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ABSTRACT
Background: There is significant histologic and biochemical over-
lap between nonalcoholic fatty liver disease (NAFLD) and steato-
hepatitis associated with choline deficiency.
Objective: We sought to determine whether subjects with biopsy-
proven NAFLD and evidence of an inadequate intake of choline had
more severe histologic features.
Design: We performed a cross-sectional analysis of 664 subjects
enrolled in the multicenter, prospective Nonalcoholic Steatohepati-
tis Clinical Research Network (NASH CRN) with baseline data on
diet composition (from a recall-based food-frequency question-
naire) within 6 mo of a liver biopsy. Food questionnaires were
analyzed with proprietary software to estimate daily intakes of cho-
line. Liver biopsies were centrally read, and consensus was scored
with the NASH CRN–developed scoring system. Because choline
needs vary by age, sex, and menopausal status, participants were
segregated into corresponding categories (children 9–13 y old,
males �14 y old, premenopausal women �19 y old, and postmen-
opausal women) on the basis of the Institute of Medicine’s defini-
tion of adequate intake (AI) for choline. Deficient intake was
defined as ,50% AI.
Results: Postmenopausal women with deficient choline intake had
worse fibrosis (P = 0.002) once factors associated with NAFLD
(age, race-ethnicity, obesity, elevated triglycerides, diabetes, alcohol
use, and steroid use) were considered in multiple ordinal logistic
regression models. Choline intake was not identified as a contributor
to disease severity in children, men, or premenopausal women.
Conclusion: Decreased choline intake is significantly associated
with increased fibrosis in postmenopausal women with NAFLD.
The Pioglitazone vs Vitamin E vs Placebo for Treatment of Non-
Diabetic Patients With Nonalcoholic Steatohepatitis trial was reg-
istered at clinicaltrials.gov as NCT00063622, and the Treatment
of Nonalcoholic Fatty Liver Disease in Children trial was registered
at clinicaltrials.gov as NCT00063635. Am J Clin Nutr 2012;
95:892–900.

INTRODUCTION

The spectrum of NAFLD4 includes NASH, which is an in-
flammatory process with accompanying hepatocellular necrosis
and subsequent fibrosis. NASH can progress to cirrhosis and
liver failure and is associated with an increased risk of de-
velopment of hepatocellular carcinoma (1–3). Current estimates
place the prevalence of NAFLD in the general US population at
1 in 3 people, whereas 1 in 20 people have NASH (2, 3). Pro-

gression to steatohepatitis is not imminent or absolute in all
patients with NAFLD. A second insult may be necessary for the
activation of proinflammatory pathways that results in the de-
velopment of a chronic inflammatory reaction in a liver rendered
vulnerable by the accumulation of fat (4–6).

In one animal model of steatohepatitis, rodents that consumed
a high-fat, methionine and choline–deficient diet developed
steatosis with inflammation and hepatic necrosis with the
eventual development of hepatocellular carcinoma. Some strains
of mice also manifest hepatic fibrosis. Hepatic fibrosis also de-
veloped in rodents that consumed a choline and B-12–deficient
diet as well as a choline-deficient diet alone, although histologic
changes developed more slowly. Although the liver histology of
rodents on a methionine and choline–deficient diet may be similar
to that with NASH, the overall phenotype of these mice is sig-
nificantly different because they tend to lose weight on this diet
and are not insulin resistant (7–12).
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Choline is a quaternary amine present in all mammalian tis-
sues. Foods high in choline include dairy, liver, eggs, legumes,
nuts, beef, leafy greens, seed oils, and grain germs (13). Choline
is an essential component of cell membranes and is required for
the synthesis of phospholipids. Choline is a precursor for the
neurotransmitter acetylcholine and serves as a methyl group
donor (14). Despite endogenous pathways for choline synthesis
(15), humans on a low-choline diet will develop choline de-
ficiency (16). Furthermore, humans on long-term parenteral
nutrition that lacks adequate choline will show a reversal of
hepatic steatosis and a decrease in serum aminotransferases with
choline supplementation. The pathologic changes return with the
cessation of choline supplementation (17, 18).

