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Coordinated variation among positions in amino acid sequence alignments can reveal genetic dependencies at noncontiguous
positions, but methods to assess these interactions are incompletely developed. Previously, we found genome-wide networks of
covarying residue positions in the hepatitis C virus genome (R. Aurora, M. J. Donlin, N. A. Cannon, and J. E. Tavis, J. Clin. In-
vest. 119:225–236, 2009). Here, we asked whether such networks are present in a diverse set of viruses and, if so, what they may
imply about viral biology. Viral sequences were obtained for 16 viruses in 13 species from 9 families. The entire viral coding po-
tential for each virus was aligned, all possible amino acid covariances were identified using the observed-minus-expected-
squared algorithm at a false-discovery rate of <1%, and networks of covariances were assessed using standard methods. Covari-
ances that spanned the viral coding potential were common in all viruses. In all cases, the covariances formed a single network
that contained essentially all of the covariances. The hepatitis C virus networks had hub-and-spoke topologies, but all other net-
works had random topologies with an unusually large number of highly connected nodes. These results indicate that genome-
wide networks of genetic associations and the coordinated evolution they imply are very common in viral genomes, that the net-
works rarely have the hub-and-spoke topology that dominates other biological networks, and that network topologies can vary
substantially even within a given viral group. Five examples with hepatitis B virus and poliovirus are presented to illustrate how
covariance network analysis can lead to inferences about viral biology.

Viral genomes are usually small, and as a group, they are struc-
turally very diverse. This places significant constraints on viral

genetic coding patterns and leads to the variety of gene expression
strategies and replication mechanisms that are summarized by
Baltimore’s seminal viral classification system (4). These con-
straints affect the selection pressures on viral genomes, often in
ways not normally encountered by the genomes of cellular organ-
isms. Although the effects of complex selective processes, such as
epistasis and pleiotropy, on viral intragenomic interactions are
partially understood in theoretical terms (24, 33, 37), observation
of their effects on a genome-wide scale has proven difficult.

The multiple-sequence alignments that underlie most genetic
analyses assume that each position in an alignment is independent
of all others, and hence, the alignments are blind to intragenomic
dependencies. Such dependencies are clearly of major biological
importance, because folding of proteins and RNAs brings distant
residues into close proximity, so there is more information in
sequence sets than standard analytical methods reveal. One
method to find long-distance genetic interactions is to identify
covariances among a collection of related sequences. Covariance is
present when the identity of a residue at one position in a sequence
is at least partially dependent upon the identity of the residue at
another position. Covariance has been widely used to evaluate
RNA structure (27, 34, 36, 46, 69, 73) and less extensively to probe
intraprotein interactions (26, 42, 53). We and others recently ap-
plied it to the full amino acid coding potential of the hepatitis C
virus (HCV) genome (3, 11, 41). This genome-wide approach
identifies covariances resulting from all possible causes, including
selective pressures, such as interresidue contacts within a protein,
allostery, interprotein interactions, genetic epistasis, and chance
associations due to bottlenecks in the viral lineages.

HCV is a small enveloped hepatotropic flavivirus with an
�9,600-nucleotide (nt) positive-polarity single-stranded RNA

genome that causes hepatitis, cirrhosis, and liver cancer (43).
HCV has 6 genotypes whose sequences differ from each other by
�28% and multiple subtypes per genotype. Individual isolates of
a given viral subtype differ from each other by �5 to 8% (68). Two
independent genome-wide covariance analyses of HCV’s com-
plete coding potential revealed that about 10% of HCV’s amino
acid positions covary with one or more other positions, that co-
variances occur both within and between viral proteins, and that
the covariances linked together into a single genome-wide hub-
and-spoke network of interactions (3, 11). In these networks, the
“nodes” are the covarying amino acid positions and the “edges”
are the covariances between the positions. The hub-and-spoke
network topology indicates that most nodes covary with only a
few other nodes, but a few “hub” nodes covary with very many
nodes (51).

To help evaluate the pressures that led to the development of
the HCV covariance networks, we mapped all 273 genotype HCV
intraprotein covarying pairs within the available crystal structures
for the viral NS2, NS3, NS5A, and NS5B proteins (3). The vast
majority of the pairs (255/273) were found on solvent-accessible
surfaces of the proteins, and the residues in only one pair were
close enough (�7.5 Å between the closest atoms) to directly bind
to each other. This indicates that the intraprotein covariant pairs
were due to either long-range functional interactions (allostery or
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epistasis) or chance associations. Campo et al. (11) employed a
different covariance algorithm with HCV 1b sequences and found
a network of covariances extending throughout the viral genome,
similar to the networks we identified. They explicitly addressed the
evolutionary implications of the networks and concluded that the
network formed by coordinate evolution of multiple residue po-
sitions (11). Overall, the observations that the large majority of the
covarying positions are on the surfaces of the proteins and that
they usually involve residues on different proteins support the
hypothesis that they often represent compensatory adaptations
within multiprotein complexes or other forms of genetic epis-
tasis.

Our HCV covariance network analyses (3) were conducted
using viral sequences from patients in the Virahep-C study (15,
21) for whom the outcome of alpha-interferon-based antiviral
therapy was known. The covariance networks formed by se-
quences from responders to therapy differed from those formed
by the nonresponder sequences both in their in connection pat-
terns and in network characteristics, such as the density of the
connections among the covariant positions. Similar conclusions
were reached by Lara et al. (41) using the pre- and posttherapy
Virahep-C HCV sequences that we generated (12). Lara et al. de-
veloped two Bayesian network models that could distinguish pri-
mary nonresponse to therapy from partial response or relapse
with �85% accuracy (41). These associations of covariance net-
work patterns with a medically relevant phenotype imply that pat-
terns in the covariance networks could be used as biomarkers for
complex phenotypes if methods to recognize the network config-
uration present in a given viral sequence can be developed.

Here, we extended these covariance analyses to ask (i) whether
amino acid covariance networks are present in diverse viral fam-
ilies using primary field isolates whenever possible and (ii) if net-
works are present, what they may imply about viral biology.

MATERIALS AND METHODS
Sequence acquisition and curation. Sequences for all viruses examined
were obtained from the NIAID Virus Pathogen Resource Database and
Analysis Resource (http://www.viprbrc.org). Sequences from naturally
occurring isolates were used whenever possible by eliminating strains
identified as laboratory adapted or vaccine derived in the GenBank re-
cord. If a subset of the total number of acceptable sequences was used, the
sequences were randomly selected. All sequences were confirmed to be
independent either by reciprocal BLASTP analysis or by importing the
alignment into ToPali and using the summary information function (47).

