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Summary
A genome-wide association study of serum uric acid levels was performed in a relatively isolated
population of European descent from an island of the Adriatic coast of Croatia. The study sample
included 532 unrelated and 768 related individuals from 235 pedigrees. Inflation due to
relatedness was controlled by using genomic control. Genetic association was assessed with
2,241,249 SNPs in 1300 samples after adjusting for age and gender. Our study replicated four
previously reported serum uric acid loci (SLC2A9, ABCG2, RREB1, and SLC22A12). The
strongest association was found with a SNP in SLC2A9 (rs13129697, P=2.33×10−19), which
exhibited significant gender-specific effects, 35.76μmol/L (P=2.11×10−19) in females and 19.58
μmol/L (P=5.40×10−5) in males. Within this region of high linkage disequilibrium, we also
detected a strong association with a non-synonymous SNP, rs16890979 (P=2.24×10−17), a
putative causal variant for serum uric acid variation. In addition, we identified several novel loci
suggestive of association with uric acid levels (SEMA5A, TMEM18, SLC28A2, and ODZ2),
although the P-values (P<5×10−6) did not reach the threshold of genome-wide significance.
Together, these findings provide further confirmation of previously reported uric acid-related
genetic variants and highlight suggestive new loci for additional investigation.
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Introduction
Genome-wide association studies (GWAS) have uncovered over 30 common sequence
variants influencing serum uric acid (SUA) concentration and gout (Hindorff et al. 2011).
Among these, the most significant findings are the single nucleotide polymorphisms (SNPs)
located within the solute carrier family 2 member 9 (SLC2A9) gene on chromosome 4,
which have been consistently replicated across multiple populations (Li et al. 2007;
Dehghan et al. 2008; Doring et al. 2008; McArdle et al. 2008; Vitart et al. 2008; Wallace et
al. 2008; Kolz et al. 2009; Yang et al. 2010; Charles et al. 2011). Additional GWAS and
meta-analyses have identified variants in several other genes including PDZK1, GCKR,
ABCG2, RREB1, LRRC16A, SLC17A1, SLC17A3, SLC22A11, SLC22A12 that have
reached genome-wide significance levels (Dehgan et al. 2008; Kolz et al. 2009; Yang et al.
2010). We conducted a GWAS of metabolic traits, including SUA concentration, in a
relatively isolated population from the Adriatic coast of Croatia. This study strongly
replicated the SLC2A9 findings and identified several suggestive novel loci that may
represent genuine effects. In addition, our study also replicated associations of SNPs in
ABCG2, RREB1 and SLC22A12, although the signals did not reach genome-wide
significance.

Materials and Methods
Subjects

The study population has been described previously (Zhang et al. 2010; Karns et al. 2011).
Briefly, participants were derived from the middle Dalmatian island of Hvar on the eastern
Adriatic coast of Croatia. The population is primarily of Slavic descent, which had
emigrated from the mainland before the 18th century and remained relatively isolated since
that time (Rudan et al. 1992). Phenotypic measures and blood samples were collected in two
field surveys conducted in May 2007 and May 2008, with no consideration of disease status
or medication. Blood samples were collected following an overnight fast, and SUA levels
were measured using the enzymatic color method. In total, 1,395 related and unrelated
subjects aged >20 years with SUA measures were included in the current study. Descriptive
statistics of quantitative traits (age, body mass index, fasting plasma glucose, blood
pressure) and prevalence of four metabolic disorders (type 2 diabetes, hypertension, gout
and metabolic syndrome) are provided in the Supplementary Table. Data on type 2 diabetes,
gout and hypertension were collected through self-reports, medical review and clinical
diagnostic measures. The study was approved by the Ethics Committee of the Institute for
Anthropological Research in Zagreb, Croatia and the Institutional Review Board of the
University of Cincinnati.