In addition to age- and sex-dependent differences in choline
requirements (14), there is also a differential susceptibility to
choline deficiency that is based on menopausal status. Pre-
menopausal women are less likely to develop hepatic steatosis or an
elevation of their aspartate aminotransferase or alanine amino-
transferase than either men or postmenopausal women (19). This
differential response has been hypothesized to arise from an es-
trogen-response element in the upstream region of the PEMT gene,
which is an enzyme in one of the choline biosynthetic pathways
(20). Genome-association studies have demonstrated susceptibility
to choline deficiency with single nucleotide polymorphisms in this
gene (20–22). It has also been shown that PEMT gene expression
and enzyme activity are inducible on estrogen exposure in mouse
and human hepatocytes (23).

Given the histologic overlap between choline deficiency–
associated steatohepatitis and NASH, we hypothesized that
individuals with a limited intake of choline may demonstrate
more severe histologic changes.

SUBJECTS AND METHODS

Subjects

Subjects were enrolled in one of following 3 studies of the
NASH CRN (24): 1) the NAFLD Database (observational co-
hort) (25), 2) the randomized, placebo control trial for Piogli-
tazone vs Vitamin E vs Placebo for Treatment of Non-Diabetic
Patients With Nonalcoholic Steatohepatitis (www.clinicaltrials.
gov; NCT00063622) (26, 27), and 3) the Treatment of Non-
alcoholic Fatty Liver Disease in Children (www.clinicaltrials.
gov; clinical trial number NCT00063635) (28, 29). See Table 1
under “Supplemental data” in the online issue for a summary of
patient selection and inclusion and exclusion criteria. The NASH
CRN consists of 8 clinical centers and a central data coordinating
center. Laboratory studies were drawn within 6 mo of screening,
and biopsies were obtained within 1 y of screening. Patients en-
rolled with baseline data on diet composition (detailed in “Dietary
intake” below) within 180 d of a liver biopsy were included.
Subjects with significant alcohol consumption (.20 g/d for
women and .30 g/d for men, either currently or for a period of
.3 consecutive months in the 5 y before screening) or who were
unable to reliably quantify alcohol intake were excluded.

Ethics

All study protocols were approved by the institutional review
boards of the participating centers. All participants provided
written informed consent and assent, if applicable.

Patient baseline data and histology

Baseline data regarding demographics, anthropometric
measures, and laboratory data were obtained as previously de-
scribed (30). Postmenopausal patients were self-identified as part
of the entry questionnaire. Liver biopsies were centrally read, and
consensus was scored with the NASH CRN scoring system (31).
Enrollment liver biopsies from patients enrolled in the Piogli-
tazone vs Vitamin E vs Placebo for Treatment of Non-Diabetic
Patients With Nonalcoholic Steatohepatitis and Treatment of
Nonalcoholic Fatty Liver Disease in Children trials were used
(pretreatment).

Dietary intake

Dietary data were collected with the Block Food Questionnaire
(adults) or Brief Food Questionnaire (children) (NutritionQuest)
(32–36), which are recall-based food inventories regarding eating
habits over the past year. The questionnaires were completed at
enrollment and analyzed with NutritionQuest proprietary soft-
ware (NutritionQuest) to provide daily intakes of choline and
betaine in milligrams per day. Choline and betaine contents of
specific foods that were used to score the food-frequency
questionnaire were obtained from the USDA Database for the
Choline Content of Common Foods, Release 2 (37). An addi-
tional analysis was performed to provide daily intake of calories,
carbohydrates, protein, fat, vitamin B-12, and folate.

Statistics

Participants were divided into categories corresponding to the
Institute of Medicine’s definition of AI for choline (Table 1).
Deficient intake was defined as intake less than one-half of the AI
(14) for each group as follows: children 9–13 y old (,188 mg/d),
males �14 y old (,275 mg/d), adolescent females 14–18 y old
(,200 mg/d), and women�19 y old (,212 mg/d). Children,9 y
old (n = 13) and adolescent females 14–18 y old (n = 18) were
excluded because of insufficient numbers. Because postmen-
opausal women are more likely to develop fatty liver with
choline deprivation (19), adult women were subdivided into
premenopausal and postmenopausal categories. For analyses,
patients were classified as Hispanic (any race), white (non-
Hispanic), or other. Correlations for measured variables were
calculated by Spearman’s rank correlation. P values were cal-
culated by using the Kruskal-Wallis test for categorical variables
and the t test for Spearman’s rank correlation for measured
variables. Multiple ordinal logistic regression models in which
known contributors to NAFLD and NASH were controlled for
were constructed to compare the calculated daily choline intake
to the steatosis grade and fibrosis stage. Steatosis was catego-
rized as ,34%, 34–66%, .66% of low- to medium-power

