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The feasibility of short-read sequencing for genomic analysis was demonstrated for Fibroporia radiculosa, a copper-tolerant
fungus that causes brown rot decay of wood. The effect of read quality on genomic assembly was assessed by filtering Illumina
GAIIx reads from a single run of a paired-end library (75-nucleotide read length and 300-bp fragment size) at three different
stringency levels and then assembling each data set with Velvet. A simple approach was devised to determine which filter strin-
gency was “best.” Venn diagrams identified the regions containing reads that were used in an assembly but were of a low-enough
quality to be removed by a filter. By plotting base quality histograms of reads in this region, we judged whether a filter was too
stringent or not stringent enough. Our best assembly had a genome size of 33.6 Mb, an N50 of 65.8 kb for a k-mer of 51, and a
maximum contig length of 347 kb. Using GeneMark, 9,262 genes were predicted. TargetP and SignalP analyses showed that
among the 1,213 genes with secreted products, 986 had motifs for signal peptides and 227 had motifs for signal anchors.
Blast2GO analysis provided functional annotation for 5,407 genes. We identified 29 genes with putative roles in copper tolerance
and 73 genes for lignocellulose degradation. A search for homologs of these 102 genes showed that F. radiculosa exhibited more
similarity to Postia placenta than Serpula lacrymans. Notable differences were found, however, and their involvements in cop-

per tolerance and wood decay are discussed.

Recent technological achievements in massively parallel se-
quencing have escalated the rate at which genomes can be
sequenced. The most affordable method is the Illumina genome
analyzer, which uses reversible dideoxy terminator sequencing
chemistry (3). Although the read length is significantly shorter
than that with traditional Sanger dideoxy terminator sequencing,
Mlumina sequencing generates millions of reads, thereby provid-
ing the extensive coverage needed to produce an assembly in spite
of the higher frequency of base errors and poor read quality. In
addition, the read length has increased with technology upgrades,
making the technique more attractive for the sequencing of the
larger, more complex genomes of eukaryotes.

Now that the race to sequence genomes has begun, we are
gaining a much clearer picture of how Illumina sequencing per-
forms in practice. Three eukaryotic genomes have been sequenced
to date with the Illumina technology alone or in combination with
other platforms. These genomes are those of the giant panda bear
(29), the plant-pathogenic ascomycete fungus Grosmannia clavi-
gera (10), and another ascomycete, Sordaria macrospora, a model
organism for fungal morphogenesis (33). The assembly for the
giant panda bear was a formidable feat that most ordinary re-
searchers could not afford to duplicate. It used paired-end reads
(52-nucleotide [nt] read length) from 37 Illumina libraries
(150-kb to 10-kb insert size) to obtain a 56-fold coverage of the
genome (29). The draft assembly encompassed 94% of the 2.4-Gb
panda genome, predicted 21,000 genes, and led to the discovery of
2.7 million single-nucleotide polymorphisms (SNPs).

On a more modest scale, the G. clavigera fungal sequencing
project showed that paired-end Illumina reads (42 nt) could be
effectively combined with Sanger and Roche platforms to produce
a genomic assembly that was improved significantly based on a
comparison of N50 with assemblies that lacked the Illumina reads
(10). N50 is a measure of assembly quality, since by definition, half
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the assembly is covered by contigs of a size of N50 or larger. The
core assembly was created from paired-end Illumina reads (42-nt
read length and 200-bp insert library). Scaffolds were then built by
using overlaps with Sanger paired-end reads (average read length
of 600 nt from a 40-kb fosmid library) and Roche single-end reads
(average read lengths of 100 and 225 nt). Reads were trimmed to
remove low-quality sections, and the extent of trimming required
was evaluated by counting the number of misassemblies relative to
a reference sequence. The draft G. clavigera genome was 32.5 Mb
and had an N50 of 32 kb, a scaffold N50 of 558 kb, and a total of
162 gaps. The genome was later manually finished with more se-
quence data, validated with expressed-sequence-tag (EST) data,
and then used to predict genes and obtain functional annotations
for a transcriptomic analysis (11).

