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Abstract

Exome sequencing of human breast cancers has revealed a substantial number of candidate cancer
genes with recurring but infrequent somatic mutations. To determine more accurately their
mutation prevalence, we performed a mutation analysis of 36 novel candidate cancer genes in 96
human breast cancers. Somatic mutations with potential impact on protein function were observed
in the genes ADAM12, CENTBI1, CENTG1, DIP2C, GL11, GRINZD, HDLBP, IKBKB, KPNAS,
NFKBI1, NOTCH1, and OTOF. These findings strengthen the evidence for involvement of the
Notch, Hedgehog, NF-KB, and PIK3CA pathways in breast cancer development, and point to
novel processes that likely are involved.

INTRODUCTION

It is widely accepted that cancer is caused by constitutional and somatic mutations in genes
that control cell growth or genome stability (Vogelstein and Kinzler, 2004). Classical
genetic techniques were used to discover frequently mutated cancer genes, such as 7P53and
ERBBZ, which subsequently guided genetic and functional characterization of the pathways
in which they reside. However, the majority of recently discovered candidate cancer genes
in adult solid tumors are mutated in <10% of patient tumors. Thus, the hunt for breast cancer
genes mutated in a low fraction of patient tumors has necessitated unbiased mutational
analyses at the gene family, exome or genome levels. Examples of such studies include (1)
re-sequencing of genes encoding kinases, which uncovered a higher ratio of non-
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synonymous to synonymous mutations than expected by chance indicating accumulation of
driver mutations in this gene set (Stephens et al, 2005); (2) exome-wide somatic mutation
analyses (Sjoblom et al, 2006; Wood et al, 2007; Leary et al, 2008); (3) rearrangement
analyses by paired-end sequencing, which have revealed an average of 90 chromosomal
breakpoints per receptor-negative tumor (Stephens et al, 2009); and (4) whole genome
sequencing, which revealed 50 somatic point mutations and small indels in coding
sequences as well as 28 large deletions, 6 inversions and 7 translocations in the breast cancer
metastasis studied (Ding et al, 2010). In breast cancers, exome sequencing revealed 140
candidate breast cancer genes (Sjoblom et al, 2006; Wood et al, 2007). The average
receptor-negative breast cancer had point mutations or small insertions or deletions in 101
protein coding genes, 11 focal amplifications, and 7 focal deletions. In breast cancers, as
well as in other tumor types, it is currently believed that the majority of somatic mutations
are passengers, i.e. mutations which do not directly alter the net rate of cell growth or other
phenotypes of essence to the tumor cell. However, the multitude of novel recurring but
infrequent gene mutations discovered by exome or genome sequencing poses a challenge in
distinguishing driver from passenger genes (Ali and Sjoblom, 2009). In the present study,
we investigate 36 previously identified candidate breast cancer genes by mutational analysis
of 96 additional tumors. Through bioinformatic analyses to predict the effect of specific
mutations on protein function and the analysis of the pathways in which these mutated genes
reside, we identify likely driver genes and pathways in breast tumorigenesis.

MATERIALS AND METHODS

Sample Collection and Handling

Ninety-six fresh frozen tumor samples were obtained from the Johns Hopkins Medical
Institutions, the Dana-Farber Cancer Institute and the South Carolina Biorepository System
and either macrodissected or laser capture microdissected to increase tumor cell fraction
(Table S1). The patients have an average age at diagnosis of 54 years (range 30-89). Tumors
were categorized into 3 subtypes, namely luminal, HER2+ and basal, according to the
expression status of estrogen receptor (ER), progesterone receptor (PR) and HER2 by
immunohistochemistry (Brenton et al, 2005). Among the 96 samples investigated in this
study, 19 cases do not have sufficient expression information for classification, while the
remaining 77 tumors consist of 54 luminal breast cancers (70%), 10 HER2+ breast cancers
(13%) and 13 basal breast cancers (17%).

Tumor DNA was extracted from frozen tissue or purified cell lines, and whole genome
amplification (REPLI-g WGA, Qiagen) was used to provide sufficient quantity of DNA for
mutational analyses.

Sequencing Strategy and Mutational Analyses

Protein coding sequences of the 36 selected candidate cancer genes were amplified and
sequenced from 96 breast tumor samples using previously described approaches (Sjéblom et
al, 2006). PCR primers used to amplify targeted regions are listed in Table S2. DNA
sequences were analyzed by Mutation Surveyor (SoftGenetics) followed by visual
inspection to identify potential mutations. Sequence variants present in SNP databases
(International HapMap Project and the 1000 Genomes Project, release 20100804) were
removed. Putative mutations were sequenced de novo in the tumor DNA that had the
mutation along with the patient-matched normal DNA. Two prediction tools, Cancer-
Specific High-Throughput Annotation of Somatic Mutations (CHASM) (Carter et al, 2009)
and MutationTaster (Schwarz et al, 2010), were used to predict functional effects of
validated somatic mutations.