TABLE 1

Adequate intake for choline as defined in reference 141

Age Males Females

mg choline/d

9–13 y 375 375

14–18 y 550 400

�19 y 550 425

1 Table includes ages for subjects in the current study only.
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evaluation of parenchymal involvement by steatosis, consistent
with the NAFLD histology scoring system. Fibrosis was cate-
gorized into 4 groups on the basis of NAFLD histology scoring
as follows: stage 0; stages 1a, 1b, and 1c combined; stage 2; and
stages 3 and 4 combined. For children, age, race (white, His-
panic, or other), BMI z score, triglyceride concentration (split at
the median), Hb A1c (split at the median), daily caloric intake
(split at the median), and HOMA-IR .3.5 (mg · dL21 · lU ·
mL21 · 40521) (yes compared with no) were adjusted for in
regression analyses. For all other groups, age, race (white,
Hispanic, or other), BMI (in kg/m2), waist circumference (cm),
triglyceride concentration (split at the median), Hb A1c (split at
the median), daily caloric intake (split at the median), HOMA-
IR .3.5 (mg · dL21 · lU · mL21 · 40521) (yes compared with
no), alcohol use, and steroid use were adjusted for in regression
analyses. Total caloric intake was also adjusted for in both
models for decreased overall intake. The proportional odds as-
sumption for multiple ordinal logistic regression models was
assessed by using the score test. Because the score test showed
a violation of the assumption in one model, additional analyses
were conducted by using the Brant test to assess the proportional
odds for individual variables. The primary variable of interest
(ie, daily choline intake) was shown to meet the assumption.

Because choline deficiency may be unmasked in a folate-
sufficient/B-12–deficient state because of interactions between
the pathways for choline, vitamin B-12, and folate metabolism
(38, 39), reported B-12 and folate intakes calculated from the
dietary questionnaire were included as a separate variable in the

multiple logistic regression along with an interaction variable
between the included vitamins and choline. For postmenopausal
women, a second model with HRTadjusted for was performed in
addition to the previously mentioned parameters.

All statistical analyses were performed with SAS for Windows
(version 9.1; SAS Institute Inc) and STATA (version 10; StataCorp).

RESULTS

Baseline characteristics

Six hundred sixty-four patients were included in this study.
Baseline characteristics are listed in Table 2. Whites composed
the greatest percentage of each group (66% males �14 y old;
70% premenopausal women �19 y old; 83% postmenopausal
women), except for children �13 y old, of whom the majority
were self-classified as Hispanic (59%). The proportion of sub-
jects in the steatosis and fibrosis categories was analyzed by
race-ethnicity, and there was no difference in the distribution by
using Fisher’s exact test except in the fibrosis categories for
males �14 y old. The median BMI for all adult and adolescent
groups was classified as obese, whereas for children, the median
BMI z score was .2 SDs above the mean. The median choline
intake was below AI concentrations for all groups as follows:
292 mg/d for children �13 y old (compared with 375 mg/d AI),
308 mg/d for males �14 y old (compared with 550 mg/d AI),
257 mg/d for premenopausal women �19 y old (compared with
425 mg/d AI), and 262 mg/d for postmenopausal women

TABLE 2

Characteristics of subjects1

Children 9–13 y old

(n = 114)

Males �14 y old

(n = 240)

Premenopausal

women �19 y

old (n = 116)

Postmenopausal

women

(n = 194)

Demographic characteristics

Age (y) 12 (11, 13)2 39 (26.5, 52) 41 (32, 46) 57 (52, 61)

Race [n (%)]

White 39 (34.5) 158 (66.1) 81 (69.8) 161 (83.0)

Black 1 (0.9) 2 (0.8) 1 (0.9) 6 (3.1)

Hispanic 67 (59.3) 50 (20.9) 30 (25.9) 15 (7.7)

Asian/Pacific Islander 1 (0.9) 20 (8.4) 1 (0.9) 5 (2.6)

American Indian/Alaska Native 2 (1.8) 1 (0.4) 1 (0.9) 1 (0.5)

More than one race 3 (2.7) 8 (3.4) 2 (1.7) 6 (3.1)

Laboratory/measured values

ALT (U/L) 83 (63, 138) 77 (57, 109) 59 (37, 105) 56.5 (39, 88)

AST (U/L) 53 (39, 76) 44 (34, 64) 46 (32, 73) 47 (32, 70)

Triglycerides (mg/dL) 115 (90, 160) 152 (108, 218) 150 (97, 193) 141 (105, 201)

