al., 1991), Insulin Growth Factor-1, stimulated the generation of
the PI cycle within different compartments(Divecha et al., 1991). Bombesin only activated
the characterized plasma membrane inositol lipid cycle whereas IGF-1 stimulated a distinct
nuclear polyphosphoinositol lipid metabolism(Divecha et al., 1991).

IGF-1 induction decreases in nuclear pools of PI4P and PI4,5P2 with a concomitant increase
in nuclear DAG with a simultaneous increase in nuclear translocation of PKC, an effector of
DAG(Divecha et al., 1991; Martelli et al., 1991), providing evidence that nuclear DAG acts
as a chemoattractant for PKC nuclear translocation. If the function of nuclear DAG
(Hodgkin et al., 1998; Wakelam, 1998) is to attract DAG-dependent PKC isoforms to the
nucleus, then a mechanism to turn off the signal should conceivably exist. This role could be
fulfilled by the DAG Kinase DGK, which phosphorylates DAG to produce Phosphatidic
Acid (PA)(Topham and Prescott, 1999). This interconversion of signaling molecules sets up
an intriguing scenario, whereby, in the nucleus PI4,5P2 generated by a PIP Kinase elicits a
signal which can be turned off by a PLC isoform to rapidly generate IP3 and DAG. IP3
elicits calcium signaling which can affect a myriad of functions(Alonso et al., 2006; Bucki
and Gorski, 2001; Choe and Ehrlich, 2006; Ehrlich et al., 1994; Irvine, 1982; MacDonald,
1998; Malviya and Klein, 2006; Miyazaki, 1993; Miyazaki, 1995). IP3 can be converted to
higher order inositides IP4, IP5, IP6 , as well as PP-IP molecules, which could all carry out
distinct nuclear processes(Macbeth et al., 2005; Seeds et al., 2007; York, 2006). DAG is
converted to PA by DGK(Goto et al., 2006) and PA in turn stimulates the PIP Kinase to
generate PI4,5P2 driving the cycle back to the “beginning”, propagating the
phosphoinositide signals to regulate nuclear events. An example of this scenario from the
cytosol is seen with the Phospholipase D isoenzyme, PLD2(Billah, 1993; Cazzolli et al.,
2006; Cummings et al., 2002; Jenkins et al., 1994; Jenkins and Frohman, 2005; Metz and
Dunlop, 1991; Morris et al., 1997). PLD2 can bind PIPKIα(Divecha et al., 2000) whereby
PLD2 activity is regulated by PI4,5P2 (Pertile et al., 1995; Sciorra et al., 1999). PIPKIα
bound PLD2 can hydrolyze phosphatidylcholine into PA and choline (Ktistakis et al., 2003),
stimulating PIPKIα to generate PI4,5P2 activating PLD2 and thus providing a potential
bifurcated route to control the feedback within the PI cycle, and regulation of PLD2 activity
and downstream events.
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Not only has PIPKIα and its product PI4,5P2 been reported to be localized to nuclei
(Boronenkov et al., 1998), but a repertoire of phosphoinositide metabolizing enzymes such
as multiple forms of PI-PLCs, PI3K-C2α and PI3,4,5P3 and PTEN have been reported to
localize to nuclei (Cocco et al., 2006; Cocco et al., 2004a; Cocco et al., 2004b; Cocco et al.,
2001; Martelli et al., 2005a; Martelli et al., 2005b; Planchon et al., 2008). It has been
demonstrated that PI-PLCβ1 showed increased activity in response to IGF-1 stimulation and
nuclear localization (Martelli et al., 1992), providing evidence that this isoform of PLC
operates in the nucleus. In contrast, PLC-γ1 was confined to the cytosol(Divecha et al.,
1993), demonstrating that there are indeed differentially localized isoforms of PLC. Taken
together, the nuclear PI cycle operates distinctly from the PI cycle in the cytosol, though
there is great similarity in the molecules that are generated and enzymes utilized by both of
these autonomous PI cycles. This implies that either structural components and/or upstream
and downstream signaling must be pivotal in the selective activation and repression of these
distinct PI cycles.

Phosphoinositide signaling pathways in nuclei of mammals have been shown to be key for
numerous events such as the cell cycle, chromatin structure, DNA repair, tumor progression
and cellular proliferation, transcription, RNA editing and mRNA metabolism (Gozani et al.,
2003; Irvine, 2003; Lo Vasco et al., 2004; Macbeth et al., 2005; Osborne et al., 2001; York
and Majerus, 1994; Yu et al., 1998; Zhao et al., 1998). PI4,5P2 co-immunoprecipitates with
snRNPs and the hyperphosphorylated form of RNA Pol II, providing an intriguing
suggestion for the involvement of PI4,5P2 as a structural or functional regulator in aspects of
transcription and pre-mRNA processing(Osborne et al., 2001). Supporting this hypothesis is
evidence that both PIPKIα and PI4,5P2 co-localize with SC35, a component of
interchromatin granule clusters or nuclear speckles(Boronenkov et al., 1998; Lamond and
Spector, 2003; Spector, 2001) which are membrane-less nuclear bodies enriched in factors
required for splicing and 3’ end formation of pre-mRNAs, as well as being sites of
phosphoinositide metabolism(Boronenkov et al., 1998; Bunce et al., 2008; Didichenko and
Thelen, 2001; Evangelisti et al., 2006; Mortier et al., 2005). It is interesting to note that
PI4,5P2 is enriched at nuclear speckles although speckles are devoid of detectable lipid
bilayer membranes(Handwerger and Gall, 2006; Lamond and Spector, 2003), which raises
the intriguing question of whether there are specific PI carrier proteins(Cunningham et al.,
1995; Wirtz, 1997) that store PI4,5P2 to assure its precise synthesis and localization at
speckles. However phosphoinositides are sequestered in the nucleus, the presence of
phosphoinositide metabolism occurring at nuclear speckles strongly implicates functional
roles for nuclear phosphoinositide signaling in pre-mRNA processing.