All sequences in these analyses must be colinear to maintain a consis-
tent numbering system, so infrequent insertions were manually deleted.
The first open reading frame (ORF) in the hepatitis E virus (HEV) se-
quences contains a polyproline stretch of �52 amino acids (57, 58) that
failed to align and hence was removed from the covariance analyses. The
first 240 residues of the Crimean-Congo hemorrhagic fever virus (CCHV)
M segment contains a stretch of variable, mucin-like repeats that failed to
align (19), so this repetitive sequence was removed. All alignments were
analyzed in ToPali, and neighbor-joining phylogenetic trees were gener-
ated (F84/WAG�G with 30 bootstrap runs). The accession numbers for
all sequences are listed in Table S1 in the supplemental material, and the
phylogenetic trees are shown in Fig. S1q to ag in the supplemental mate-
rial.

Sequence alignments and covariance identification. Alignments for
use in the covariance algorithm were generated using MUSCLE and ex-
ported in msf format (23). Covariant positions in the sequence alignments
were identified by applying the observed-minus-expected-squared
(OMES) approach to all possible pairs of amino acid positions using our

previously described methods (3). To identify the covarying pairs, we
calculated for every possible pair of columns i and j a score S using ob-
served and expected pairs:

S �

�
1

L

�Nobs � Nexp�2

Nvalid

where L is the number of observed pairs and Nobs is the number of occur-
rences for a pair of residues. The expected number for the pair is given by
the following equation:

Nexp �
CxiCyj

Nvalid

where Nvalid is the number of sequences in the alignment that are nongap
residues, Cxi is the observed number of residues x at position i, and Cyj is
the observed number of residues y at position j. The expected number of
column pairs calculated in this manner provides a null model for com-
parisons of the observed pairs.

To determine the cutoff score for S to be used for each alignment, the
number of covarying pairs was plotted over a range of scores. This curve
was compared to a similar curve generated from alignments of sequences
in which the residues at positions of variance were shuffled, and the score
cutoff at which the number of covarying pairs in the shuffled alignment
was �1% of the number of covarying pairs in the unshuffled alignment
was used to define the covariances. All covariances are listed in Table S2 in
the supplemental material.

Network analysis. Networks were generated from the covariance lists
as previously described (3). The covariance scores were converted to a
simple interaction file (SIF) format at the chosen OMES score cutoff using
a Python script. Network views were generated using Cytoscape (67), and
basic topological parameters were determined using the Cytoscape
plug-in Network Analyzer (2).

Structural mapping and evaluation of selective pressures. Positions
of covariance were plotted using the PyMol Molecular Graphics System
version 1.3 on the dengue virus (DV) env (Protein Data Bank [PDB]
1TG8), NS3 helicase (PDB 2BMF), and NS5 (PDB 2P3L) proteins; the
poliovirus type 1 (PV1) capsid (PDB 1HXS), 3C protease (PDB 1L1N),
and 3D RNA polymerase (PDB 1RA6) proteins; and the reverse transcrip-
tase domain molecular model (17) of the hepatitis B virus polymerase.
Selective pressures on codons in selected viral genomes were evaluated
using the single-likelihood ancestor-counting method (56) with the
HKY85 nucleotide substitution bias model as implemented at the Data-
Monkey website (http://www.datamonkey.org).

RESULTS
Standardization of the covariance definition. To establish a con-
sistent definition of covariance applicable to the wide range of
viruses in Table 1, we identified the number of covariances that
would occur by chance in a given alignment of sequences and then
used this pattern to define the covariance score cutoff at which the
number of chance covariances was �1% of the total number of
covariances in the alignment.

To establish the number of random covariances expected in an
alignment of a given set of sequences, we extracted the amino acids
at the variable positions in the alignment, shuffled the order of the
extracted residues, and reinserted them into their source sequence
at positions of variance. The shuffled sequences were forced into a
colinear alignment with the original alignment, covariance scores
were calculated for all possible amino acid pairs, and the numbers
of covarying pairs at increasing score cutoff values were plotted.
Figure 1 shows these plots for alignments of 300 HCV subtype 1a
and 1b sequences and their shuffled controls. Shuffling the vari-
able positions would be predicted to disrupt high-scoring, biolog-
ically relevant covariances and to increase the number of low-
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scoring pairs that occurred by chance. As predicted, very many
covariances were detected in the shuffled alignments at low scores,
and the number of covarying pairs dropped rapidly within the
score cutoff range of 0.7 to 0.9. Many fewer covariances were
found in alignments of natural sequences at low cutoff scores, but
there were many more high-scoring pairs than in the shuffled
alignments. At a covariance score of 1.0, the number of covarying
pairs in the alignments of HCV 1a and 1b shuffled sequences was
�1% of the number of covariances for the corresponding un-
shuffled alignments, yielding a false-discovery rate of �1%. This
procedure was used to define the covariances in all subsequent
alignments, and in all cases, a score cutoff of approximately 1.0
was used.

HCV covariance networks. The presence of networks among
the covariances in alignments of the 300 randomly selected HCV
1a and 1b sequences was assessed using Cytoscape, as we had pre-
viously done for the Virahep-C HCV sequences (3). About 10% of
the residue positions in the new alignments covaried with one or
more other positions, with high average covariance scores for the
1a network (S � 4.9 compared to a cutoff value of 1.0) and mod-
erate average scores for 1b (S � 2.3) (Table 2). Phylogenetic anal-
ysis revealed no deep splits in the tree structure for these sequences
that would be expected to skew the covariance calculations (Fig.
2A; see Fig. S1q in the supplemental material).