BMI (kg/m2) NA 33.4 (29.8, 36.8) 36.6 (31.3, 42.0) 33.6 (29.3, 38.4)

BMI z score 2.4 (2.1, 2.5) NA NA NA

History of corticosteroid use [n (%)] 4 (3.5) 19 (7.9) 12 (10.3) 24 (12.4)

Estimated daily intakes

Calories 1789 (1258, 2370) 1903 (1466, 2670) 1576 (1182, 2158) 1562 (1054, 2130)

Protein (g) 71.9 (50.4, 96.3) 75.8 (52.8, 98.4) 61.7 (41.3, 84.2) 58.5 (41.5, 83.4)

Carbohydrate (g) 234 (153, 314) 227 (172, 317) 193 (124, 259) 187 (134, 253)

Fat (g) 66 (43.8, 98.3) 80.4 (55.2, 118) 65.3 (49.4, 90.1) 66 (41.3, 91.8)

Choline (mg) 292 (218, 402) 308 (221, 407) 257 (189, 325) 262 (176, 373)

Vitamin B-12 (lg) 4.5 (2.9, 7.5) 5.0 (3.2, 9.0) 4.9 (2.5, 8.0) 6.4 (2.9, 9.8)

Folate (lg) 415.9 (274, 564) 420 (292, 686) 387 (260, 663) 450 (312, 777)

Any alcohol use [n (%)] 0 (0.0) 121 (50.4) 65 (56.0) 91 (46.9)

1 ALT, alanine aminotransferase; AST, aspartate aminotransferase; NA, not applicable.
2 Median; 25th, 75th percentiles in parentheses (all such values).
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(compared with 425 mg/d AI). The median reported intakes of
vitamin B-12 and folate were greater than the Recommended
Daily Allowance for all groups. The percentage of participants
who had any alcohol intake (but less than the cutoff for
study eligibility, as previously described) was highest in pre-
menopausal women�19 y old (56%), followed by in males�14 y
old (50%), postmenopausal women (47%), and children�13 y old
(0%). The daily caloric intake was lowest in postmenopausal
women (1562 calories), followed by in premenopausal women
(1576 calories), children (1789 calories), and males (1903 calo-
ries), with daily intakes of protein that followed a similarly ranked
order as follows: postmenopausal women: 58.5 g; premenopausal
women: 61.7 g; children: 71.9 g; and males: 75.8 g. Carbohydrate
intake followed a different pattern, with the most carbohydrates
consumed by children (234 g) followed by males (227 g), pre-
menopausal women (193 g), and postmenopausal women (187 g).
The daily fat intake was highest in males (80 g), whereas children
and pre- and postmenopausal women all consumed approximately
equal amounts of daily fat (;66 g).

Details of biopsy histologies of participants are shown in
Table 3. The greatest percentage of high-grade (.66%) stea-
tosis was seen in children (42%) compared with in only 26% of
males �14 y old, 32% of premenopausal women �19 y old, and
24% of postmenopausal women. Most participants showed little
lobular inflammation, but fibrosis was common; 79% of post-

menopausal women had fibrosis as did 76% of children �13 y
old, 67% of males �14 y old, and 70% of premenopausal
women �19 y old. Cirrhosis was shown in 12% of post-
menopausal women, whereas only 0.9% of children �13 y old,
5% of males �14 y old, and 1.7% of premenopausal women
�19 y old had cirrhosis.

Correlation with reported choline intake

Associations of baseline data and histology with choline intake
are detailed in Tables 4 and 5. Choline intake, which was un-
adjusted for other variables, was not significantly associated
with the NAFLD activity score, steatosis, lobular inflammation,
ballooning, or fibrosis in any group. Choline intake differed by
race-ethnicity for children and males �14 y old. For males �14
y old, whites had the highest choline intake (327 mg/d) followed
by subjects who were self-classified of more than one race (297
mg/d), Hispanic (277 mg/d), and other (230 mg/d) (P = 0.001).
In children, subjects of more than one race consumed the most
choline (716 mg/d), followed by Hispanic (311 mg/d), other
(309 mg/d), and white (274 mg/d) races (P = 0.03). Choline
intake for premenopausal women increased with BMI (P =
0.008; Spearman’s rank correlation coefficient = 0.25). There
was a significant correlation between choline intake and calories,

TABLE 3

Characteristics of biopsy specimens

Children 9–13 y old

(n = 114)

Males �14 y old

(n = 240)