PIPKIα directly interacts with a nuclear speckle localized non-canonical
poly(A) polymerase, Star-PAP, and resides in complex with 3’end formation
machinery components

Based on the model of PI4,5P2 signaling specificity being dependent upon its interactions
with protein partners and targeting factors (Doughman et al., 2003), a yeast two-hybrid
screen was established to identify PIPKIα interacting proteins to define functional roles for
PIPKIα and its product PI4,5P2 nuclear signaling events. The region of PIPKIα that was
responsible for its nuclear targeting was determined to be in the carboxy-terminus, amino
acids 440–562, therefore this portion of the molecule was used as bait in the yeast two-
hybrid screen(Mellman et al.,2008) (Fig. 2). The screen was carried out in human B cell,
breast, prostate, and placenta, as well as mouse pre B-cell and embryonic cDNA libraries.
This screen yielded forty-two positive clones and sequence analysis indicated that fourteen
of these clones contained full or partial ORFs in the correct orientation. A majority of these
proteins are known or suspected of being present in the nucleus and interestingly, almost
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half of the proteins contained C2H2 zinc finger domains, which are known to be involved in
protein-protein interactions as well as protein-nucleic acid interactions (Matthews and
Sunde, 2002).

At the time of the screen, many of the identified proteins had no known function. Therefore,
to try and identify roles for these proteins in nuclear phosphoinositide signaling pathways a
protein domain data base search was carried out. One hypothetical protein that at the time
was termed RNA Binding Motif protein 21 (RBM21) (NM_022830.1) contained a
particularly interesting domain architecture and became a focus of our studies from this
screen. Data base analysis of RBM21 amino acid sequence determined it contained the
conserved pol β nucleotidyl transferase motif, GSX10DXD, placing it as a member of pol β
super family of nucleotidyl transferases(Martin and Keller, 2007). Specifically, RBM21
contained a poly(A) polymerase catalytic and core domains (PAP) as well as a PAP
associated domain. In confirmation of the yeast two-hybrid screen, RBM21 can directly
interact with full length PIPKIα as well as the carboxy-terminus of PIPKIα (amino acids
440–562) in vitro. In vivo, antibodies specific for RBM21 co-immunoprecipitates
endogenous PIPKIα from RNase A treated fractions, confirming that in vivo these two
enzymes are in association together. Endogenous RBM21 is found primarily in the nucleus
at nuclear speckles, co-localizing with PIPKIα(Mellman et al., 2008) and
PI4,5P2(Boronenkov et al., 1998). The presence of all three molecules in the same nuclear
sub-compartment suggests that they are positioned to directly interact and function with
each other in vivo.

Despite the conserved nucleotidyl transferase sequence motif and PAP domain, the domain
arrangement of RBM21 showed clear differences when compared to both the canonical
mammalian poly(A) polymerase PAPα(Raabe et al., 1991) and the non-canonical regulatory
poly(A) polymerase, Germ Line Development 2 (GLD2)(Wang et al., 2002) (Fig. 2).
RBM21 contains a C2H2 zinc finger motif followed by an RNA Recognition Motif (RRM)
that differs both in sequence and location from the RNA binding domain of PAPα. Another
distinguishing feature in RBM21 is its split PAP domain that is linked by a proline rich
region (PRR). This is a unique characteristic of RBM21 compared to all other reported
poly(A) polymerases. The carboxy-terminus of RBM21 contains R/S peptide repeats,
characteristic of speckle targeting proteins(Lamond and Spector, 2003) followed by an
Nuclear Localization Sequence (NLS). These unique domains of Star-PAP may be
important for interactions with molecular partners and targeting to sub-cellular
compartments, as well as for its biological function in pre-mRNA processing. Based upon
the nuclear speckle localization, its in vitro poly(A) polymerase activity and the functional
interaction with PIPKIα, RBM21 was subsequently named nuclear Speckle Targeted PIPKIα
Regulated-Poly(A) Polymerase, Star-PAP.

When recombinant His-Star-PAP expressed and purified from E.coli BL 21 was subjected to
a standard poly(A) polymerase assay it showed robust PAP activity(Mellman et al., 2008)
towards a generic A15 poly(A) RNA oligo primer, the RNA oligo primer L1(Rouhana et al.,
2005) as well as a 45mer RNA oligo primer of the sequence (UAGGGA5)A15, which was
designed to bind the RRM of Star-PAP with high affinity(Ding et al., 1999). This RNA
oligo primer was designed based upon Star-PAP similarity to the RRMs within hnRNPA1,
which preferentially binds multiple repeats of the sequence UAGGGAn where n=2 or more.
This suggests that the endogenous RNA target of Star-PAP harbors this motif or a motif
with sequence similarity. Most interestingly, recombinant Star-PAP poly(A) polymerase
activity is sensitive to and stimulated by exogenous PI4,5P2. The regulatory affect of
PI4,5P2 controlling Star-PAP activity defines a mode of regulation for Star-PAP function in
vivo. Based upon the principal of function following targeting and interaction, the
association between Star-PAP and PIPKIα as well as their co-localization with PI4,5P2 in
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the nucleus strongly suggests that Star-PAP is an effector PI4,5P2 and thus at least one mode
of Star-PAP function can operate under the regulation of PIPKIα.

Based upon Star-PAP in vivo interactions and localization, as well as its in vitro activity, we
hypothesized that Star-PAP is acting as a poly(A) polymerase and is required for the 3’ end
formation of pre-mRNAs. 3’ end formation of pre-mRNA requires a large set of interacting
factors which coordinate to assemble on the pre-mRNA in a sequence specific
manner(Sheets et al., 1990) and process pre-mRNA in a highly orchestrated fashion(Wahle,
1995). The factors required includes though is not limited to the presence of a PAP,
Cleavage and Polyadenylation Specificity Factor (CPSF160, -100, -73 and -30) subunits,
Cleavage Factors I (CFI68, -59 and -25) and Cleavage Factors II subunits, Cleavage
Stimulatory Factor Subunits (CstF77,-64,-50), the scaffolding protein symplekin, SM
proteins, Poly(A) Binding Proteins (PABPs) and the largest subunit of the carboxy terminal
domain of RNA Polymerase II (CTD of RNA Pol II)(Colgan and Manley, 1997). This
megadalton complex binds in the 3’ UTR of pre-mRNA at the poly(A) site, AAUAAA,
whereby CPSF binds in a sequence dependent fashion, positioning the machinery for
efficient cleavage and polyadenylation (Colgan and Manley, 1997).