The covariance sets each formed a single network that con-
tained �99% of the covariances (Fig. 2B; see Fig. S1a in the sup-
plemental material). The network extended throughout the viral
coding region, with similar numbers of covarying positions in the
structural and nonstructural genes. The networks had relatively
low density, relatively high heterogeneity, and short characteristic
path lengths (Table 2; definitions of the metrics are in references
14 and 20). The majority of the nodes (covarying positions) in
these networks overlapped with the nodes in the previously de-
scribed Virahep-C networks, but the overlap in the edges (cova-
rying pairs) was smaller (Fig. 2C). This was expected, because the
larger number of sequences increased the detection power for co-
variances, whereas the number of covarying positions remained
relatively constant because the number of positions at which vari-
ance (and hence potential covariance) exists is limited. The degree
(number of edges per node) distribution plot for the HCV subtype
1a and 1b networks followed the inverse-power law (Fig. 2D; see
Fig. S1a in the supplemental material), where the probability that
any node has k edges is given by the following equation: P(k) � ��
log(k) (1, 5). The � value was 0.40 for subtype 1a and 0.59 for 1b
(Table 2), indicating that both networks had hub-and-spoke to-
pologies in which there were no discrete subdomains.

FIG 1 Effect of increasing the covariance cutoff score on the number of cova-
riances for alignments of natural and scrambled HCV sequences.
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We also asked if a genotype 1 level HCV network could be
identified by combining the 300 HCV subtype 1a and 300 1b se-
quences into a single alignment. The deep phylogenetic split in the
alignment led the OMES algorithm to identify all subtype-specific
differences as covariances, resulting in �90,000 covarying pairs.
Therefore, the OMES method is inappropriate for sequence sets
with deep phylogenetic divisions. Consequently, subsequent ana-
lyses employed sequences selected from the lowest possible taxo-
nomic division of the respective viral groups, and the phylogenetic
trees were inspected to ensure that they lacked deep divisions. This
led to pairwise identities among the various viral groups that were
comparable to the pairwise identities in HCV subtypes 1a and 1b,
where the OMES algorithm previously performed acceptably
(Table 1).

Effect of sequence number on the covariance networks. Our
previous network analyses for HCV employed 16, 32, or 47
Virahep-C sequences each for subtypes 1a and 1b (reference 3 and
unpublished data). To determine how this small number of se-
quences may have affected the networks, we compared parameters
for networks generated with increasing numbers of HCV 1a se-
quences.

Overall, the network formed from 300 HCV 1a sequences
was very similar to the networks formed from 16, 32, 47, or 100
randomly selected sequences as measured by key network met-
rics, including formation of a single network, density, hetero-
geneity, centralization, average clustering coefficient, charac-
teristic path length, � value, and topology (Table 3). These
characteristics were also shared by the network formed from an
alignment of 300 non-Virahep-C subtype 1b sequences (Table
2). Therefore, the basic network characteristics were identified
from rather small sequence sets, and the major effect of in-
creasing the number of sequences from 16 to 300 was to obtain
greater sensitivity in identifying covariances, with a concomi-
tant increase in the average connectivity and density. Conse-
quently, for the remaining analyses, we employed 100 ran-
domly selected sequences if more than 100 were available or all
sequences if fewer than 100 were available. The caveats to this
approach are that the sequences must be representative of the
viral genomes in circulation (which is unknown in most cases)
and that greater confidence should be placed in metrics for
networks derived from larger data sets.

Evaluation of the possibility that the networks may be com-
putational artifacts. The possibility that the covariance networks
may have been artifacts of our computational approach was eval-
uated in two ways. First, we graphed the 807 nodes and 543 edges
in the shuffled control alignment of 300 HCV 1a sequences at a
covariance cutoff value of 0.9 (Fig. 3A). The largest network
formed by these irrelevant covariances contained only 22 nodes.
Furthermore, the overall density of this set of irrelevant networks
was 0.001, and their average connectivity was 1.3, compared to a
density of 0.21 and average connectivity of 49.6 for the intact
network formed from the natural sequences. Similar results were
obtained when biologically irrelevant covariances from align-
ments of randomized sequences for other viruses were graphed
(data not shown). Second, we generated 3,199 random associa-
tions among the 994 variable positions in the HCV 1a alignments
of 100 sequences to mimic the number of covariances in an align-
ment of 100 HCV 1a sequences. These pairings created an intact
network that looked superficially like the natural networks (Fig.
3B), but the network metrics revealed it to be fundamentally dif-
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ferent. The degree plot formed a smooth arc rather than a de-
scending line, and it had many more nodes (994 versus 195) and
much lower connectivity (6.4 versus 32.8), density (0.006 versus
0.17), centralization (0.009 versus 0.39), and average clustering
coefficient (0.007 versus 0.59) than the natural network. We also
created 208 random associations of residues among the variable
positions in the HEV alignment to mimic the number of covari-

ances in the HEV network (Fig. 3C) (see below). This random
covariance set failed to form a network. Therefore, formation of a
single network containing the vast majority of the covariances in
the viral genomes as observed for all viruses examined here was
not an artifact of chance.

Levels of information revealed by covariance analyses. This
example with HCV shows the three levels of increasing complexity

FIG 2 Covariance network for the set of 300 hepatitis C virus 1a sequences. (A) Phylogenetic tree for the HCV 1a sequences. (B) Network graph. The circles
represent the amino acid positions (nodes), and the lines (edges) between the nodes represent covariances. The sizes of the nodes are proportional to the number
of edges they contact. (C) Comparison of the numbers of edges and nodes in the original HCV covariance networks generated from 47 HCV subtype 1a sequences
(VHCorfs) and in the new networks generated from 300 1a sequences (300orfs). (D) Degree distribution plot fitted to the power law for the network in panel B.
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in covariance network analyses. The first level addresses the pair-
wise interactions (covariances), including their number and
strength (S value). For HCV, about 10% of the positions covaried
with relatively high S values that are indicative of relatively strong
genetic linkages (typically, an S value of 2 to 5 compared to a cutoff
of 1.0 for a �1% false-discovery rate). The second level of com-
plexity is the network connectivity, characterized by whether the
covariances link together into a network, the number of indepen-
dent networks formed, and the density of the network connec-
tions. For HCV, this is characterized by the presence of a single
network with a modest density. The highest level of complexity is
network topology, which describes patterns among the connec-
tions within a network and is most easily discerned from the de-
gree distribution plot. For HCV, the topology was nonhierarchical
hub and spoke, implying that residues found at the most highly
connected nodes have a very strong influence on the identities of
residues at the less connected nodes. Although hub-and-spoke
networks strongly predominate in biology (6, 51), other topolo-
gies, such as linear, star shaped, and random, are possible. Each of
these topologies has its own implications about how the compo-
nents of the network interact.