Genotyping
Genome-wide SNP genotyping was performed using the Affymetrix Human SNP Array 5.0
following the manufacture's protocol. Genotype calls were determined using the CRLMM
algorithm (Carvalho et al. 2007, 2010) among chips that passed the prescribed Dynamic
Model genotyping QC call rate (> 0.86). Following further QC filtering of the genotype data
(MAF >0.02, HWE P >0.0001, call rate >95%) using the check.marker function
implemented in GenABEL (Aulchenko et al. 2007), we obtained a cleaned data set of
344,512 SNPs in 1300 samples (563 males and 737 females). From this cleaned data set, we
performed genotype imputation using MACH (Li et al. 2009) and the reference haplotype
data from the Phase II CEU HapMap (International HapMap Consortium 2007). The same
QC procedures were performed on the imputed data, yielding a final genotype data set of
2,241,249 SNPs in 1300 samples.
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Statistical Analysis
All statistical analyses were performed in R v2.11; genome-wide association analysis was
performed using the GenABEL package (v.1.6). Single-locus tests adjusted for age and sex
were conducted using the qtscore routine. Since our samples included 532 unrelated as well
as 768 related individuals from 235 families, genomic control (GC) was applied to correct
for inflation due to inclusion of related individuals (Devlin & Roeder 1999; Devlin et al.
2001). The inflation factor (λ) was estimated using the median method (Bacanu et al. 2002),
and P-values based on the adjusted test statistics (1 d.f. assuming additive effects) were
reported. Association signals of significant regions were plotted using LocusZoom (Pruim et
al. 2010).

Results
SUA levels were normally distributed in both males (N=563) and females (N=737) and the
mean levels were significant higher in males (361.0±79.19 μmol/L) than females
(265.4±77.65 μmol/L), though Bartlett's and Fligner's tests revealed no significant gender-
based differences in SUA variance. Regression analysis indicated that SUA levels were
significantly associated with age in both genders and the association was more significant in
females. SUA change per year in females was 1.797 μmol/L (P=2.2×10−24, r2=13.1%) and
in males was 0.786 μmol/L (P=0.00019, r2=2.28%) (Supplementary Figure S1).

As anticipated from the relatedness among the samples, the test statistics were inflated
compared to the null distribution with an estimated inflation factor λ=1.20. As shown in the
quantile-quantile (QQ) plot (Supplementary Figure S2), after adjustment for this inflation
factor and exclusion of significant SNPs in the SLC2A9 region the test statistics fit well with
the expected values, indicating appropriate control of false positive rate.

A Manhattan plot of the genome-wide association signals (Figure 1) shows the strongest
association around the SLC2A9 gene, a well-established uric acid-associated gene. The
significant region spans roughly 650kb and covers the SLC2A9 and the WDR1 genes (Figure
2). This region is delimited by two recombination hot spots with local recombination rate
>25cM/Mb. One-hundred and sixteen SNPs with P-value less than the genome-wide
significant level (5×10−8) were identified within this region. The strongest signal was found
on the imputed SNP rs13129697 (P=2.33×10−19); the minor allele was associated with an
average SUA decrease of 28.99μmol/L. Consistent with previous studies, the effect size
estimate showed substantial gender difference with 35.76μmol/L (P=2.11×10−19) in females
and 19.58 μmol/L (P=5.40×10−5) in males. This pattern was similar across all of the 116
SNPs that reached genome-wide significance. Of interest is a non-synonymous SNP,
rs16890979 (P=2.24×10−17), also reported previously with genome-wide significance
(Dehghan et al. 2008; McArdle et al. 2008). Re-analysis of the region, conditional on either
rs13129697 or rs16890979 failed to completely abolish the signals of the other SNPs with
the smallest conditional P~1.7×10−3 (data not shown) suggesting the possibility of multiple
functional variants within the region.

In addition to the well-established SLC2A9 region, five other potentially significant regions
(Table 1) were identified with at least one SNP above a threshold of P<5×10−6. The most
salient of these is a suggestive novel locus in an intergenic region on chromosome 5; the
most significant variant, rs200113 (P=7.02×10−8), is located ~400 kb downstream of the
SEMA5A gene. The remaining four regions are located within or near the genes TMEM18,
SLC28A2, ODZ2 and ABCG2, respectively. ABCG2 is a confirmed uric acid associated gene
(Dehghan et al. 2008; Kolz et al. 2009; Yang et al. 2010) and the variant showing the
highest signal (P=5.14×10−6) is a non-synonymous SNP (rs2231142, NP_004818.2,
Gln141Lys) and the mutant allele associated with an average increase of 27.40 μmol/L
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(Supplementary Figure S3). This SNP showed significant gender-specific effects, with
31.11μmol/L in males compared to 22.97μmol/L in females. Reanalysis conditional on this
SNP explained all the association across the region, which is highly suggestive of this
missense variant being the functional SNP at the ABCG2 locus.

To compare our findings with previous GWA studies, we analyzed 30 serum urate- or uric
acid-associated SNPs listed in the GWA catalog (six of the 36 reported SNPs were missing
from our imputed and cleaned data set) (Table 2). In addition to the aforementioned SLC2A9
and ABCG2 loci, we replicated associations with nominal significance (P<0.05) at two
additional loci, RREB1 (rs675209, P=0.0032) and SLC22A12 (rs17300741, P=0.0034). The
effects of all significant SNPs were in the same direction as those reported in previous GWA
studies.