Premenopausal

women �19 y

old (n = 116)

Postmenopausal

women

(n = 194)

Steatosis grade [n (%)]

,5% 2 (1.8) 10 (4.2) 4 (3.5) 9 (4.6)

5–33% 26 (22.8) 85 (35.4) 36 (31.0) 78 (40.2)

.33–66% 38 (33.3) 83 (34.6) 39 (33.6) 61 (31.4)

.66% 48 (42.1) 62 (25.8) 37 (31.9) 46 (23.7)

Lobular inflammation [n (%)]

,2, ,20· magnification 58 (50.9) 132 (55.0) 54 (46.6) 94 (48.5)

2–4, ,20· magnification 53 (46.5) 93 (38.8) 43 (37.1) 77 (39.7)

.4, ,20· magnification 3 (2.6) 15 (6.3) 19 (16.4) 23 (11.9)

Ballooning [n (%)]

None 51 (44.7) 93 (38.8) 33 (28.5) 52 (26.8)

Few 39 (34.2) 83 (34.6) 32 (27.6) 45 (23.2)

Many 24 (21.1) 64 (26.7) 51 (44.0) 97 (50.0)

NAFLD1 activity score [n (%)]

1 1 (0.9) 4 (1.7) 1 (0.9) 3 (1.6)

2 7 (6.1) 32 (13.3) 12 (10.3) 23 (11.9)

3 23 (20.2) 47 (19.6) 21 (18.1) 22 (11.3)

4 29 (25.4) 56 (23.3) 16 (13.8) 41 (21.1)

5 27 (23.7) 52 (21.7) 24 (20.7) 45 (23.2)

6 18 (15.8) 28 (11.7) 17 (14.7) 36 (18.6)

7 9 (7.9) 18 (7.5) 18 (15.5) 18 (9.3)

8 0 (0.0) 3 (1.3) 7 (6.0) 6 (3.1)

Fibrosis stage [n (%)]

0 (none) 27 (23.9) 78 (32.5) 34 (29.6) 40 (20.7)

1a (mild, zone 3, perisinusoidal) 7 (6.2) 42 (17.5) 19 (16.5) 20 (10.4)

1b (moderate, zone 3, perisinusoidal) 1 (0.9) 26 (10.8) 18 (15.7) 20 (10.4)

1c (portal/periportal only) 38 (33.6) 9 (3.8) 3 (2.6) 5 (2.6)

2 (zone 3 and periportal, any combination) 22 (19.5) 45 (18.0.8) 26 (22.6) 38 (19.7)

3 (bridging) 17 (15.0) 28 (11.7) 13 (11.3) 46 (23.8)

4 (cirrhosis) 1 (0.9) 12 (5.0) 2 (1.7) 24 (12.4)

1 NAFLD, nonalcoholic fatty liver disease.
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protein, fat, and carbohydrates (P, 0.0001 for all comparisons in
all groups).

Ordinal logistic regression

The breakdown of subjects in each of the age and menopausal
status groups into fibrosis and steatosis categories by reported
choline-intake status is detailed in Table 6. These data were
analyzed by using ordinal logistic regression models constructed
to account for known contributors to the development of NASH/
NAFLD including age, race-ethnicity, obesity (especially central
obesity) hypertriglyceridemia, diabetes and insulin resistance,
daily caloric intake, alcohol use, and steroid use. Results are
summarized in Table 7. Subjects with deficient reported choline
intakes did not have worse steatosis in any analysis group. The
analysis of fibrosis stage showed that postmenopausal women
with a reported choline intake less than one-half the defined AI
had more significant fibrosis after known contributors to NASH/
NAFLD were controlled for (P = 0.002). To further investigate

the association between reported choline intakes and fibrosis
stages in postmenopausal women, additional ordinal logistic
regression models were constructed that contained only the re-
ported choline intake and one other term. The model that used
Hb A1c had the most significant P value (P = 0.008). Other terms
leading to significant P values were BMI (P = 0.03), HOMA-IR
(P = 0.03), and waist circumference (P = 0.03).

Additional ordinal logistic regression models were constructed
with adjustment for vitamin B-12 and folate intakes. These
models included an interaction term for choline and either vi-
tamin B-12 or folate. No significant change in any association
was shown by including these additional vitamins, and none of
the interaction terms reached significance. Similarly, given the
association with estrogen status and susceptibility to choline
deficiency, an additional model that incorporated HRT was
constructed for the postmenopausal group. The number of
postmenopausal women who took any kind of HRTwas 27% (53
of 194 women). The association of worse fibrosis with decreased
choline intake was not affected by the inclusion of this term.