Covariances in other flaviviruses. We expanded our assess-
ment of viral covariance networks to three other members of the
family Flaviviridae. GB virus C (GBV-C) is a parenterally trans-
mitted lymphotropic virus that is moderately related to HCV (60).
Dengue virus (DV) and West Nile virus (WNV) (28) are insect-
vectored flaviviruses distantly related to HCV. Full-genome se-
quences (GBV-C, n � 27; DV type 2 [DV2], n � 100; and WNV,
n � 64) were downloaded and confirmed to be independent. The
amino acid sequences for each sequence set were aligned, covari-
ances were identified at a false-discovery rate of �1%, and the
presence of networks among the covariances was evaluated as de-
scribed above.

The number of covarying positions in the alignments for these
three viruses ranged from 26 (0.75% of the positions) in WNV to
82 (2.9% of the positions) in GBV-C (Table 2). This was primarily
due to differences in the average pairwise identity in the align-
ments, with an R2 value of 0.93 for the inverse linear relationship
between the number of nodes and percent identity. The average
covariance scores for GBV-C, DV2, and WNV were 1.9, 4.0, and
2.9, respectively, due in part to the increasing sensitivity associated
with larger sequence sets.

We mapped the covarying pairs for DV2 onto all available pro-
tein crystal structures for the virus. Ten covariant positions were
within the env structure, eight were in the NS3 helicase structure,
and two were in the NS5 structure. All of these positions covaried
with other positions in the same protein and also with positions in

other proteins. Similar to what we previously reported for HCV
subtypes 1a and 1b (3), all of these covariant positions were on
solvent-accessible surfaces of the proteins, and none of the resi-
dues in intraprotein pairs were close enough to bind directly to
each other.

Like HCV, each of the other flavivirus covariance sets formed a
single genome-wide network containing essentially all of the co-
variances, with many positions from both the structural and non-
structural genes (see Fig. S1f to h in the supplemental material).
All three of these networks were denser than the HCV networks
(Table 2). Unlike the HCV networks, the degree distribution plot
of these networks revealed a large proportion of highly connected
nodes. Consequently, these plots did not follow the power law,
and the networks were less heterogeneous than the HCV networks
(Table 2; see Fig. S1f to h in the supplemental material). This
indicates that the networks formed by GBV-C, DV2, and WNV
had random topologies in which there were no discernible pat-
terns among the node connections rather than the hub-and-spoke
topology of the HCV networks.

Therefore, genome-wide covariance networks are widespread
in the Flaviviridae, with the size of the network being affected by
the average genetic distance among the viral sequences. However,
network topology was not conserved among the flaviviruses.

Covariances in other single-stranded positive-polarity RNA
viruses. Networks were evaluated in four additional single-
stranded positive-polarity RNA viruses, three with unsegmented
genomes (hepatitis A virus [HAV], PV1, and HEV), and one with
a tripartite segmented genome (CCHV) (Table 1). HAV (30) is a
picornavirus for which we were able to analyze 33 independent
genomes. PV1 (54, 59) is a picornavirus for which 63 full-ORF
sequences were identified. Unlike those of the other viruses, all of
the PV1 sequences were descended from the vaccine strains rather
than primary field isolates. HEV (25) is a hepevirus for which 41
genomes could be analyzed, and CCHV is a bunyavirus (62) for
which 24 independent genomes could be assessed.

Thirty-seven residue positions that covaried with one or more
other positions were identified for HAV (1.75% of the positions),
99 covariant positions were found for PV1 (4.5% of the positions),
50 covariant positions were found for HEV (2.1% of the posi-
tions), and 432 positions covaried in CCHV (7.4% of the posi-
tions) (Table 2). The mean covariance scores for PV1, HAV, and
HEV were moderate (S � 2.6, 3.0, and 2.0, respectively), but they
were weak for CCHV (S � 1.5). Again, the percentage of the ge-
nome that was covariant was inversely proportional to the mean
pairwise identity in the alignments, and the modest average cova-
riance scores for HAV, HEV, and CCHV were partially due to the
relatively small number of sequences available.

TABLE 3 Network characteristics for HCV subtype 1a alignments of various sizes

Alignment
sizea

No. of
residue
positions
(nodes)

No. of
covarying
pairs
(edges)

Avg
covariance
score

Avg
connectivity Density Heterogeneity Centralization

Avg
clustering
coefficient

Characteristic
path length

Power law
coefficient Topology

16 109 712 1.4 13.1 0.12 1.05 0.30 0.46 2.5 0.56 Hub and spoke
32 152 1,206 1.8 15.9 0.11 1.15 0.30 0.41 2.9 0.67 Hub and spoke
47 171 1,416 1.7 16.6 0.10 1.11 0.27 0.38 2.7 0.70 Hub and spoke
100 195 3,199 3.0 32.8 0.17 1.01 0.39 0.59 2.2 0.42 Hub and spoke
300 251 6,226 4.9 49.6 0.21 0.94 0.37 0.64 2.2 0.40 Hub and spoke
a Number of sequences.
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The 51 positions forming 254 covariances within the VP1,
VP2, VP3, VP4, 3C, and 3D proteins of PV1 were mapped onto the
available crystal structures. All of these positions covaried with
positions both in the same protein and in other proteins. Similar
to what we found for HCV (3) and DV2, all of these covariant
positions were on solvent-accessible surfaces of the proteins.
Thirty-five of 254 covariances (13.8%) of the residues in intrapro-
tein pairs were close enough to potentially bind directly to each
other (�16 Å between �-carbon atoms). The availability of the
full PV1 capsid structure (29) allowed us to evaluate the higher-
order organization of covariant residues in the VP1 to -4 proteins.
There were 217 covariances between 29 residues within or be-
tween the capsid proteins, for which we could evaluate 1,953 pos-
sible intra- or intercapsomere interactions. Twenty-three of the 29
covariant positions, representing 25 out of 217 covariances
(11.5%), were close enough to possibly touch their covariant part-
ner in at least one of their potential intracapsid interactions. Nine
of these covariances were between different capsid proteins. Eigh-
teen of them were between residues within the same capsomere,
five crossed the 3-fold axis of symmetry, and two crossed the
5-fold axis of symmetry. These 25 covariances formed five subnet-
works, four of which overlapped the receptor binding site on the
capsid (7).