3’ end formation of pre-mRNA requires the splicing of the last intron-exon boundary as well
as cleavage and polyadenylation. In vivo, all three of these steps are coupled and all three
steps requires the presence of a poly(A) polymerase(Christofori and Keller, 1988; Kyburz et
al., 2006).

Based on the hypothesis that Star-PAP is functioning as a PAP, we performed a proteomic
analysis of the endogenous Star-PAP complex from HEK293 cells which revealed that
PIPKIα and Star-PAP together reside in a megadalton, pre-mRNA 3’ end formation
complex devoid of detectable PAPα(Mellman et al., 2008). Star-PAP and PIPKIα were
found to be in complex with a large number of the cleavage and polyadenylation complex
members such as CPSF, CstF, SM proteins, symplekin and the CTD of RNA Pol II. To
directly compare the canonical PAPα complex to the Star-PAP complex, PAPα and Star-
PAP, respectively, were cloned into a pCMV-Flag expression vector (Sigma), expressed and
purified from HEK293 cells and the purified complexes were subjected to Western blot
analysis. Both Flag-tagged PAP complexes contained CPSF, CstF, symplekin, and SM
proteins. Most interestingly, Flag-Star-PAP purified from HEK293 cells was found to
contain PIP Kinase activity. Incubation of Flag-purified Star-PAP complexes with PI4P
micelles and ATP resulted in the production of PI4,5P2. The PIP Kinase activity found
associated with purified Flag-PAPα as a direct comparison of the two PAP complexes
showed no PIP Kinase activity above background. This strongly supports the hypothesis that
PIPKIα in the Flag-Star-PAP complex is capable of producing de novo PI4,5P2 in proximity
to Star-PAP in vivo to regulate the function of Star-PAP and possibly other unique Star-PAP
interacting proteins for the efficient 3’ end formation of pre-mRNAs.

When PI3P or PI5P micelles (poor type I PIPK substrates) were used in the kinase assay
there was very little PI4,5P2 production observed with either the Star-PAP or PAPα
complexes. Likewise, when PI or PI4,5P2 micelles were used, there was almost no
detectable kinase activity associated with either complex(Gonzales et al., 2008). These
results indicate that type I PIP Kinase activity is specifically associated with Star-PAP and
not PAPα. Furthermore, this was the only phosphoinositide kinase activity that co-purifies
with Flag-tagged Star-PAP or PAPα. PIPKIα was the only type I PIP kinase detectable by
Western blotting of the Star-PAP complex, indicating that PIPKIα is the only
phosphoinositide kinase associated with Star-PAP.
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Like other pre-mRNA processing proteins, Star-PAP contains a zinc finger module. A single
zinc finger binds only a short stretch of nucleotides and is not sufficient to provide an
interaction with a specific DNA or RNA sequence, as zinc finger proteins that interact with
nucleic acids usually contain multiple zinc finger motifs in order to provide sufficient
stringency to achieve specific binding(Hall, 2005). Therefore, it will be of interest to
determine whether the single zinc finger found in Star-PAP is mediating protein-protein
interactions or targeting a specific RNA sequence. It is interesting to note that a number of
single zinc finger containing proteins were identified in the PIPKIα yeast two-hybrid screen.
It may be that zinc fingers are the common motif required for mediating interactions with
carboxy-terminus of PIPKIα. Further investigations awaits to determine the physiological
significance of zinc finger mediated interactions between PIPKIα and its suite of interacting
proteins and how this affects cellular signaling pathways and gene expression.

PIPKIα synergizes with Star-PAP to target select mRNAs for 3’ end formation
Based on the association of Star-PAP with the mRNA cleavage and polyadenylation
machinery we hypothesized that Star-PAP is involved in the 3’ processing and
polyadenylation of mRNAs. To define a role for Star-PAP in modulation of mRNA, we set
out to determine in vivo Star-PAP RNA substrates (Mellman et. al., 2008). Because correct
polyadenylation of mRNA is critical for the stability of mRNAs(Colgan and Manley, 1997),
we therefore predicted that siRNA knock down of Star-PAP would result in a decrease of
cellular mRNAs that require Star-PAP for their 3’ end processing and polyadenylation. We
hypothesized that if PIPKIα acts to modulate Star-PAP function, the loss of PIPKIα by
siRNA will cause a decrease in the pool of target mRNAs that require both Star-PAP and
PIPKIα for their maturation. Therefore, we knocked down Star-PAP or PIPKIα, respectively
and performed a microarray analysis of total polyadenylated mRNAs from each group. A
significant (conditional false discovery rate ≤ 0.01) change in mRNA level compared with
control cells (n = 3) was detected for 4,481 genes with Star-PAP RNAi knockdown and
4,542 genes with PIPKIα RNAi knockdown (Mellman et. al., 2008). There was an overlap
of 2,350 significant gene changes in both conditions, of which 2,262 were in the same
direction (Mellman et. al., 2008).

A large group of the identified genes encode proteins involved in detoxification and/or
oxidative stress response (Mellman et. al., 2008). Of these biomedically relevant potential
Star-PAP mRNA targets a small group were chosen for validation by quantitative real-time
RT-PCR (qRT-PCR), including the mRNA encoding heme oxygenase-1 (HO-1)
(NM_002133.1). The expression levels of the chosen candidate mRNAs were consistent
with the microarray analysis, demonstrating that Star-PAP is required for the expression of
these mRNAs (Mellman et. al., 2008). PIPKIα RNAi knockdown also significantly
decreased the expression levels of these same mRNAs, indicating a biological relationship
between PIPKIα and the expression of select Star-PAP-dependent mRNAs. Knockdown of
both Star-PAP and PIPKIα showed no additive effect on the loss of HO-1 mRNA, providing
evidence that Star-PAP and PIPKIα function in a common pathway to control its expression
(Mellman et. al., 2008).