TABLE 4

Distribution of choline intake by selected categorical variables1

Choline intake

Children

9–13 y old P

Males

�14 y old P

Premenopausal women

�19 y old P

Postmenopausal

women P

mg/d mg/d mg/d mg/d

Demographic characteristics

Race 0.03 0.001 0.13 0.34

White 274 (195, 402) 327 (259, 425) 262 (207, 338) 259 (178, 373)

Hispanic 311 (236, 386) 277 (178, 338) 214 (141, 300) 266 (146, 319)

Other 309 (158, 454) 230 (192, 349) 213 (145, 263) 282 (178, 342)

More than one race 716 (589, 1026) 297 (245, 430) 239 (139, 338) 482 (223, 512)

Histology

Steatosis (grade) 0.25 0.83 0.52 0.26

,5% 293 (214, 371) 294 (212, 495) 199 (180, 223) 361 (273, 420)

5–33% 355 (263, 420) 314 (226, 483) 260 (188, 341) 258 (172, 344)

.33–66% 292 (198, 406) 305 (211, 388) 243 (195, 324) 249 (178, 338)

.66% 286 (195, 392) 307 (223, 389) 273 (174, 338) 277 (223, 396)

Lobular inflammation 0.27 0.66 0.18 0.20

,2, ,20· magnification 286 (198, 380) 308 (229, 447) 266 (207, 326) 278 (203, 404)

2–4, ,20· magnification 328 (235, 415) 308 (204, 387) 261 (174, 413) 249 (163, 347)

.4, ,20· magnification 354 (273, 577) 325 (205, 381) 206 (143, 308) 248 (175, 334)

Ballooning 0.41 0.32 0.74 0.50

None 291 (212, 383) 313 (227, 446) 261 (206, 322) 255 (186, 341)

Few 288 (214, 420) 309 (243, 409) 260 (191, 372) 272 (147, 347)

Many 358 (239, 467) 299 (205, 373) 239 (172, 310) 270 (183, 393)

NAFLD activity score 0.66 0.14 0.60 0.74

1–2 326 (244, 384) 365 (281, 519) 236 (211, 312) 260 (208, 372)

3 291 (238, 383) 313 (227, 387) 275 (203, 357) 252 (152, 340)

4 275 (173, 380) 283 (204, 404) 270 (201, 427) 286 (205, 404)

5 362 (222, 469) 296 (202, 364) 241 (183, 297) 268 (163, 329)

6 299 (228, 398) 345 (263, 410) 285 (239, 320) 268 (179, 417)

7 273 (195, 402) 333 (285, 373) 227 (146, 338) 252 (153, 388)

8 NA 306 (205, 389) 203 (124, 373) 250 (234, 277)

Fibrosis stage 0.38 0.66 0.34 0.50

None 306 (182, 371) 308 (204, 448) 274 (205, 393) 260 (207, 360)

Stage 1a, 1b, or 1c 286 (212, 406) 305 (243, 373) 276 (201, 330) 273 (178, 404)

Zone 3 and periportal, any combination 346 (280, 502) 353 (226, 459) 231 (146, 324) 281 (208, 393)

Bridging or cirrhosis 274 (230, 446) 306 (208, 368) 235 (179, 308) 249 (163, 357)

1 All values are medians; 25th, 75th percentiles in parentheses. P values were calculated by using the Kruskal-Wallis test for categorical variables. NA,

not applicable; NAFLD, nonalcoholic fatty liver disease.
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DISCUSSION

NASH is the major cause of cryptogenic cirrhosis (40). The
process is likely multifactorial but has known associations with
obesity (41–45), insulin resistance (26, 46–48), and hyperlipid-
emia (49–51). Given these associations, a nutritional contribution
to the development of NAFLD and NASH has attracted signif-
icant attention with multiple micronutrients that showed an as-
sociation (52, 53).We sought to determinewhether an association
exists between choline intake and histologic severity of NAFLD
or NASH. Remarkably, we showed that postmenopausal women
with NASH and a daily calculated choline intake less than one-
half the defined AI exhibited worse fibrosis. Choline was pre-
viously thought to be nonessential; however, it is now known that
healthy humans are unable to synthesize enough choline de novo
to prevent deficiency (16). In addition, patients on long-term
parenteral nutrition with steatohepatitis who are choline deficient
show reversal of steatohepatitis with supplementation of choline
(17, 18). Also, individuals with specific polymorphisms in genes
involved in the choline pathway have altered susceptibility to
choline deficiency (20, 54); subjects with V175M substitution in
the PEMT protein, which is an enzyme in one of the choline