The covariances for HAV, PV1, HEV, and CCHV each formed
a single network that contained all or nearly all of the covariant
positions and included residues from both the structural and non-
structural regions of the genomes (Fig. 4; see Fig. S1i to k in the
supplemental material). The HAV and PV1 networks were rela-
tively dense, but the HEV and CCHV networks had low densities
(Table 2). All four degree distribution plots failed to follow the
power law due to a large number of highly connected nodes, lead-
ing to random network topologies. The CCHV network had clear
subnetworks that were largely coincident with the genomic seg-
ments (Fig. 4). Therefore, all positive-polarity single-stranded
RNA viruses examined had extensive networks of intragenomic
genetic dependencies extending through their structural and non-
structural genes.

Covariances in single-stranded negative-polarity RNA vi-
ruses. Three negative-polarity single-stranded RNA viruses were
examined next, two unsegmented (rabies virus [RV] and hepatitis
delta virus [HDV]) and one segmented (influenza A virus [IV-A])
(Table 1). RV is a rhabdovirus (18, 45) for which we were able to
examine 26 genomes from independent field isolates, and HDV
(71) is an unassigned viroid-like satellite virus for which 75 geno-
type 1 genomes could be assessed. IV-A is an orthomyxovirus (74)
that shows substantial time-dependent genetic variation, as vari-
ants are replaced on an annual basis. Preliminary analyses of the
available IV-A sequences revealed deep phylogenetic splits, the
latest of which corresponded to sequences collected before 2005,
and covariance analyses using the entire data set revealed patterns
dominated by the time-dependent phylogenetic divides. Conse-
quently, we restricted our analysis to 32 sequences from samples
collected at geographically diverse sites between 2005 and 2009
plus 1 sample collected in 2003 that clustered with the later se-
quences.

FIG 3 Randomly associating residue positions does not generate networks
similar to the viral covariance networks. (A) Networks generated from cova-
riances in a control hepatitis C virus alignment of 300 sequences in which
residues at positions of variance were scrambled. (B) Network and degree
distribution plot generated from 3,199 randomly linked positions to mimic the

number of edges in the alignment of 100 HCV 1a sequences. (C) Network and
degree distribution plot generated from 208 randomly linked positions to
mimic the number of edges in the alignment of 41 HEV sequences.
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The RV alignments had 166 covariant positions (6.2% of the
coding positions); 37 covariant positions were found for HDV
(19% of the positions), and 50 were found for IV-A (1.1% of the
positions). The mean covariance scores were moderate for IV-A
and weak for RV and HDV (S � 2.6, 1.7, and 1.6, respectively)
(Table 2). As before, an inverse relationship was observed between
the average pairwise identity in the alignments and the proportion
of the viral positions that were covariant. Again, each of the cova-
riance sets formed a single genome-wide network that contained
essentially all of the covariant positions (Fig. 5; see Fig. S1l to m in
the supplemental material). As with the other viruses, the net-
works contained many positions from both the structural and
nonstructural genes (HDV encodes a single protein that functions
both in RNA replication and as a virion component). The IV-A
networks had a high density, whereas the RV and HDV networks
had relatively low densities (Table 2). The degree distribution
plots for these three networks did not follow the power law. The
low number of nodes in the HDV network made unambiguous

characterization of its topology difficult, but it appeared to be
random. The RV and IV-A networks both had random topologies,
and the IV-A network had weakly defined subnetworks (Table 2
and Fig. 5; see Fig. S1l in the supplemental material).

Therefore, covariance networks in negative-polarity virus ge-
nomes resembled the networks in most of the positive-polarity
RNA viruses in that each network was genome-wide, included
essentially all covariances in a single network, and had a random
topology. The subnetworks in the IV-A network were less distinct
than the subnetworks formed by the other segmented virus we
examined (CCHV), and they were not coincident with the viral
genetic segments. Therefore, although segmentation of a viral ge-
nome may influence the intragenomic genetic associations re-
flected in the networks, it is not necessarily a dominant factor.

Covariances in a single-stranded mixed-polarity DNA virus.
Parvovirus B19 (65) has a small single-stranded DNA genome in
which the plus- or minus-polarity strand can be packaged into
virions (Table 1). We identified 20 independent sequences for
which covariance analyses could be conducted. The 485 covari-
ances between 45 nodes in these alignments had a low average
covariance score of 1.5 and formed a single network comprised of
3.1% of the 1,452 viral amino acids. The network contained many
covarying residues from both the structural and nonstructural
genes, and it had a high density (Table 2; see Fig. S1n in the sup-
plemental material). The degree distribution plot did not follow
the power law, again due to a large proportion of highly connected
nodes leading to a random network topology. Overall, the net-
work parameters for the B19 network were similar to the param-
eters observed for the majority of the RNA viruses we examined,
including average connectivity, density heterogeneity, clustering
coefficient, characteristic path length, and topology (Table 2).

This indicates that covariance networks can exist in DNA vi-
ruses if they have sufficient genetic diversity, and hence, genome-
wide amino acid covariance networks are not solely a property of
RNA viruses.

Covariances in a partially double-stranded DNA virus. Fi-
nally, we examined hepatitis B virus (HBV) (63) because it is a
partially double-stranded DNA virus with adequate genetic diver-
sity (38, 39). Furthermore, over half of its genome encodes two
proteins simultaneously in overlapping frames (Fig. 6A), and this
unusual genetic organization may have impacted its intragenomic
genetic interactions.

One hundred independent sequences each were obtained for
HBV genotypes B, C, and D (Table 1); amino acid sequences were
extracted from their overlapping genomic positions; and the se-
quences were aligned. Covariances within the alignments were
identified at a �1% false-discovery rate, pseudocovariances stem-
ming from variation at a single nucleotide affecting overlapping
codons were manually eliminated, and the presence of covariance
networks was assessed as usual.

About 5% of the HBV amino acid positions covaried with one
or more other positions at moderate to high average covariance
scores (S � 2.3 to 4.7) (Table 2), consistent with the inverse rela-
tionship between mean pairwise identity in the sequences and the
proportion of covarying positions in the viral coding capacity ob-
served with the other viruses. Approximately half of the HBV co-
variances were intergenic (Table 4). The large majority (83 to
92%) of the covariances involved the viral polymerase, which ac-
counts for about half of the viral coding potential. Covariances
were overrepresented in the spacer domain of the polymerase and

FIG 4 Covariance network for the Crimean-Congo hemorrhagic fever virus.
(A) Network graph. The node color indicates the viral genomic segment, and
the node sizes are proportional to the number of edges contacting each node.
(B) Degree distribution plot for the network.
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in the pre-S1 region of the largest surface protein (Table 4), but
these overrepresentations disappeared when the number of cova-
riances was normalized to either the sum of Shannon’s entropy or
the number of variant positions for each genetic region (data not
shown). This indicates that the location of the covarying positions
was affected by the pattern of amino acid variation in the genome.
The exception to this pattern was that covariances were markedly
underrepresented in the core (capsid) gene even after normalizing
to entropy (especially for genotypes B and C [Table 4]), implying
that the core has fewer genetic associations than the other genes.