To determine direct targets of Star-PAP, RNA immunoprecipitation (RIP)(Gilbert et al.,
2004) was used. Star-PAP was associated with HO-1 mRNA but not with the non-target
mRNAs encoding glutamate cysteine ligase, catalytic subunit (GCLC) (NM_001498.2) or
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (NM_002046.3). Because HO-1 is a
direct target of Star-PAP, it was selected for use in exploring the mechanism by which Star-
PAP controls the expression of its select target mRNA.

HO-1 enzyme catalyzes the rate limiting step in the conversion of heme to potent signalling
molecules, including biliverdin and carbon monoxide, which possesses antioxidant and other
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protective properties. Regulation of HO-1 is achieved primarily through regulation of its
mRNA levels and induction of HO-1 mRNA is a key cellular response to reactive oxygen
species and other cellular stresses(Takahashi et al., 2004). HO-1 expression is induced in
response to cellular stresses and the end products of HO-1 metabolism exhibit antioxidant
and other cytoprotective functions. Because of this, HO-1 is thought to be an important
component of the cellular response to stress. In cell culture, HO-1 mRNA expression can be
induced by quinone compounds such as tert-butyl hydroquinone (tBHQ) which induces an
antioxidant response in cells(Keum et al., 2006). To test the requirements for PIPKIα and
Star-PAP in HO-1 mRNA induction, HEK293 cells were treated with control, PIPKIα or
Star-PAP siRNA oligos. After siRNA treatment, cells were treated for 4 hours with 100µM
tBHQ or DMSO only. Total RNA was isolated and HO-1 levels were analyzed by qRT–
PCR. tBHQ can induce HO-1 expression in HEK293 cells by ~7–10 fold and siRNA knock
down of PIPKIα as well as siRNA knock down of Star-PAP not only reduced basal levels of
HO-1 mRNA, but also the maximal expression upon induction as compared to control cells
(Mellman et. al., 2008).

In order to determine whether PIPKIα and Star-PAP are functioning together in the 3’ end
formation of HO-1 mRNA, a functional in vivo 3’ end formation assay was
established(Mellman et al., 2008). We examined a step in 3’ processing that is functionally
coupled to polyadenylation which is 3’ end cleavage. Poly(A) polymerases are not only
required for the generation of polyadenylation but they are also required for the pre-mRNA
cleavage reaction that precedes polyadenylation(Zhao et al., 1999). We had predicted that if
Star-PAP is acting as a poly(A) polymerase towards HO-1 mRNA then it must be playing a
direct role in the 3’ end cleavage of HO-1 mRNA. Hence, in the absence of Star-PAP, 3’
end cleavage of HO-1 should be inhibited.

We examined whether Star-PAP and/or PIPKIα siRNA knock down affected cleavage of
HO-1 mRNA by directly measuring the amount of uncleaved mRNA relative to total mRNA
levels. To assess mRNA cleavage, total RNA from control, Star-PAP or PIPKIα knock
down cells was reverse transcribed with random hexamer primers and the level of uncleaved
mRNA was measured by qRT–PCR using primers sets that span the 3’ cleavage site of
HO-1 mRNA. The level of uncleaved mRNA was normalized to the total mRNA levels for
each mRNA examined, control versus experimental. Total target RNA levels measured
using the same primer sets used to validate the microarray discussed above were therefore
specific for the mRNA and the RNA samples were DNaseI treated prior to the reverse
transcription reaction.

Star-PAP knock down resulted in a dramatic accumulation of uncleaved HO-1 mRNA
relative to the total amount of HO-1 mRNA present. Significantly, PIPKIα knock down did
not dramatically affect the amount of HO-1 mRNA cleavage even though PIPKIα is
required for its expression, consistent with PIPKIα acting as a modulator of Star-PAP
function. While Star-PAP knock down may be inhibiting HO-1 expression by causing
defects in cleavage, PIPKIα knock down may be reducing HO-1 mRNA levels by affecting
other aspects of 3’ processing such as causing reduced Star-PAP function by loss of de novo
PI4,5P2 generation. The amount of non-Star-PAP target mRNA GCLC that was uncleaved
was unchanged by either Star-PAP or PIPKIα knock down. This requirement of Star-PAP
and PIPKIα for 3’ end cleavage demonstrates that the Star-PAP complex is playing a direct
and functional role in the 3’ end formation of HO-1 mRNA. This is a specialized function,
as the 3’ end processing of the non-Star-PAP mRNA target GCLC was unaffected by loss of
Star-PAP as well as loss of PIPKIα. Oxidative stress induction by incubation of HEK293
cells with 100µM tBHQ for 4 hours stimulated the assembly of the endogenous Star-PAP
complex with large fold increases in the association of PIPKIα, CPSF subunits as well as the
CTD of RNA Pol II, demonstrating that the Star-PAP complex is subject to extra-cellular
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signaling dependent assembly with its protein partners into a highly stable complex. The
enzyme activity and sensitivity to PI4,5P2 of Flag-Star-PAP was enhanced in complexes
purified from tBHQ-treated cells as compared to Flag-Star-PAP purified from resting cells,
suggesting that the Star-PAP enzyme may undergo post-translational modifications to
activate the enzyme under oxidative stress conditions (Fig. 3). Star-PAP expressed and
purified in E.coli BL21 displays PAP activity that is sensitive to PI4,5P2, which
demonstrates that PI4,5P2 can bind Star-PAP to stimulate its polymerase activity. How
PI4,5P2 is binding Star-PAP to affect its activity is of paramount importance to understand
how the Star-PAP complex is activated, stabilized and binds its RNA and/or rNTP substrate
for 3’ end formation.