The S. macrospora assembly was another notable example, be-
cause it used only the Illumina and Roche next-generation se-
quencing platforms. By varying the number of reads used in the
assembly from each platform, the authors of that study showed
that the Illumina paired-end reads provided gains in N50 and
maximum contig lengths, while the Roche reads dramatically de-
creased the number and length of gaps (33). The Illumina reads
(36 nt) were primarily paired-end reads from two insert libraries
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(300 bp and 500 bp), providing 85-fold coverage, while the Roche
single-end reads (367-nt average read length) were sequenced to
10-fold coverage. The draft genome was estimated to be about 40
Mb. The Illumina assembly had an N50 of 51 kb and 17,956 gaps.
By adding the Roche reads, the N50 increased to 117 kb, and the
number of gaps dropped to 624. Known syntenic regions between
S. macrospora and Neurospora crassa were then used to produce a
scaffold N50 of 498 kb.

Given these successes, we were highly motivated to sequence
the genome of the basidiomycete Fibroporia radiculosa (Antrodia
radiculosa). F. radiculosa is a brown rot fungus that has been doc-
umented to cause a premature failure of wooden stakes treated
with copper-based wood preservatives in the field (9). Species of
brown rot fungi that show copper tolerance in laboratory tests
include F. radiculosa, Postia placenta, and Fomitopsis palustris (19,
20), and all three can secrete high levels of oxalate (7, 20). Oxalate
is believed to confer metal tolerance to fungi because it chelates
metal to form insoluble metal oxalate crystals (8, 16, 24). A related
species, Serpula lacrymans, causes a specialized form of brown rot
decay called dry rot. It is less copper tolerant and secretes lower
levels of oxalate (20, 22). Because the majority of wood preserva-
tives are copper based, an understanding of the mechanisms of
copper tolerance has become a priority for research in wood pro-
tection. Brown rot fungi are also aggressive decomposers of wood.
Their particular mode of attack, however, is selective. They work
around the lignin, targeting the rapid deconstruction and utiliza-
tion of hemicellulose and cellulose (17). Since each cellulose mol-
ecule in wood is comprised of an average of 10,000 glucose units
(36), the biochemical mechanisms involved in brown rot decay
may have potential application for biofuel production.

At the time when this project was begun, very little was known
about the genes that brown rot fungi employ to overcome copper-
based wood preservatives and degrade wood. Since then, the ge-
nomes of P. placenta (30) and S. lacrymans (12) have been se-
quenced using the more traditional whole-genome shotgun
approach. Our goal was to use the more cost-effective Illumina
technology, known as paired-end, short-read sequencing (76-nt
read length), to predict as many genes as possible from a single
library (300 bp). Because of the higher error rates typically en-
countered in short-read sequencing, the first impasse that we ad-
dressed was read filter stringency. We developed a rational ap-
proach for read filtering to find an optimal assembly. Genes and
genome size were predicted from the contigs (>3 kb) of this as-
sembly, and comparisons to gene sequences in public databases
allowed us to determine gene functions. Putative genes related to
survival on copper (i.e., the production of copper oxalate crystals
and copper homeostasis) and the oxidative and hydrolytic decay
of lignocellulose were identified, and their homologous sequences
in P. placenta (30) and S. lacrymans (12) were determined.

MATERIALS AND METHODS

Fungus. F. radiculosa strain TFFH 294 was kindly provided by Carol
Clausen, USDA Forest Service Forest Products Laboratory, Madison, W1.
The identity of the strain was verified by the cloning of the internal tran-
scribed spacer (ITS) region after amplification with ITS1 and I'TS4 prim-
ers (46). The sequenced DNA aligned to two F. radiculosa voucher speci-
mens in the NCBI nucleotide database. For DNA isolation, the fungus was
grown for 30 days in potato dextrose broth (125 rpm at 25°C), harvested
by filtration, rinsed with 100 mM Tris-HCland 5mM EDTA (pH 8.0) and
then with 70% ethanol, and stored in 70% ethanol at —80°C.