Genes Chromosomes Cancer. Author manuscript; available in PMC 2013 May 01.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Jiao et al.

Page 3

In order to calculate the mutation prevalence on a larger panel of samples, we combined the
mutational data from Sjoblom et al. (2006) and Wood et al. (2007) with the data presented
here. Since the tumor samples used in the validation screen in these studies varied across
different genes, only the samples in which the gene was successfully sequenced were
included in calculating mutation rate for certain genes (or in which all genes from the
pathway were successfully sequenced in the case of pathway mutation prevalence
calculation). To determine whether differences in mutation rates exist between different
breast cancer subtypes, Fisher’s exact test was applied to the mutational data from samples
that had subtype information. False discovery rate was controlled at 0.02 using the
Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995) to minimize false positives
caused by multiple comparisons.

RESULTS AND DISCUSSION

We selected 36 candidate breast cancer genes to investigate from Sjéblom et al. (2006) and
Wood et al. (2007) fulfilling the criteria (1) having somatic mutations in at least one tumor
in a discovery set of 11 breast cancers, and subsequently found mutated in at least one tumor
when reassessed in a validation set of 24 breast cancers; (2) not previously demonstrated to
be breast cancer genes by functional studies; (3) having a mutation prevalence >3-fold
higher than the estimated background somatic mutation prevalence of 1-3 mutations/Mb; (4)
having mutations with predicted effects on gene function. In addition, BAP1, IKBKB,
NFKBI1, NFKBIA, and NFKBIE were included as they had putative loss of function
mutations in discovery set tumors and were implicated in known cancer pathways.

We assessed ~130 kb of protein-encoding sequences from the 36 genes in each of 96 breast
cancers for a total of 12.5 MB sequence. We observed 28 somatic mutations, comprising 13
non-synonymous, 3 frameshift, 1 truncating, 1 splice site, and 10 synonymous mutations
(Table 1). Novel non-synonymous somatic mutations were observed in one-third of the
genes, namely ADAM12, CENTB1, CENTGL, DIP2C, GLI1, GRIN2D, HDLBP, IKBKB,
KPNAS5, NFKB1, NOTCH1, and OTOF (Fig. 1).

Mutations in NF-KB pathway components contribute to the development of hematological
malignancies such as multiple myeloma (Annunziata et al, 2007). We have previously
demonstrated truncating, frameshift, and splice site mutations, respectively, in NFKBIE,
NFKBIA, and NFKB1 along with multiple non-synonymous mutations in /KBKB and
KEAPI in breast tumors (Sjoblom et al, 2006; Wood et al, 2007). We here identify
additional non-synonymous mutations in AFKBZ and the kinase domain of /KBKB in breast
cancers.

The novel /KBKB E81Q kinase domain mutation is a predicted driver missense mutation
(CHASM, FDR = 0.3). At the crossroads of NF-KB and PI3K signaling are members of the
Centaurin gene family. Downregulation of the GTPase-activating protein CENTB1 has been
shown to enhance NF-KB signaling, which provides a plausible explanation for the early
splice site and frameshift mutations observed in breast cancers (YYamamoto-Furusho et al,
2006). CENTG1 is a known proto-oncogene, amplified in ~10% of glioblastomas and an
activator of PIK3CA pathway signaling, which should encourage further functional studies
of the missense mutations observed in breast cancers (Liu et al, 2007). The non-synonymous
mutations observed in CENTBI1 and CENTGI in the current study are predicted to be
disease-causing by MutationTaster (Schwarz et al, 2010). The combined mutation
prevalence of these NF-KB pathway components mentioned above is 8% of breast tumor
cases. Mutations in genes of the NF-KB pathway (NMFKB, NFKBIA, NFKBIE, IKBKB,
KEAPI, CENTBI1and CENTGI1)are non-randomly distributed among breast tumor
subtypes (luminal, n=60; HER2+, n=13 and triple-negative, n=19 from this study and from
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Sjéblom et al. (2006); P =0.003). These genes are mutated in 22% (7 out of 32) HER2+ or
triple-negative breast cancers, which is significantly higher than 1.7% (1 out of 60) in the
luminal tumors (P=0.002, Fisher’s exact test, FDR=0.02). Mutation frequencies of other
genes and pathways, including D/P2C (n=110, P=0.125), GL/1 (n=110, P=0.084), GRINZ2D
(n=110, P=0.429), HDLBP (n=110, P=0.429), KPNA5 (n=110, P=0.084), OTOF (n=110,
P=1.000) and Notch pathway (VOTCHI and ADAM12, n=87, P=0.853) were not
significantly different among breast tumor subtypes.