The nature of the Star-PAP complex is that it contains a wealth of associated protein
components, some unique components while some are shared with other 3’ end formation
machineries such as PAPα and GLD2 poly(A) polymerase. Star-PAP complex is a
phosphoinositide sensitive complex that is highly regulated and acts to target select mRNAs
for their 3’ end formation. HO-1 mRNA is one of potentially many mRNAs that require the
Star-PAP complex for their maturation. How the Star-PAP complex targets its RNA
substrate, what the required signals are for such targeting and whether there is an RNA or
DNA Star-PAP consensus sequence in Star-PAP targets are areas of active investigation.

Star-PAP complex contains the PI4,5P2 sensitive protein kinase Casein Kinase Iα, CKIα
The Star-PAP complex contains a number of shared associated proteins that also assemble in
the canonical PAPα complex including SM proteins, CPSF, CstF, symplekin and RNA Pol
II (Mellman et. al., 2008). A distinguishing feature of the Star-PAP complex is that it
contains unique associated proteins as compared to the canonical PAPα complex, including
PIPKIα and the PI4,5P2 sensitive protein kinase Casein Kinase Iα, CKIα(Gonzales et. al.,
2008). CKIα is a serine/threonine protein kinase which phosphorylates acidic peptides in a
variety of substrates, and was one of the earliest protein kinase activities to be purified and
characterized biochemically (Fu et. al., 2001). The characterization of substrate specificity
of CKI isoforms initially led to the identification of the canonical sequence S/T(P)X1-2S/T
indicating that modification of serine or threonine residues by CKI requires the preceding
phosphorylation of amino acid residues amino-terminal of the target site; additionally non-
canonical CKI motifs have been found (Knippschild et. al., 2005). However,
phosphorylation by CKI of a substrate does not seem to be strictly dependent upon the
consensus sequence, as it was shown that phosphorylation also depends on the tertiary
structure of the substrate(Cegiekska et. al., 1998).

Several reports have demonstrated that CKI activity can be isolated from a soluble cytosolic
protein fraction from many different mammalian and plant tissue types with the pure and
active species being monomeric of molecular weight in the ~30kDa range (Fu et. al., 2001).
CKI activity can also be isolated from nuclei and yielded a similar or slightly larger sized
protein than from the cytosol suggesting that a second nuclear form of CKI may
exist(Tuazon et. al., 1991). Later cDNA cloning studies revealed that CKI actually
constitutes an entire protein kinase family including at least 7 related vertebrate genes
named α, β, γ1–3, δ and ε (Rowles et. al., 1991). The α and γ3 genes are subject to
alternative splicing, leading potentially up to 11 different CKI proteins(Fish et. al., 1995,
Green and Bennett 1998, Zhai et. al., 1995). ckIα has been reported to be alternatively
spliced into four splice variants named CKIα, CKIαS, CKIαL and CKIαSL. The four
isoforms differ only in the presence of two inserts, L and S (Fu et. al., 2001). The L insert
contains 28 amino acids which are located within the kinase catalytic domain, while the S
insert contains 12 amino acids and is located near the end of the short carboxy-terminal
extension beyond the catalytic domain.
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The functions of each CKI protein kinase are not completely understood, although in vitro
studies suggest several potential substrates. These include the cytoplasmic domain of the
insulin receptor β subunit in the plasma membrane(Rapuano and Rosen 1991), the cyclic
AMP response element modulator in the nucleus(de Groot et. al., 1993), cytosolic muscle
glycogen synthase(Flowtow and Roach 1989), neuronal cytoskeletal proteins such as
microtubule-associated protein tau and neurofilaments(Floyd et. al., 1991; Singh et. al.,
1994), a subset of synaptic vesicle proteins(Gross et. al., 1995) and the non-canonical
poly(A) polymerase Star-PAP(Gonzales et. al., 2008). It was reported that the CKI protein
kinase isoform that directly phosphorylates Star-PAP is CKIα, and these two enzymes co-
localize in the nucleus at speckles where they function in a large phosphoinositide-regulated
protein complex regulating the 3’ end processing of select mRNAs (Gonzales et. al., 2008).

The Star-PAP complex includes PIPKIα and the activity of Star-PAP is regulated by the
PIPKIα product PI4,5P2. PI4,5P2 tends to regulate multiple proteins at its site of generation
(Bairstow et. al., 2006), thus it was exciting to find recently that there are at least two protein
kinase activities associated with the Star-PAP complex and that one of these activities is
inhibited by PI4,5P2(Gonzales et al., 2008). Subsequently, it was identified that one of the
protein kinase activities associated with the Star-PAP complex was the PI4,5P2 sensitive
protein kinase CKIα. Western blot analysis of Flag-purified complexes with antibodies
specific for CKIα revealed that CKIα co-purifies specifically with Star-PAP and not PAPα.
CKIα is capable of phosphorylating Star-PAP in its PRR domain and in vivo CKIα along
with PIPKIα are required for the maintenance of a subset of Star-PAP target mRNAs
(Gonzales et al., 2008). Protein kinase activities have been shown to regulate the activity of
canonical PAP. For example PAPα can be inhibited in a cell cycle-dependent fashion by
cyclin-dependent kinases (Colgan et. al., 1998). Additionally, PAPα was identified as a
target of ERK. PAPα phosphorylation of serine 537 by ERK increased its non-specific
polyadenylation activity in vitro. This PAP activity was also activated by stimulation of
ERK with phorbol-12-myristate-13-acetate in vivo. These data suggest that ERK is a novel
regulatory kinase for PAPα and further, that PAP activity could be regulated by extra-
cellular stimuli through an ERK-dependent signaling pathway(s). It will be of interest to
determine how phosphorylation can modulate Star-PAP function and what the cellular
signals are which promote the regulatory aspects of CKIα in the Star-PAP complex.