April 2012 Volume 78 Number 7

Fibroporia radiculosa Genomic Analysis

DNA library preparation. Mycelia (1.38 g wet weight) were mechan-
ically disrupted by grinding the hyphae in liquid nitrogen with a mortar
and pestle. Nuclear DNA was extracted by using a method developed
previously for cotton (34). Proteins were removed by phenol-chloroform
extraction, and the DNA was precipitated with ice-cold isopropanol. After
the DNA was resuspended in water, it was treated with RNase A (200
ng/ul) for 1 h at room temperature, followed by another phenol-chloro-
form extraction. Polysaccharides were removed by adding 0.3 volumes of
cold ethanol to the mixture, incubating the mixture on ice for 10 min, and
then centrifuging the mixture at 7,000 X g for 10 min. The purified DNA
from the supernatant was precipitated overnight at —20°C with a 1/10
volume of 3 M sodium acetate (pH 6.0) and 2 volumes of 95% ethanol.
Following centrifugation (10,000 X g for 15 min), the pelleted DNA was
washed with 70% ethanol twice to remove residual salt and then resus-
pended in TE buffer (10 mM Tris-HCl and 1 mM EDTA [pH 8.0]). The
concentration was measured with a Nanodrop 1000 spectrophotometer.
The yield of genomic DNA was determined to be 69.8 ug/g wet mycelia.

The genomic library was prepared from 10 ug of genomic DNA ac-
cording to the protocols provided with the kit (Illumina Genomic DNA
Sample Prep kit; [llumina, San Diego, CA). Microfluidic chip electropho-
resis on an Agilent 2100 Bioanalyzer (DNA 1000 kit; Agilent, Santa Clara,
CA) indicated that nebulization (6 min at 34 Ib/in?) produced a broad
peak from 300 to 700 bp. After PCR enrichment, the concentration of the
library was 13 nM and consisted of a narrow range of fragments centered
at about 305 bp.

Short-read sequencing. Short-read sequencing of our library was per-
formed on one paired-end flow cell of Illumina Genome Analyzer IIx (7
lanes of library and 1 lane of a ¢X control). Raw sequence data (76-nt read
length) were processed by using Firecrest (image analysis) and Bustard
(base calling) as part of the Illumina GA Pipeline, v1.4.0. The sequence
data obtained was in SCARF format (Solexa Compact ASCII read format).
After the appropriate conversions were performed, FASTQ files were used
for quality analysis and filtering, and FASTA files were used for input into
the genome assembly tool.

Stringency filters. The data set was filtered to three levels of strin-
gency. The quality scores in the original data set ranged from the worst
score of B to the best score of b (in ASCII order). We defined a bad score
as any score less than D. Our lowest-stringency filter (filter 1 [F1]) dis-
carded reads with 38 or more bad scores, the moderate stringency filter
(F2) discarded reads with one or more bad scores, and the most stringent
filter (F3) discarded reads with one or more N or ambiguous base calls.
The original data set was denoted DO, and the progressively filtered data
sets were designated DF1, DF2, and DF3.

Assembly. The short-read assembly tool that we used was Velvet
0.7.55 (48). For each of the four data sets (DO, DF1, DF2, and DF3), the
velveth command was run with 8 or 9 different k-mer lengths (k). After
each velveth command, a velvetg command was executed with the follow-
ing options: exp_cov auto, min_contig_lgth 100, and ins_length 300. The
assemblies with the maximum N50 for each data set were designated VO,
VF1, VF2, and VF3, and assembly metrics were obtained from the Velvet
output. To obtain a FASTA file of the unused reads, the option unused_
reads yes was specified in the velvetg command.

Determination of an optimal assembly. Of VO, VF1, VF2, and VF3,
the optimal assembly was selected based on an analysis of the quality of the
reads that were used in an assembly but that were of a low-enough quality
to be removed by the next level of filtering. These reads were identified by
performing a Venn analysis. A Venn analysis was necessary because Velvet
does not use all the input reads, nor does it output a file with only the used
reads. The three files available to us were the Velvet input read FASTA file
(Ilumina and Velvet read identifiers), the Velvet unused-read FASTA file
(Velvetidentifier only), and the FASTQ file of the reads that were removed
by the next filter (Illumina identifier only). The first step was to use hash
tables to match all reads to their Illumina identifiers. The next step was to
use the Illumina identifiers to find the “filtered used reads.” The quality of
the reads in the filtered-used-read region was assessed by plotting the
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percent distribution of the quality scores, the percent distribution of reads
with bad scores at each read position, the frequency of N homopolymers
(N-mers), and the frequency of N’s per read (N is an ambiguous base call
when referring to reads). By evaluating these histograms, we were able to
judge whether a filter was too stringent or not stringent enough. The
optimal assembly determined from this analysis was then used for gene
prediction, subcellular localization, and functional annotation.

