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We evaluated phylogenetic clustering of bacterial and archaeal communities from redox-dynamic subtropical forest soils that
were defined by 16S rRNA and rRNA gene sequences. We observed significant clustering for the RNA-based communities but
not the DNA-based communities, as well as increasing clustering over time of the highly active taxa detected by only rRNA.

Most microbial community analyses based on rRNA genes
treat taxa as though they are independent. This implicitly

assumes equal phylogenetic distances between taxa, although var-
ious distances of relatedness are well known. The distribution of
relatedness among taxa is the community’s phylogenetic struc-
ture, and it can be measured using phylogenetic tree branch
lengths and taxon abundances (15, 27). Microbial communities,
much like plants, arthropods, or vertebrates, tend to be more phy-
logenetically structured than would be expected by chance (3, 11,
12, 24). Phylogenetic structure can reveal contemporary ecologi-
cal interactions (24). Negative interactions (like competition) re-
sult in overdispersion—assemblages made up of distantly related
organisms—which is observed in plant communities (3, 24); pos-
itive ecological interactions (like environmental filtering) result in
clustering. For example, phylogenetic clustering of bacteria is ob-
served for rRNA gene copy numbers, suggesting phylogenetic co-
herence according to the growth rate trait, one ecological strategy
(20, 22).

While the number of ribosomal operons within a genome is
correlated with the growth rate potential under conditions of
abundant resources (22), rRNA gene-based microbial community
analysis can include DNA from dead or dormant populations (6),
structural DNA from biofilms (21), or contaminating DNA (18,
23). Environmental rRNA can yield information on a community
that is or has recently been active (10, 14, 25). rRNA gene abun-
dances are not perfectly correlated with cell number, and rRNA
abundances are even less so, but rRNA has the advantage of pro-
viding a wider dynamic range of abundance than rRNA genes,
from tens of copies to 105 copies per cell depending upon the
metabolic state (1, 7, 13, 19). Combining RNA- and DNA-based
microbial community analyses may reveal a portion of the micro-
bial community that is either active or primed to become active
within the seed bank of organisms.

To evaluate differences in phylogenetic structure among DNA-
and RNA-based communities, we analyzed data from an experi-
ment designed to assess microbial adaptation to redox fluctuation
in tropical forest soils (5). Soil cores sampled from Luquillo forest
in Puerto Rico were placed in microcosms, and three biological
replicates (4 cores each) were subjected to static anoxic, static oxic,
or fluctuating redox conditions, alternating between 4 days of N2

and 4 days of air over 32 days (see Fig. S1 in the supplemental
material). Redox treatments resulted in changes in nitrous oxide
and methane production but continuously high carbon dioxide
production, indicative of continuous activity (5). For high-den-

sity 16S rRNA microarray analysis, PhyloChip G2 was used to
identify communities based on rRNA and rRNA genes. Here we
use these data to compare the phylogenetic clusterings of the
RNA- and DNA-based communities. The net relatedness index
(NRI) and nearest taxon index (NTI) assess phylogenetic struc-
ture, incorporating phylogenetic distance (26) and taxon relative
abundance as measured by PhyloChip hybridization scores (2).
The NRI is based on mean pairwise distances among taxa and is a
measure of the overall tree-wide structure, while the NTI is based
on mean distance to the nearest neighbor and is a measure of local
clustering. NRI or NTI values significantly greater than zero sug-
gest greater community clustering compared to that of a null (ran-
dom) model.

Communities defined by rRNA were significantly more clus-
tered than rRNA gene-defined communities when measured by
NRI (P � 0.001) (Fig. 1A) or NTI (P � 0.05) (Fig. 1B). Differences
in clustering between RNA- and DNA-based communities were
likely not due to differences in detection (16). The average rich-
ness values for the RNA- and DNA-measured communities were
1,230 and 1,494 taxa, respectively, and not significantly different.
There was substantial overlap between the two communities, with
about 80% of Bacteria and 60 to 90% of Archaea detected by RNA
as well as DNA (see Table S1 in the supplemental material).

Significant clustering of the RNA-based community (NRI �
5.28 � 0.98 [mean � standard error]) but not the DNA-based
community (NRI � �0.152 � 1.04) suggests that the more active
subset of the total community exhibits phylogenetic coherence
within the tree defined by all taxa detected. Such phylogenetic
coherence suggests that the functional characteristics responsible
for activity may share some common evolutionary origins. Phylo-
genetic clustering was absent from DNA-based communities, sug-
gesting a preservation of phylogenetic diversity among the seed
bank populations.

Taxa detected by rRNA only, likely relatively rare taxa with
high activity, showed significantly increasing NRIs over time (Fig.
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1C; see also Table S2 in the supplemental material). Taxa detected
in RNA communities but absent in DNA communities likely had
DNA concentrations below our detection limit but measurable
rRNA levels. This “RNA-only” population was 5.0 to 12.5% of the
total detected bacteria and between 0.8 and 6.0% of archaea (see
Table S1 in the supplemental material). The trend toward increas-
ing clustering over time suggests a convergence in community
phylogenetic structure among the highly active taxa due to selec-
tive pressure of the lab incubation itself, conditions which depart
substantially from field conditions. That this trend was only ob-
served with the RNA-only community may suggest that this high-
activity, relatively rare set of bacteria has distinct strategies for
stress response.

Phylogenetic structure is a net result of forces that shape com-
munities. Significant clustering may be evidence of positive inter-
actions, such as phenotypic attraction and spatial isolation; over-
dispersion can result from negative interactions, such as
competition, predation, minimal niche overlap, or the presence of
many niches (4, 27). We observed no phylogenetic community
structure in DNA-based communities, suggesting that both posi-
tive and negative interactions have shaped the indigenous soil mi-
crobial community. Evidence for clustering in the RNA-based
communities suggests phylogenetic coherence among those taxa
actively producing ribosomes in response to dynamic environ-
mental conditions. This may be a result of growth, a change in
ribosome abundance within cells resulting in altered protein pro-
duction, or both. This first comparison of phylogenetic clustering
in both RNA- and DNA-based microbial communities demon-
strates that this type of community analysis can enhance our un-
derstanding of the forces that shape complex microbial commu-
nity structures in nature.
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