biosynthetic pathways, show increased susceptibility to develop
NAFLD, commonly without obesity (55). Of note, the promoter

region of the PEMT gene contains a polymorphism that in-

creased susceptibility to choline deficiency in postmenopausal

women (20) who, then, were vulnerable to develop fatty liver

when placed on a severely choline deficient diet (,10% AI) in

clinical trials (19). The current study considered intakes ,50%

AI deficient. Although it did not reach statistical significance,

we showed the same trend in both premenopausal women and

men. These findings, coupled with the results of clinical trials,

may suggest that men have additional mechanisms of upregu-

lating genes in the choline synthesis pathway that are able to

compensate for moderate deficiencies but not severe deficien-

cies. Other genes, including PNPLA3, also appear to play an

important role in the development of NAFLD and have been

shown to be associated with both increased hepatic fat amounts

and fibrosis (56, 57).
Although we expected to see an increase in steatosis with

decreased choline intakes, the relative lack of steatosis suggested
that other contributing factors outweigh choline deficiency for
deposition of fat, the progression to fibrosis is faster in a choline-

TABLE 5

Correlation of measured variables with choline intake (mg/d)1

Children

9–13 y old

Males

�14 y old

Premenopausal women

�19 y old

Postmenopausal

women

q P q P q P q P

ALT (U/L) 0.05 0.60 0.02 0.60 20.01 0.60 0.08 0.60

AST (U/L) 0.03 0.75 0.02 0.78 20.11 0.25 0.03 0.71

BMI z score 0.12 0.21 NA — NA — NA —

BMI (kg/m2) NA — 0.12 0.07 0.25 0.008 0.11 0.12

Total (calories/d) 0.87 ,0.0001 0.86 ,0.0001 0.84 ,0.0001 0.87 ,0.0001

Protein (g/d) 0.94 ,0.0001 0.91 ,0.0001 0.93 ,0.0001 0.94 ,0.0001

Carbohydrates (g/d) 0.78 ,0.0001 0.68 ,0.0001 0.70 ,0.0001 0.78 ,0.0001

Fat (g/d) 0.81 ,0.0001 0.86 ,0.0001 0.79 ,0.0001 0.78 ,0.0001

1 P values calculated using the t test for Spearman’s rank correlation. ALT, alanine aminotransferase; AST, aspartate aminotransferase; NA, not

applicable; q, Spearman’s rank correlation coefficient.

TABLE 6

Steatosis grade and fibrosis stage by reported dietary choline intake in different age and menopausal status groups1

Choline intake

Steatosis grade Fibrosis stage

n ,34% 34–66% .66% P n2 0 1a, 1b, or 1c 2 3 or 4 P

n (%) n (%)

Children 9–13 y old 0.05 0.44

,188 mg/d 20 1 (5.0) 9 (45.0) 10 (50.0) 20 7 (35.0) 9 (45.0) 2 (10.0) 2 (10.0)

�188 mg/d 94 27 (28.7) 29 (30.9) 38 (40.4) 93 20 (21.5) 37 (39.8) 20 (21.5) 16 (17.2)

Males �14 y old 0.74 0.92

,275 mg/d 87 35 (40.2) 32 (36.8) 20 (23.0) 87 29 (33.3) 27 (31.0) 15 (17.2) 16 (18.4)

�275 mg/d 153 60 (39.2) 51 (33.3) 42 (27.5) 153 49 (32.0) 50 (32.7) 30 (19.6) 24 (15.7)

Premenopausal women �19 y old 0.94 0.49

,212 mg/d 39 13 (33.3) 14 (35.9) 12 (30.8) 38 9 (23.7) 12 (31.6) 10 (26.3) 7 (18.4)

�212 mg/d 77 27 (35.1) 25 (32.5) 25 (32.5) 77 25 (32.5) 28 (36.4) 16 (20.8) 8 (10.4)

Postmenopausal women 0.25 0.17

,212 mg/d 63 28 (44.4) 24 (38.1) 11 (17.5) 63 11 (17.5) 12 (19.1) 10 (15.9) 30 (47.6)