Gene prediction. GeneMark-ES v2 was used for gene prediction from
contigs of =3 kb (39). From each gene, we deduced the coding sequence
(CDS) and the protein translation. Partial genes, i.e., lacking a start or stop
codon, were removed from further analyses. TargetP 1.1 and SignalP 3.0
(13) were used to determine the subcellular localization of the gene prod-
ucts. TargetP determined if the protein was secretory or localized to the
mitochondria, and SignalP predicted the presence of a signal peptide or
membrane anchor. For genes involved in oxalate metabolism, the detec-
tion of a C-terminal peroxisomal target signal was provided by the PTSs
Predictor tool (37).

Even though the nuclear condition of the fungus was unknown, the
error removal algorithm of Velvet generated one consensus sequence
for allele pairs. We verified this by creating a database from each gene
plus 500 bp of its upstream sequence and then made pairwise align-
ments of the database against itself using blastn (1). Our threshold for
screening the alignments was a bit score of =2,000 and a percent
sequence identity of =92%.

Functional annotation. The Blast2GO suite (v 2.4.9) automated the
process of functional annotation from the deduced protein sequences
(18). The analysis was performed in July 2011. The order of analyses was as
follows: blastp, map, annotate, InterPro search, mergo GO, and GOSlim.
blastp retrieved the top 20 hits in the NCBI nr database and mapped the
hits by four methods to obtain their associated gene ontology (GO) terms.
The annotate rule found the most specific GO terms and their reliability,
and additional terms were then retrieved based on conserved-domain
searches of the InterPro database. All GO terms were merged and con-
densed to their broad functional categories by using the GO-Slim generic
database. Query and graphing tools within the Blast2GO suite were used
to summarize the results of the annotations.

We mined the Blast2GO output for annotations related to survival on
copper (gene products involved in oxalate metabolism and copper ho-
meostasis); the breakdown of pectin, hemicellulose, and cellulose (glyco-
side hydrolases [GHs] and carbohydrate binding module 1); lignin mod-
ification (laccases and ligninases); and the oxidative breakdown of wood
by the Fenton reaction (genes involved in H,O, metabolism, iron reduc-
tion, and quinone reduction). We also performed a blastp search (1)
against the F. radiculosa database for genes that were not found in our
annotations but that had wood decay functions in other species (E value of
<107°°). In Phanerochaete chrysosporium, these were the genes that en-
coded the low-molecular-weight glycoproteins (glp1 and glp2) (38) and
cellobiose dehydrogenase, both of which could be involved in iron reduc-
tion (28). We also searched for a low-molecular-weight peptide isolated
from the non-copper-tolerant brown rot fungus Gloeophyllum trabeum
called the Gt factor, which has iron-reducing capabilities (42), and an
oxalate efflux transporter identified from F. palustris (43). Manual cura-
tion, which involved the removal of fragments and chimeras (domains
that appear in the same gene but that appear to be unrelated) and the
validation of conserved domains and top blastp hits, was also performed.

Gene homologs of our curated set of copper tolerance and wood decay
genes were identified by a blastp search of the P. placenta MAD 698-Rv1.0
protein and S. lacrymans S7.9 v2.0 filtered gene model databases (http:
/Iwww.jgi.doe.gov/) at E values of <10~ '°° (or E values of <10>° for
proteins with <320 residues). If retrieved sequences showed more than
95% amino acid identity or were truncations of a longer sequence, only
one gene of the pair was retained. Retrieved sequences were also manually
curated before they were included in the final gene count.