The protein kinase activity of CKIα is specifically inhibited by PI4,5P2 and it was shown
that concentrations as low as 12.5µM PI4,5P2 can potently inhibit the Flag-Star-PAP
associated CKIα protein kinase activity(Gonzales et al., 2008). Phosphorylation is important
for the function of many of the proteins found in nuclear speckles, including the SR family
of splicing factors. CKIα localizes at nuclear speckles in vivo and is capable of directly
phosphorylating SR proteins in vitro and is therefore implicated in the regulation of pre-
mRNA splicing(Gross et al., 1999). The presence of a PI4,5P2 sensitive protein kinase at
nuclear speckles which is capable of phosphorylating splicing factors and functionally
interacts with the Star-PAP complex provides a link between splicing, and cleavage and
polyadenylation for 3’ formation of Star-PAP target mRNA. Interestingly, RIP revealed that
CKIα is associated with Star-PAP target mRNA HO-1 and the use of CKI inhibitors CKI-7
and IC261 caused a significant decrease in the expression of HO-1 mRNA upon induction
by tBHQ, demonstrating a role for CKIα in a stress response pathway with PIPKIα and Star-
PAP to efficiently process the 3’ end of Star-PAP target mRNAs. Interestingly, CKIα does
not RIP with the non-stress response Star-PAP target mRNA cationic transport regulator
1(CHAC1) (NM_219270) and the loss of CKIα via siRNA or by aforementioned CKIα
inhibitors does not affect CHAC1 mRNA levels, suggesting that the Star-PAP complex may
vary in composition in dependence of the RNA that is targeted for processing(Gonzales et
al., 2008) .

Mellman and Anderson Page 10

Adv Enzyme Regul. Author manuscript; available in PMC 2012 March 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The unexpected and new nuclear substrate and function for PI4,5P2 sensitive protein kinase
CKIα reinforces the understanding of phosphoinositide sensitive protein complexes which
contain multiple components that are regulated by PI4,5P2 (Bairstow et al., 2006). CKIα
functions with PIPKIα and both are required for the expression of the Star-PAP target
mRNA HO-1, which encodes a critical cytoprotective enzyme. The involvement of Star-
PAP, PIPKIα and CKIα in regulating the expression of a pivotal stress response gene
demonstrates a clear role for a nuclear phosphoinositide signaling pathway in response to
oxidative stress.

Star-PAP is a novel member of the CID1 family of non-canonical poly(A) polymerases and
embodies features of TUTase

RNA-specific nucleotidyl transferases (rNTs) that act by covalently attaching
ribonucleotides to the 3’ end of their RNA substrates have been studied for over forty years
and are customarily divided into canonical and non-canonical type enzymes(Martin and
Keller, 2007). Canonical rNTs include the CCA-adding enzyme which is essential for the
function of tRNAs as acceptors of amino acids(Xiong and Steitz, 2004), TUTases involved
in mitochondrial mRNA editing in Trypanosomal Brucei (T. brucei), Leishmania major (L.
major) and Leishmania tarentolae (L. tarentolae) (Simpson et al., 2004), members of the
PAPOLA gene family PAPa, -β and –γ, and all of the splice variants therein (Kashiwabara et
al., 2002; Kyriakopoulou et al., 2001; Raabe et al., 1991) as well as certain antibiotic
resistance enzymes. Non-canonical rNTPs are varied and include the many members of the
CID1 family of non-canonical poly(A) polymerases, such as CID1, and the “CID-1like
proteins” such as the regulatory cytoplasmic PAP GLD2 and the exosome-related PAP
Trf4/5p (LaCava et al., 2005; Stevenson and Norbury, 2006; Wang et al., 2002), and Star-
PAP.

The cid1 gene was isolated in a genetic screen as a suppressor of “checkpoint Rad” mutants
in fission yeast. The mutants were sensitive to hydroxyurea (HU) which is an inhibitor of
ribonucleotide reductase, though these cidIΔ were also sensitive to a combination of HU and
caffeine, hence the name CID1 for caffeine induced death 1. cidIΔ mutants affect S-M
checkpoints when they are crossed with mutants of DNA Pol δ and ε, DNA polymerases
required for chromosomal replication(Wang et al., 2000). CID1 was initially characterized
as a regulatory cytoplasmic poly(A) polymerase but has now been defined to be a regulatory
poly(U) polymerase, (PUP) an enzyme which uridylates its RNA substrate rather than
adenylating.

The gld2 gene, germline development 2, was isolated as a regulator of mitosis/meiosis
decision in C. elegans (Kadyk and Kimble, 1998), though the discovery of GLD2 being a
regulatory poly(A) polymerase was not revealed until years later (Wang et. al., 2002). gld2Δ
fail to complete spermatogenesis and oogenesis in the nematode. In mouse, GLD2 was
proposed to play a role in a positive feedback during the progression of metaphase I to
metaphase II during oocyte maturation(Nakanishi et al., 2006). GLD2 in humans is a
regulator of germline development and has been proposed to play functional roles in Long
Term Potentiation (LTP). GLD2 is abundant in anatomical regions of the brain required for
long term cognitive and emotional learning in humans and mouse(Rouhana et al., 2005). In
vivo, GLD2 is dependent upon its interacting protein partner GLD3, which contains an RRM
and is required for GLD2 to bind its mRNA substrate and stimulates the PAP activity of
GLD2(Wang et. al., 2002).

Trf4/5p poly(A) polymerase is a component of the TRAMP complex characterized in yeast.
RNA targets of the TRAMP, Trf4/5p, Air1/2, Mtr41 Polyadenylation complex include
tRNAs, U14 snoRNA, U5 snRNA and pre-ribosomal RNA(LaCava et al., 2005). Air1/2
contain multiple zinc knuckle motifs to bind its RNA target and Mtr41 acts as a helicase to
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unwind the RNA and expose the 3’ end to make it accessible for Trf4/5p to polyadenylate
the RNA. The oligo(A) tract allows recruitment of the exosome, which degrades its RNA
substrate in a 3’ to 5’ direction. The RNA bound in the TRAMP complex can undergo
multiple rounds of re-adenylation until the RNA is completely degraded. The fact that
TRAMP polyadenylation complex acts to degrade RNA is in contrary to role of
polyadenylation of mRNA, which is believed to be a stabilizing modification. This function
is reminiscent of bacterial poly(A) polymerases where polyadenylation marks an RNA for
degradation(Grunberg-Manago, 1999).