Notch signaling has previously been implicated in human oncogenesis, and the NOTCH1
gene is a target for insertion and rearrangement by the mouse mammary tumor virus
(MMTV) (Yanagawa et al, 2000). We here identify NOTCH1 as a human breast cancer
gene, based on the detection of a frameshift mutation in its C-terminal regulatory region.
Frameshift mutations near the carboxy-terminus, such as the one newly identified in this
study, are known to activate NOTCHZ1 in T-cell acute lymphoblastic leukemia (Weng et al,
2004). Activating non-synonymous and frameshift mutations in NOTCHZ1 have been
observed in ~10% of non-small cell lung cancers (Westhoff et al, 2009). Similarly, Notch
signaling has been found aberrantly activated in human breast cancer cell lines and tissue
samples, but not in normal breast tissues. Furthermore, induced Notch signaling can
transform normal human breast epithelial cells, resulting in growth beyond confluence,
remarked change in cell shape, loss of cell-cell adhesion and resistance to drug-induced
apoptosis (Stylianou et al, 2006). The consequences of non-synonymous mutations in the
extracellular domain of NOTCH1 have not previously been described and their putative
functional roles merit further investigation.

We also identified two novel non-synonymous mutations in the protease gene ADAMI2.
Recently, two previously identified breast cancer derived mutations in ADAMI12 (D301H
and G479E) were shown to prevent its insertion in the plasma membrane in a dominant-
negative fashion, thereby leading to decreased shedding of the Notch ligand Delta-like |
(Dyczynska et al, 2008). The novel T596A substitution is located in a cysteine-rich domain
and has characteristics of a likely driver mutation (CHASM, FDR = 0.4). The mutations in
NOTCHI1 or ADAM12in 8.4% of breast tumors (9 of 107), along with functional data,
collectively point to a role for Notch pathway aberration in the development of breast
carcinomas.

The sonic hedgehog effector GL/1 (glioma-associated oncogene homolog 1) is known to
undergo amplification in a fraction of patients with malignant glioma (Kinzler et al, 1987).
Single somatic mutations of GL/I have previously been reported in urinary tract tumors and
skin cancers (COSMIC, http://www.sanger.ac.uk/genetics/CGP/cosmic/). We have observed
three non-synonymous GL/I mutations in breast cancers, which merit further functional
studies as GL/1is a proto-oncogene expressed in normal mammary epithelial cells as well
as in breast cancers (http://www.proteinatlas.org).

Several genes involved in RNA metabolism have recently emerged as putative cancer genes
(Sjoblom et al, 2006). The somatic mutation prevalence (5% of cases) along with multiple
frameshift mutations links the human homologue of disco-interacting protein, D/IP2C
(KIAA0934), to the development of breast cancer. Further, the missense mutations observed
are all located in regions strongly conserved throughout evolution (data not shown) and
predicted to be disease-causing (Schwarz et al, 2010). The DIP class of RNA-binding
nuclear genes, which interact with the D. melanogaster gene disco during the establishment
of the nervous system, has been implicated in maintenance of cell fate specification
(DeSousa et al, 2003). The ubiquitously expressed HDLBP!vigilin gene, which has been
connected to mMRNA metabolism and estrogen-mediated stabilization of mMRNAs, is
composed of 15 KH nucleic acid binding domains and is essential to human cells as
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evidenced by siRNA knockdown (Goolsby and Shapiro, 2003). However, relatively little is
known about the function of these genes, and further investigations into their roles in normal
and tumor tissues are required.

Previous studies have identified mutations in genes in the nuclear pore complex and nuclear
transport processes, such as NUP133, NUP214, and KPNAJ, in breast cancers and other
malignancies (Sjoblom et al, 2006; Mitelman et al, 2007). We here identify an additional
non-synonymous mutation in the second ARM domain of the importin subunit alpha-6,
KPNAS5, which is thought to be involved as an adaptor in nuclear localization signal (NLS)-
dependent protein import into the nucleus (Yang et al, 2010). Intriguingly, the protein
products that rely on KPNAS for nuclear import are still unknown. Further, we have
identified 5 non-synonymous mutations in the ligand binding and channel-forming domains,
along with one truncating mutation at the end of the channel-forming domain, in GRINZD.
The N-methyl-D-aspartate (NMDA) receptor subunit epsilon 4, GRINZD, forms a
heterotetrameric ligand-gated cation channel together with GRINI. Interestingly, GRINZD
expression is regulated by estrogen (Ikeda et al, 2010). Functional NMDA receptor
complexes containing the GRINZD gene product have been demonstrated in human breast
cancer cells and tissues, and the in vitro and in vivo tumor growth can be inhibited by
NMDA receptor antagonists (North et al, 2010). This raises the possibility that the GRIN2D
mutations observed here are oncogenic. Mutations in OTOF, a calcium-sensing protein that
triggers membrane fusion and exocytosis, may also provide a link between calcium
signaling and cancer.