Discussion
We present the results of a genome-wide association study of SUA in an isolated island
population based on 2,241,249 imputed and genotyped SNPs in 1300 samples. Our purpose
was to replicate previously reported loci and uncover novel SUA-related loci, taking
advantage of population attributes of limited admixture and homogeneous environmental
exposures. We have used GC to provide correction for inflation due to relatedness while
maximizing power to detect associations by including all samples. Previous study indicated
that GC is a valid and powerful method for the analysis of pedigree based quantitative trait
loci (Amin et al. 2007).

The most significant associations emerged from multiple SNPs in and around SLC2A9 on
chromosome 4, a widely replicated SUA-associated region. The SNP with the strongest
signal, rs13129697, is located in intron 7 of the gene. Of particular interest, however, was
the association of rs16890979 (Val253Ile), a non-synonymous imputed SNP that has been
reported in previous GWAS (Dehghan et al. 2008; McArdle et al. 2008).

We performed a comparative analysis of previously reported per-allele effect sizes of the
significant SNPs in SLC2A9 and found that, in general, our effect sizes are somewhat higher
than those reported in previous GWAS (Dehghan et al. 2008; Doring et al. 2008; McArdle et
al. 2008; Kolz et al. 2009; Yang et al. 2010; Zemunik et al. 2009) (Supplementary Figure
S4). Across studies, SLC2A9 variant effect sizes in females are markedly elevated compared
to males. In our population we found males had significantly higher mean SUA
concentrations, though female SUA concentration was more strongly associated with age.
Sex-specific effects of SLC2A9 variants were more extensively examined by Doring et al.
(2008), who showed that in addition to genotypic effects, SLC2A9 expression levels were
stronger in females. Together these observations suggest that the SLC2A9 variants may play
a more significant role influencing uric acid concentrations in females which could be due to
physiological and vascular differences between males and females and due to decreased
uricosuric-related estrogen action following menopause (Adamopoulos et al. 1977; Puig et
al. 1991). In addition, they suggest a potential gene-environment interaction that may be
related to the gender-specific effects of the SLC2A9 variants.

In addition to reconfirming the SLC2A9 locus, we provide replications for three previously
reported GWAS loci (ABCG2, RREB1, and SLC22A12), though the P-values do not reach
strict GWAS significance. We report significant gender-specific effects of a non-
synonymous variant in ABCG2, similar to those previously reported by Kolz et al. (2009). In
addition to the replicated regions, we observed suggestive association signals (P<5×10−6) at
several novel loci. The most significant was a SNP (rs200116) located downstream of
SEMA5A, which encodes the semaphorin-5A protein. SNPs in its vicinity were significantly
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associated with Parkinson's disease and autism in separate GWAS (Maraganore et al. 2005;
Weiss et al. 2009). While elevated uric acid is correlated with lower risk of developing
Parkinson's disease (Davis et al. 1996; de Lau et al. 2005; Weisskopf et al. 2007; Alonso et
al 2007), apart from a hyperuricosuric subtype of autism (Page et al. 2000) no link between
autism and uric acid has been reported.

In summary, our study replicated four previously reported SUA associated loci (SLC2A9,
ABCG2, RREB1 and SLC22A12) with different levels of significance, and detected
suggestive associations at several novel loci (SEMA5A, TMEM18, SLC28A2, ODZ2) that did
not reach the threshold of genome-wide significance. However, due to the moderate sample
size and the lack of a replication cohort the observed associations at these novel loci are
preliminary and require further exploration and confirmation in other populations.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Manhattan plot of GWA single-locus P-values. The two horizontal dash lines indicate
significant thresholds at 5×10−8 and 5×10−6. Six regions that reach suggestive genome-wide
significance (P<5×10−6) are highlighted with names of nearby genes. Gene names in black
are previously reported uric acid associated genes.
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Figure 2.
LocusZoom plot of the SLC2A9 region. GC adjusted single-locus P-values are plotted
against SNP physical positions (NCBI build 36). Pairwise linkage disequilibrium (r2) from
the most significant SNP (rs13129697) is color-coded. Size of each dot indicates whether
the SNP is a genotyped (large) or imputed (small). The light blue curve shows the local
recombination rate based on HapMap Phase II data. rs16890979 is the non-synonymous
SNP and rs874432 is the most significant genotyped SNP.
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