Each of the three HBV covariance sets formed a single network
with high density that contained essentially all the covariances
(Fig. 6B; see Fig. S1o to p in the supplemental material). The
degree distribution plots for these networks failed to fit the power
law (Fig. 6C), again due to a large number of highly connected
nodes, leading to a random topology (Table 2). As with the other
DNA virus we examined (B19), the HBV network metrics were
comparable to the metrics for the majority of RNA viruses. This
reinforces the concept that genome-wide covariance networks are
a common feature of viral genomes, regardless of their physical
structure.

Evaluation of selection and random association in formation
of the networks. Intact, genome-wide covariance networks were
found in all 16 viruses examined. Two basic processes could have
produced these networks: coordinate selection of functionally
compatible residue sets and/or bottlenecks that randomly associ-
ated pairs of residues at variable positions in a parental viral pop-
ulation. We evaluated the possible roles for these processes in two
ways.

First, generating the covariance networks through a bottleneck
would result in deep splits in the phylogenetic trees consistent
with ancestry from a few subpopulations of the virus. The phylo-
genetic trees reveal no evidence for such splits, although shallow

or internal splits were common, as would be expected among a
collection of independent viral isolates (Fig. 2A; see Fig. S1q to ag
in the supplemental material). Mapping the identities of the most
highly connected nodes and highest-scoring covariant pairs onto
the phylogenetic trees for HEV and HDV also failed to support a
simple bottleneck model. In both cases, segregation of the node/
edge identity could be seen with internal splits in the tree, but the
segregation patterns were not uniform among the covariance and
node sets for a given virus. The number of concordant covariance
patterns in the trees implied that if bottlenecking had generated
the covariances, then the effective population size of the bottle-
neck must have been �3 to 6. Therefore, we tested the effect of
generating covariances from 100 HCV 1a sequences derived from
an effective population size of four with the assumption of equal
fitness for each variant. Just as we observed when we tried to gen-
erate networks by combining the subtype 1a and 1b sequences, the
deep divisions in the phylogenetic tree in these test sets led to
�40,000 covariances rather than the 3,199 seen with the natural
HCV sequences. These covariances were not graphed as a network
because they would saturate the connections between the variant
positions. Similar results were obtained when we modeled a bot-
tleneck for HEV. These covariances formed a network that was
larger than the natural network (3,702 covariances between 123
positions compared to 208 covariances and 50 positions) and was
much denser than the natural network (average connectivity, 60.5
versus 8.3). Furthermore, the degree plot for the bottleneck net-
work revealed a single sharp peak centered on 60 connections
rather than the random scattering found for the natural network.
Therefore, we were unable to mimic natural covariance networks
by modeling a simple bottleneck. This indicates that if the bulk of
the covariances resulted from unselected random association
through a bottleneck, then mutation must have subsequently ob-
scured �90% of them.

FIG 5 Covariance network for influenza virus A. (A) Network graph. The sizes of the nodes are proportional to the number of edges that they contact. The nodes
are color coded by segment, and the node numbers indicate the position in the concatenated gene alignments. See Table S2 in the supplemental material for a key
to the numbering of the various genes. (B) Degree distribution plot.

Donlin et al.

3058 jvi.asm.org Journal of Virology

http://jvi.asm.org


Second, generation of random covariances by bottleneck
events would randomly distribute the covariances among the vari-
able positions in the ancestral viral sequence pool. However, as
shown in Fig. 3, generation of networks from random associations
of residues at the variable positions in alignments of HCV and
HEV sequences either failed to generate a network or produced a
network that did not resemble the covariance network formed by
natural sequences.

Third, Campo et al. examined amino acid covariance in 114
HCV 1b sequences and independently found that the covariant
positions formed an extensive genome-wide hub-and-spoke net-
work (11). These researchers explicitly examined the role selective
pressures may have played in the origin of the network. They made
three observations: (i) positive selection dominated network po-

sitions with low connectivity, (ii) negative selection dominated in
the highly connected core region of the network, and (iii) �90%
of the neutrally selected positions in the network had direct con-
nections to positively and/or negatively selected sites. They con-
cluded that the HCV network arose by coordinated selection
among the variable sites. To determine if these observations may
apply to the viruses examined here, we assessed selection at net-
work positions for HCV 1a, HCV 1b, DV2, WNV, PV1, HEV,
HDV, and HBV genotype B. An average of 31% of the network
positions for these viruses had dN/dS ratios (normalized ratios of
nonsynonymous to synonymous evolutionary changes) consis-
tent with the residues being under selective pressures. Negative
selection (dN/dS � 1) strongly predominated in the viral genomes
as a whole, but seven of the eight genomes had codons with evi-
dence of positive selection (dN/dS � 1). In all seven of these vi-
ruses, positively selected codons were heavily overrepresented and
negatively selected positions were underrepresented in the net-
works compared to the genome as a whole (P � 0.001 for each
virus). For example, the networks contain less than 10% of the
residues in each genome, but 71/77 positively selected codons in
HCV 1a and 7/9 in HBV genotype B were in the networks. There-
fore, many of the residues in the networks are under selective
pressures, and these pressures differ from those on the genome as
a whole.

These analyses imply that selection was a major force in the
evolution of the networks and that founder events during the evo-
lution of HCV were not the primary cause of their development.
However, they do not exclude a role for associations generated
through bottlenecks during viral evolution. As these processes are
not mutually exclusive, it is likely that both contributed to some
extent to the covariances reported here.

DISCUSSION

We and others previously identified genome-wide networks of
covarying amino acids in HCV (3, 11). These networks were in-
terpreted to indicate that the viral genome evolved as a coordi-
nated unit and to imply the existence of many previously un-
known intra- and interprotein genetic dependencies. Here, we
asked whether similar covariance networks exist in other viral ge-
nomes, and if so, what the patterns among the covariances may
imply about the viruses’ biology. Four observations resulted from
this work.