There are two striking properties that the members of the CID1-like family of non-canonical
poly(A) polymerase feature that is distinct from canonical poly(A) polymerase and every
known member embodies at least one of these properties. The first is that many of these
enzymes can not bind their RNA substrate on their own and require an interacting RNA
binding protein, as in the cases of GLD2/GLD3 and the TRAMP complex. A second feature
is that there are a number of CID1-like non-canonical poly(A) polymerases that have the
capacity to transfer UMP to its RNA substrate in addition to, or rather than, AMP. Hence,
there are non-canonical poly(A) polymerases that display biological traits of being a PUP, or
as being a TUTase(Stevenson and Norbury, 2006). Intriguingly, Star-PAP falls into the latter
category.

PUP activity was first demonstrated in tobacco leaves over thirty years ago(Brishammar and
Juntti, 1975), and the first reported evidence of TUTase came around the same time period,
which suggested that a host TUTase was involved in poliovirus replicase initiation(Dasgupta
et al., 1980). It was not until the advent of high throughput sequencing that is was
established that tracts of poly(U) could be added post-transcriptionally rather than simply
being encoded in the DNA of the gene. Analysis of cytoplasmic mRNA provided solid
evidence of post-transcriptionally added oligo(U) tracts to RNA. Poly(U) tracts ~30–40
nucleotides in length were reported for about one-fifth of all poly(A)-containing
mRNA(Korwek et al., 1976). Poly(U) tracts were subsequently found in cytoplasmic and
nuclear RNA, in both polyadenylated and non-polyadenylated fractions. It was later
reasoned that cellular RNA could be separated into separate categories according to poly(A)
and poly(U) content. First, those containing both poly(A) and poly(U) sequences, which was
estimated to be ~ 5–15% of nuclear RNA. Second, those containing only poly(A) tracts, was
estimated to be~ 50%. Third, those RNAs solely with poly(U) tracts, which was estimated to
be ~2%, and lastly RNAs which contain neither poly(A) or poly(U) sequences, which was
estimated to be ~ 30% (Molloy, 1980).

The question that comes to mind when examining poly(U) mRNA is, why does the cell
require 3’ end U addition? There are at least two separate potential reasons why this
mechanism evolved. First, U-addition and deletion is a means for expanding the gene
expression repertoire. By de novo creation of sequence specific sites, mRNA editing can
change an ORF to give rise to diverse proteins from a single gene, additionally, mRNA
editing can add alternative poly(A) sites, AAUAAA, again expanding the possible protein
products from a single gene. The second reason is a structural argument. Oligo(U) tracts
would be able to base pair with existing poly(A), forming a hairpin. The formation of such
structures could affect the stability, export and/or translatability of an mRNA, ultimately
affecting mRNA half-life. Although, it is known that uridylation occurs not only in mRNAs
such as Actin mRNA in S.pombe(Rissland et. al., 2007), but in non-coding small RNAs as
well.

A “hybrid” 3’ end on a small RNA composed of AMP and UMP could act as signal, or act
as a sequence specific platform for RNA binding proteins to interact and modulate the
function of small nuclear RNAs in the processing of mRNAs. Many small RNAs are
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uridylated such as microRNAs and endogenous siRNAs, whereby 3’ end uridylation appears
to be destabilizing to these RNAs (Chen et al., 2000; Shen and Goodman, 2004).
Additionally, histone mRNA has been recently reported to be uridylated and this acts to
destabilize the message(Mullen and Marzluff, 2008). The small nuclear RNA U6, U6
snRNA, is uridylated and this modification stabilizes this RNA; U6 snRNA is also
adenylated though the functional significance of this modification remains unknown (Chen
et al., 2000).

It was reported that Star-PAP has the capacity to transfer UMP to the 3’ end of U6 snRNA
and acts as the U6 TUTase(Trippe et al., 2006). Indeed, Star-PAP has the capacity to
transfer UMP to total cellular RNA and can uridylate U6 in vitro. U6 snRNA is a
spliceosome component and transcribed by RNA Pol III and accordingly transcriptional
termination is signaled by UUUUU(Kiss, 2004). The 3’ end of U6 snRNA is stabilized by
the formation of a 2,3’-cyclic phosphate and the majority of U6 molecules contains this
modification(Lund and Dahlberg, 1992). The remaining population of U6 contains either a
3’ tail containing a short stretch of poly(U) or a 3’ tail containing poly(U) which is followed
by adenylation(Chen et al., 2000). Presumably without maintaining the 3’end of U6 snRNA,
U6 snRNA is exonucleolytically trimmed, becoming a poor substrate for the 3’ terminal
cyclase. Consequently, U6 snRNA would suffer complete degradation resulting in a vast
decrease in the amount of competent spliceosomes to process the nascent mRNA, and
mRNA metabolism would be altered globally resulting in cellular death(Trippe et al., 2006).
If Star-PAP plays a functional role in the assembly of spliceosomes through U6 snRNA 3’
end modification for global splicing of bulk mRNA, then a functional in vivo assay could
potentially be established to demonstrate this. Since spliceosome assembly occurs in a step
wise manner, it is conceivable to isolate intermediates (Bessonov et al., 2008) that harbor an
active Star-PAP complex. This could provide insights into the U6 snRNP domain and define
a role for Star-PAP function in sustaining catalytic activity of the spliceosome to couple
with 3’ end formation of mRNA.

Finally, it must be emphasized that included in the U6 TUTase report(Trippe et al., 2006)
was the statement that U6 is the only snRNA that has its own modifying enzyme, and the
question was poised asking why is U6 snRNA afforded the luxury of having its own 3’ end
modifying enzyme while the other snRNAs that make up the spliceosome, U1, U2, U4 and
U5 do not? If Star-PAP is indeed the sole U6 TUTase and U6 is the sole RNA substrate for
Star-PAP in vivo, then the answer will most likely be centered directly on phosphoinositide
based signaling through the Star-PAP interacting protein, PIPKIα, its product PI4,5P2 and
most probably the breadth of nuclear phosphoinositide signaling molecules that control gene
expression.