Taken together, we provide data to strengthen the role of mutations in a subset of novel
candidate cancer genes in breast tumorigenesis. We have identified additional somatic
mutations in genes of the Notch, Hedgehog, NFKB, and PIK3CA pathways as well as in
processes not yet strongly linked to human cancer such as RNA processing and calcium
signaling. The mutation prevalence of CAN genes in this study differs from previously
published work (Sjoblom et al, 2006; Wood et al, 2007). Potential explanations include the
inability of mutational screens based on a low number of samples to pinpoint the true
mutation prevalence, and the sample cohort compositions in terms of subtypes of breast
cancers used in the studies. We also noticed a difference in prediction of mutation
significance provided by CHASM and MutationTaster, that among the 72 non-synonymous
mutations in Table 1 which have predictions from both methods, only 6 were classified as
disease causing mutations by CHASM with the FDR controlled at 0.4 while 46 were
suggested causal by MutationTaster, and only 3 mutations were consistently identified as
significant mutations by both methods. While computational tools predicting mutation
significance can be applied to prioritize targets for subsequent studies, the functional
significance of mutations has to be proven through experimental analyses. The observation
of multiple mutations in genes outside established cancer pathways may indicate that our
understanding of these pathways is incomplete, or that hitherto unknown pathways and
phenotypes are involved in tumor formation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.

Somatic mutations in candidate breast cancer genes. Known and novel somatic mutations in
candidate breast cancer genes are indicated in their respective protein domain structures.
Tumor DNA was extracted from 96 primary human breast tumors, whereas patient-matched
normal DNA was derived from blood or adjacent normal tissues. Human genome sequences
(hg17 build 35.1), transcript coordinates (RefSeq release 16, March 2006), and single
nucleotide polymorphisms were obtained from the UCSC Santa Cruz Genome
Bioinformatics Site (http://genome.ucsc.edu). The ~3.4 million single nucleotide
polymorphisms (SNPs) of doSNP (release 125) that were validated in the HapMap project
were used to exclude known polymorphisms, as were rare constitutional variants previously
observed by our group in other sequencing studies (Jones et al, 2008; Parsons et al, 2008).
PCR, sequencing reactions, and mutational analyses using Mutation Surveyor software
(SoftGenetics LLC) were performed as described (Sjéblom et al, 2006). Filled symbols,
mutations observed in the present study. Open symbols above domain structure, mutations
previously observed in breast cancers in Sjoblom et al. (2006) or Wood et al. (2007). Open
symbols below domain structure, cancer-derived mutations present in COSMIC or
previously observed in colorectal, pancreatic, or brain tumors (Jones et al, 2008; Parsons et
al, 2008). Black triangles, missense mutations. Blue triangles, synonymous mutations.
Purple triangles, nonsense mutations. Red triangles, frameshift mutations. Red diamonds,
splice site mutations. Domain name abbreviations: AMP BD, AMP-binding enzyme;
ANFIlig BD, ANF receptor family ligand binding region; ANK, Ankyrin repeat; ArfGAP,
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ARF GTPase-activating proteins domain; ARM, Armadillo/beta-catenin-like repeat; Cys
rich, Cysteine-rich domain; C2, C2 domain; Death, Death domain; Disin, Disintegrin
domain; DMAP1 BD, DMAP1-binding domain; EGF, EGF-like domain; FerB, Central
domain B in proteins of the Ferlin family; GIn rich, Glutamine-rich; Gly rich, Glycine-rich
domain; HLH, Helix-loop-helix domain; IBB, Importin beta binding domain; IPT, Ig-like,
plexins, transcription factors domain; KH, K homology RNA binding domain; Lig chan,
Ligand-gated ion channel; LNR, Lin-12/Notch repeat; LZ, Leucine zipper; MEPRO, ADAM
type metalloprotease domain; NBD, NEMO-binding domain; NOD, Notch protein; NODP,
Notch protein; PH, Pleckstrin homology domain; PIPLC, Phosphatidylinositol-specific
phospholipase X-box domain; Pro rich, Proline-rich domain; Ras, Ras family; RHD, Rel
homology transcription factor domain; STK, Serine/Threonine protein kinase domain; Trm,
Transmembrane helices; Ub, Ubiquitin-like domain; Znf, Zinc finger domain.
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