�212 mg/d 131 59 (45.0) 37 (28.2) 35 (26.7) 130 29 (22.3) 33 (25.4) 28 (21.5) 40 (30.8)

1 P values were calculated by using the Fisher’s exact test.
2 Three subjects did not have a fibrosis score recorded.
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deficient state (and, thus, the stage that shows increased steatosis
is missed by the biopsy protocol used in these studies), or dietary
choline deficiency only plays a role in advanced stages of liver
disease accompanied by an impaired ability to synthesize cho-
line, because cirrhotic patients have decreased ability to syn-
thesize choline de novo (58). A fourth possibility is that patients
enrolled in the studies already had histologic evidence of NAFLD
or NASH, or, at the very least, a strong suspicion of either. In this
population, the disease stage at which steatosis is hypothesized to
be hastened by choline deficiency may have already passed, or
alternatively, some threshold level of choline deficiency may
cause steatosis, but more severe deficiency may not cause ad-
ditional increases in steatosis.

Our study was limited by its cross-sectional nature. We
obtained a dietary history only at enrollment in the study, and
dietary choline intake was not validated by plasma concen-
trations. The dietary history was recall based and required par-
ticipants to select from a predefined list of foods with an
estimated frequency of intake. The recall-based nature may have
led to an underestimation of intakes. For example, the total
caloric intake for adults in the study averaged ,2000 calories/d,
whereas BMI was .33. Furthermore, the preprinted list of foods
may not have captured the dietary subtleties of ethnic diets of
some subjects. Last, we did not genotypes these subjects. The
variation in genes known to affect the choline synthesis pathway
may more specifically identify individuals susceptible to choline
deficiency or for whom choline supplementation may have
a beneficial effect (20–22, 54–57).

A previous study in 47 patients did not find a correlation
between plasma choline concentration and the severity of liver
damage in NASH (59). Because NASH is the presumed end result
of multiple pathways with behavioral, environmental, and genetic
contributions, choline deficiency may play a role in only a subset
of patients with NAFLD or NASH. Pure choline deficiency may
only become apparent in an appropriately selected phenotypic
subset of NASH patients, such as in postmenopausal women who

may be unable to upregulate genes in the choline synthesis pathway
that have estrogen-response elements in their promoters (23).

In conclusion, decreased choline intake is associated with
worse fibrosis in a subset of patients with NASH. Additional
study is needed to determine whether a reported low choline
intake is associated with low plasma choline concentrations and if
low choline concentrations are associated with the initiation or
progression of NAFLD or NASH.
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TABLE 7

Relation between dietary choline and levels of steatosis and fibrosis1

Steatosis2 Fibrosis3

Values P Values P

Children 9–13 y old4 1.20 (0.37, 3.90) 0.76 0.64 (0.20, 2.04) 0.45

Males �14 y old5 0.68 (0.33, 1.38) 0.28 1.89 (0.94, 3.79) 0.07

Premenopausal women �19 y old5 1.57 (0.61, 4.06) 0.35 2.55 (1.00, 6.48) 0.05
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1 All values are cumulative ORs; 95% CIs in parentheses. The cumulative OR of worse steatosis or fibrosis associated

with a deficient daily choline intake (less than one-half the defined ADI) was assessed by using an ordinal logistic

regression model with known contributors to NAFLD and NASH controlled for. ORs and P values were derived from

multiple ordinal logistic regression models. Dietary choline was analyzed as a dichotomous variable, whereby choline

values less than the deficient intake concentration were compared with values greater than or equal to deficient intake.

Values of deficient choline intake are specific to each group. ADI, adequate dietary intake; NAFLD, nonalcoholic fatty liver

disease; NASH, nonalcoholic steatohepatitis.
2 Defined as ,34%, 34–66%, and .66%.
3 Defined as stage 0; stages 1a, 1b, and 1c combined; stage 2; and stages 3 and 4 combined.
4 Age, race (white, Hispanic, or other), BMI z score, triglyceride concentration, hemoglobin A1c, and daily caloric

intake split at the median, and HOMA-IR .3.5 (mg · dL21 · lU · mL21 · 40521) (yes compared with no) were controlled for.
5 Age, race (white, Hispanic, or other), BMI (kg/m2), waist circumference (cm), triglyceride concentration, hemoglo-

bin A1c and daily caloric intake split at the median, HOMA-IR .3.5 (mg · dL21 · lU · mL21 · 40521) (yes compared with

no), alcohol use (yes compared with no), and steroid use (yes compared with no) were controlled for.
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