Star-PAP harbors features of TUTase in regards to its domain arrangement and its in vitro
transferase activity. As featured in Star-PAP, canonical TUTase described in T.brucei has a
poly(A) polymerase domain that is split by a linker domain(Aphasizhev et al., 2002).
Although, the linker domain, the PRR domain in Star-PAP, is highly divergent and shows no
identity to any reported TUTase(Stagno et al., 2007). Attempts to detect sequence similarity
to any known protein or secondary structural elements in Star-PAP PRR domain have been
unsuccessful(Stagno et al., 2007). This strongly supports the hypothesis that the PRR
domain in Star-PAP is unique to Star-PAP and that this domain provides a three-
dimensional requirement for the phosphoinositide-dependent nature of Star-PAP function as
a duel specificity non-canonical poly(A) polymerase.
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Summary
Star-PAP is a recently identified nuclear speckle localized non-canonical poly(A)
polymerase that has a functional interaction with PIPKIα, and whose activity is modulated
by the PIPKIα product, PI4,5P2. Similar to other poly(A) polymerases, such as the canonical
PAPα and the non-canonical GLD2 PAP, Star-PAP resides in a large complex of proteins
involved in the 3’ end formation of mRNAs (Fig. 4). The Star-PAP complex shares
components with the canonical PAPα complex though contains unique associated proteins
such as PIPKIα and CKIα. The Star-PAP complex assembles into a highly stable 3’ end
processing machine upon oxidative stress induction. This assembled complex shows
enhanced enzyme activity and hypersensitivity to exogenous PI4,5P2, implying that an
activated Star-PAP is distinctly modified and/or contains unique factors as compared to
Star-PAP purified from resting cells.

The association between a poly(A) polymerase and the polyadenylation complex is vital for
its proper function, accordingly, Star-PAP is required for the expression and 3’ end
formation of select mRNAs. In addition to poly(A) adding activity, Star-PAP embodies
features of Terminal Uridylyl Transferase activity, TUTase, and can transfer UMP to
cellular RNA such as the small nuclear RNA U6, signifying that Star-PAP is a duel
specificity RNA nucleotidyl transferase. Additionally, the Star-PAP complex harbors lipid
kinase activity capable of generating de novo PI4,5P2 and protein kinase activity that can be
inhibited by PI4,5P2. It was demonstrated that the PI4,5P2 sensitive kinase CKIα is at least
one of the kinases responsible for this activity and that CKIα can directly phosphorylate
Star-PAP in its Proline Rich Region domain suggesting that multiple aspects of Star-PAP
function can be regulated by phosphoinositide signaling. The Star-PAP complex therefore
represents a site where multiple phosphoinositide signaling pathways converge to control the
synthesis of select mRNAs.

Consistent with this, CKIα as well as PIPKIα are required for the synthesis of the Star-PAP
target mRNA HO-1, which encodes the cytoprotective enzyme heme oxygenase -1, HO-1.
CKIα and Star-PAP are associated with HO-1 mRNA in vivo, suggesting that Star-PAP,
CKIα and PIPKIα work together to modulate the production of this and other select mRNAs.
It will be useful to identify more uniquely associated Star-PAP proteins to begin defining
additional signal transduction pathways that converge on Star-PAP functions and may allow
for the discovery of additional Star-PAP target mRNAs. It will also be helpful to define
signaling components in the tBHQ-induced oxidative stress response pathway that work
upstream of Star-PAP, PIPKIα and CKIα. This may provide information about how nuclear
phosphoinositide generation and signaling is regulated by various stimuli.
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Fig. 1.
Depicted above are the three members of the type I phosphatidylinositol 4-phosphate 5’-
kinase family,PIPKIα, -β and -γ. Each kinase produces the same phosphoinositide product
but at distinct sub-cellular sites thereby spatially restricting activation of phosphoinositide
sensitive pathways. (ref. Heck et.al., 2008)
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Fig. 2.
Endogenous PIPKIα localizes at nuclear speckles (top panel) evidenced by the co-
localization of PIPKIα (green) with the SR protein SC35 (red). Merge shows co-localization.
4′,6-diamidino-2-phenylindole (blue). Amino acids 440–562 of PIPKIα was used as bait in a
yeast two-hybrid screen to identify PIPKIα interacting proteins that function together in
nuclear events (middle panel). Star-PAP was one of numerous nuclear localized proteins
isolate din the screen and has been shown to function with PIPKIα in the 3’ end formation of
select mRNAs (bottom panel) (ref. Mellman et. al., 2008).
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Fig. 3.
Star-PAP has poly(A) polymerase activity that is stimulated by PI4,5P2.
A, B, Effects of 50µM inositol phospholipid micelles on recombinant His-Star-PAP as
compared to PAPα. C, Incorporation of [α-32P]ATP into poly(A) RNA products larger than
A200 in the presence of phospholipid micelles by Star-PAP and PAPα from A and B.
Poly(A) tail tracings measuring RNA extension with [α-32P]ATP into poly(A) RNA
products comparing Star-PAP incubated with PI4,5P2, PI4P or a non-treated His-Star-PAP.
D, Affinity-purified Flag-Star-PAP (WT) or catalytic mutant Flag-Star-PAP (MT) from
stably expressing HEK293 cells subsequent to treatment with tBHQ and /or PI4,5P2. E,
Time course subsequent to treatment with tBHQ in D, in the presence of PI4,5P2. F, Flag-
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PAPα activity after treatment with 100µM tBHQ and/or the presence of PI4,5P2. (ref.
Mellman et. al., 2008).
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Fig. 4.
Model of the Star-PAP complex induced to assemble on its target gene ho-1 for the 3’ end
processing of HO-1 mRNA. A stimuli such as oxidative stress induction can drive the
inclusion of a phosphoinositide signaling components PIPKIα and CKIα into a stable Star-
PAP complex that targets the stress response gene heme oxygenase-1, ho-1.
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