(i) Genome-wide covariance networks exist in all viruses ex-
amined. Amino acid covariances were found in each of the 16 viral
genomes we examined from 13 species and nine viral families, and

TABLE 4 Distribution of covariances in the HBV genome

Parameter

Value for genotypea:

B C D

Intergenic 43 49 60
Involving Pb 92 89 83
Involving spacer region of P 44 58 42
Involving SAgsc 36 41 37
Involving pre-S1 region of the SAgs 19 23 11
Involving Cd 0.20 0.30 7.0
a Percentage of total covariances in the indicated genotype.
b P, polymerase.
c SAgs are the viral large, medium, and small surface antigen proteins.
d C, core (capsid).

FIG 6 Covariance network for hepatitis B virus genotype B. (A) HBV genetic
organization in its linear RNA phase. Cap, mRNA cap; pC, pre-C coding re-
gion that, together with the C sequences, encodes the HBeAg. C, core gene; TP,
terminal protein domain of the polymerase gene; Spacer, spacer domain of the
polymerase; RT, reverse transcriptase domain of the polymerase; RNaseH,
RNase H domain of the polymerase; pS1, the pre-S1 domain of the largest of
the three carboxy-coterminal surface proteins; pS2, the pre-S2 domain of sur-
face proteins; SAg, the smallest surface protein (HBsAg); X, X gene; An, poly-
adenyl tail. The X and pre-C regions overlap in the circular DNA phase. (B)
Network graph. The sizes of the nodes are proportional to the number of edges
they contact, and the node numbers indicate the positions in the concatenated
gene alignments (see Table S2 in the supplemental material). (C) Degree dis-
tribution plot.
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in every case, the vast majority of the covariances formed a single
genome-wide network of genetic associations. These viruses in-
cluded RNA and DNA viruses with a variety of genomic segmen-
tation patterns, genetic organizations, mean pairwise identities,
replication patterns, and transmission mechanisms (Table 1).
Control experiments with irrelevant covariances revealed that for-
mation of a single network containing most of the covariances was
not an artifact of chance (compare Fig. 2A and 3). Furthermore,
the natural networks could not be reproduced through modeling
experiments that mimicked a genetic bottleneck. In contrast, we
and others (11) found extensive evidence for selective pressures
acting on network positions. Therefore, the genome-wide covari-
ance networks are not computational artifacts, and it is likely that
selection played a major role in their evolution. The presence of
such networks in all viruses we examined indicates that the basic
implications of the covariance networks apply widely to viral ge-
nomes. These implications include the presence of selective pres-
sures acting coordinately on multiple regions of the genome, co-
ordinate evolution of at least parts of the genome, and widespread
genetic dependencies between structural and enzymatic/regula-
tory proteins.

(ii) Viral amino acid covariance networks usually have a ran-
dom topology rather than the hub-and-spoke topology found in
almost all other biological networks. The very large majority of
biological networks have a hub-and-spoke topology (6, 51). The
key implications of this topology are that the network grew by
addition of new nodes to the older nodes (accretion) (6, 10), that
the most highly connected nodes (hubs) are the most ancient in-
teractions in the network, and that the hubs exert a disproportion-
ately strong influence on the network. This implies that formation
of amino acid covariances at most positions in the networks was
influenced by preexisting genetic dependencies at the hub posi-
tions. It also indicates that the identities of residues at the hub
positions disproportionately affect permissible genetic variation
at a large number of other positions. Thus, genetic variation at a
given site in the network, for example, in an immunological
epitope, would be particularly sensitive to the identity of the hub
residue with which it is most strongly associated. This also implies
that the viral genomes with this topology must rarely undergo
molecular recombination, because recombination between two
independent genomes would tend to mix network configurations
and disrupt the accretion process that underlies the development
of a hub-and-spoke topology. HCV has a hub-and-spoke net-
work, and it has a low rate of molecular recombination (49) con-
sistent with this topology. However, low rates of molecular re-
combination can occur in viruses with a random network
topology (i.e., WNV [55]), and viruses with high recombination
rates can also have random network topologies (i.e., the parvovi-
ruses [66]). Therefore, differences in recombination rates are not
the sole reason why the HCV network has a hub-and-spoke topol-
ogy whereas the other viral networks do not.

In contrast, the key implications of a random network topol-
ogy are that the covariances did not develop by accretion and that
despite the large number of highly connected nodes, none of them
exert disproportionately large influences on the identities of resi-
dues at other sites in the network. Random networks could reflect
a collection of compensatory variations within a single highly in-
tegrated functional unit or they could result from the constraint of
a set of functionally independent compensatory adaptations on a
restricted number of sites. The strong correlation between the

mean pairwise identity in the sequence sets and the percentage of
the genome found in the networks (R2 � 0.88 for all viruses ex-
amined here) argues for a constraint model, as does the correla-
tion between the distribution of covariant positions in the HBV
genome and the distribution patterns of its variable positions.
However, the existing data are insufficient to resolve these models,
and the causes for the random topology are not necessarily the
same for all viruses. For example, it is plausible that the HDV
network is random because it occurs within a single protein,
whereas for HBV, it is plausible that the random network resulted
from the overlapping nature of its genes constraining the locations
where compensatory amino acid substitutions could occur.

(iii) Network topologies can vary within a given viral group.
Covariance patterns were examined in four species in the family
Flaviviridae (HCV, GBV-C, DV, and WNV), in two species within
the Picornaviridae (PV1 and HAV), and in multiple representa-
tives within two viral species (two HCV subtypes and three HBV
genotypes). This allowed a preliminary assessment of covariance
patterns among viruses at different taxonomic levels of a viral
group. Both HCV subtypes had hub-and-spoke topologies, and all
three HBV genotypes had random topologies. Although not
enough examples were examined for generalizations, this implies
that subdivisions of a given viral species may usually share a net-
work topology. Both picornaviruses had random network topol-
ogies, but the network topologies were not the same among the
flaviviruses. The HCV networks were hub-and-spoke, whereas the
networks for the other flaviviruses were random. Therefore, vi-
ruses with similar genomic structures and genomic replication
patterns do not necessarily have the same organization of their
intragenomic genetic associations.

(iv) Covariance network analysis can provide inferences re-
garding viral biology. The viral covariance patterns contain sub-
stantial information that is not accessible by other methods. Five
inferences that can be drawn from the HBV and PV1 covariance
patterns are presented as examples of the utility of genome-wide
covariance analyses.

The first inference is that the HBV core protein must be un-
usually structurally flexible to accommodate substantial sequence
variance without needing intra- or interprotein covariant com-
pensations. This inference is consistent with four other observa-
tions. First, core dimers form both T�3 capsids and T�4 capsids,
and the dimers pack in slightly different conformations in each
capsid isoform (9, 16, 22, 75). Second, the pre-S1 region of the
large viral surface glycoprotein contacts the capsid at the tips of
spikes formed by the core in multiple partially redundant interac-
tions (64), and the spikes are flexible. This structural plasticity
may help to insulate the spikes from allosteric changes in the rest
of the molecule. Third, the capsid particle appears to alter confor-
mation late during reverse transcription to trigger envelopment
(61). Fourth, core gene sequences encode both the core protein
and most of the HBV e antigen (HBeAg). HBeAg is a secreted
folding variant of the core protein that functions as an immuno-
modulator (72). The need for one primary amino acid sequence to
support two folding/assembly patterns may have helped limit the
development of covariances. This prediction can be tested by us-
ing biophysical methods to compare the molecular dynamics of
the core protein in its unassembled dimer form and in the capsid
compared to the capsid proteins of other viruses.

The second inference involves the spacer domain of the HBV
polymerase, for which no molecular function is known. The poly-
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merase (Fig. 6A) is a reverse transcriptase in which the spacer
appears to simply link the terminal protein domain to the catalyt-
ically active reverse transcriptase and RNase H domains (13, 52,
70). The large number of covariances in the spacer domain (Table
4), many of which are high scoring, implies that it is under coor-
dinate selective pressure with much of the rest of the genome. This
implies that the spacer domain has a function, even if it may only
be to accommodate conformational flexibility in the polymerase’s
interactions with other molecules.

The third inference is the prediction of interdomain coor-
dination sites in the HBV polymerase. No structural informa-
tion is available for the polymerase, but partially validated mo-
lecular models exist for the reverse transcriptase domain based
on the HIV reverse transcriptase (17, 40). To determine if co-
variances may provide guidance about the orientation and/or
interaction of the polymerase’s domains, we plotted the loca-
tions of residues in the reverse transcriptase domain that cova-
ried with residues in the terminal protein or RNase H domain.
The only clusters of positions that covaried with the terminal
protein that were common to all three genotypes were at the tip
of the “finger” region of the reverse transcriptase domain and
at the interface between the “palm” and “thumb” regions (Fig.
7 and data not shown). The same two regions also contained
the only clusters of covariances with the RNase H domain that
were common to all three genotypes. Therefore, these two re-
gions of the reverse transcriptase domain appear to play an
important role(s) in the overall coordination of the structure
and/or function of the polymerase. We speculate that they may
be sites of compensatory adaptations to support the conforma-

tional flexibility needed as the enzyme shifts from protein
priming (where the terminal protein occupies the reverse
transcriptase active site) to DNA elongation (where nucleic
acids are in the active site) and/or that they may be sites of
direct contact between the domains. The latter speculation is
the most plausible reason for the reverse transcrptase-RNase H
interdomain interface being at the tips of the fingers, because
the RNase H active site must be 50 to 60 Å from the DNA
polymerase active site (44), and binding of the RNase H do-
main at this site could provide the appropriate distance. The
polymerase has resisted crystallographic analyses, but this pre-
diction could be tested through hydrodynamic analyses or
cross-linking/mass spectrometry studies of polymerases carry-
ing mutations in the putative interdomain interface.

The fourth inference involves the interaction of PV1 with its
cellular receptor. Four of the five subnetworks formed by covari-
ant positions of capsid residues close enough for local contact had
residues within the receptor binding site (7). The largest of these
subnetworks included VP1 residues 32, 221, and 215 and VP2
residues 140, 141, 169, and 173 along the capsid’s 3-fold axis. The
clustering of closely spaced covariant positions within the recep-
tor binding sites implies that these variations may provide struc-
tural compensation to maintain the function of the receptor
binding site (second-site compensatory adaptations have been re-
ported for the PV capsid [50]). This prediction can be tested by
creating sets of disfavored residue pairs at network positions and
then creating secondary mutations that restore compatible amino
acid combinations. The prediction is that receptor binding and
viral infectivity would be impaired by the disfavored amino acid
permutations and that second-site restoration of compatible sets
of residues at the network positions would restore receptor bind-
ing and infectivity.

The final inference relates to HBV’s low evolutionary rate
(relative to HIV), which has been ascribed to the constraining
effects of the extensive overlap of HBV’s genes and cis-acting
genetic elements (48, 76). The very dense, genome-wide nature
of the HBV covariance network indicates that by constraining
evolution of the overlapping elements, the overlaps also con-
strain evolution at distant sites that covary with positions in the
overlaps. Therefore, one role of the networks is to help visualize
the effects that pleiotropy has on epistatic amino acid interac-
tions. Consequently, the long-distance genetic constraints re-
vealed by the covariance networks may help illustrate why
molecular-clock models for RNA virus evolution often appear
to give inaccurately short divergence times between viral lin-
eages (8, 31, 32, 35). Such long-distance interactions also have
implications for vaccine design in cases where sets of epitopes
with clear genetic interdependencies can be identified. Includ-
ing multiple variations of the target epitopes that encompass
the network-compatible configurations in a vaccine may re-
duce the rate of vaccine escape by limiting second-site adaptive
options available to the virus.

Concluding comment. The networks presented here illus-
trate that variable positions in sequence alignments carry sub-
stantial biological information when they are considered in
their native context. A few examples of how to access this in-
formation using covariance network analyses are presented,
but much remains to be done before this and similar ap-
proaches reach their potential.

FIG 7 Regions of the HBV reverse transcriptase domain that covary with both
the terminal protein and RNase H domains. Residues in the HBV polymerase
reverse transcriptase domain model that covary with terminal protein (top) or
RNase H (bottom) domain residues for HBV genotype D are in black. Regions
of the model in which covariance is found for all three genotypes with both the
terminal protein and RNase H domains are circled. The “thumb” region of the
model is at the upper left, and the “finger” region is at the upper right.
The darker gray is DNA modeled into the active-site groove.
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