Data repository. The contigs can be downloaded from EMBL/
GenBank (http://www.ncbi.nlm.nih.gov/bioproject) under WGS Bio-
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FIG 1 Pipeline used for genome assembly (A) and annotation (B). (A) The short-
read sequencing data were filtered at different stringencies to produce the original
and three filtered data sets (indicated by the four arrows). Each data set was assem-
bled with multiple k-mer values to find the assembly with the maximum N50. Each
maximum N50 assembly was subjected to a Venn analysis to identify the reads that
were in the “filtered used” region. Quality analysis of the filtered used reads indi-
cated which assembly was optimal. (B) Contigs from this optimal assembly served
as the input for gene prediction. Genes were translated to proteins. The protein
sequences were used in two workflows. The left workflow produced the top blastp
hit and the gene ontology annotation. The right workflow involved signal motif
identification. The combined annotations were then mined for functions related
to wood decay and copper tolerance.

Project 72357 as the v1.0 assembly. The sequences, top blastp hits, and
localization motifs of the manually curated set of copper tolerance and
wood decay genes are also summarized in Table S1 in the supplemental
material.

RESULTS

Pipeline. An overview of the steps that we developed for genome
assembly and annotation is shown Fig. 1. The first goal was to
identify an optimal assembly from the progressively filtered read
sets (Fig. 1A). The second goal was to predict genes from the
contigs in the optimal assembly and use the protein translations to
determine subcellular localization and function (Fig. 1B). The
genomic resource was then mined for functions related to copper
tolerance wood decay.

Short-read sequencing and filtering. Error rates of the ¢pX
control for each paired-end read were 1.20% and 1.09%. The fre-
quency of the base quality scores for the original data set is shown
in Fig. S1A in the supplemental material. There was a total of 8.9
Gb in the data set, with the majority (>2.5 Gb) exhibiting high-
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TABLE 1 Metrics from the original (VO) and filtered (VF1, VF2, and VF3) Velvet assemblies that had the maximum N50 values”

Mean k-mer

Max N50 coverage Max contig Estimated genome No. of used No. of unused No. of contigs
Assembly k (kb) (X) length (kb) size (Mb) reads (M) reads (M) >100 bp (K)
VO 45 66.2 61.6 341.2 33.1 86.6 31.1 15.4
VF1 51 65.8 57.0 347.0 33.6 85.1 28.7 16.9
VE2 37 23.7 50.1 148.1 31.0 46.1 16.8 11.2
VE3 37 24.0 52.5 148.1 30.9 46.1 16.7 14.3

@ Half the assembly is covered by contigs with a size of N50 or larger; k-mer coverage is the number of times a k-mer was seen among the reads; k, k-mer length; max, maximum; M,

million; K, thousand.

quality scores. About 0.5 Gb, however, had the lowest-quality
score of B. Having defined a bad score as =D, a histogram of the
frequency of bad scores by read position showed an exponential
increase, indicating that the relationship was cumulative; i.e., once
a read went bad, the rest of the read was also likely to be bad (see
Fig. S1B in the supplemental material). The number of reads and
number of ambiguous base calls in each data set after progressive
filtering are listed in Table S2 in the supplemental material. DO
had 117.7 million reads. F1 removed 4.0 million reads and 5.3
million N’s. F2 removed an additional 50.9 million reads and 7.0
million N’s, and F3 removed another 49,000 reads and 49,700 N’s.

Assembly. The effects of various k’s on the N50 of the Velvet
assemblies from the original data set DO and the filtered data sets
DF1, DF2, and DF3 are shown in Fig. S2 in the supplemental
material. In general, the lowest N50 values were at the extremes of
the k values tested, with one maximum N50 at some intermediate
value of k. An unexplained drop in the N50, however, was ob-
served for the DF2 assembly at a k of 35. Maximum N50 values for
DO, DF1, DF2, and DF3 were at k values of 45, 51, 37, and 37,
respectively.

Optimal assembly. Based on the assembly metrics alone, it was
difficult to assess which of the four maximum N50 assemblies was
optimal (Table 1). The VO assembly had the greatest maximum
N50 (66.2 kb) and the highest average k-mer coverage (61.6X).
The VF1 assembly, on the other hand, had the largest k (k of 51)
and the longest maximum contig length (347 kb). Maximum N50
values of VF2 and VF3 were both about one-third of those of VO
and VFI, and the maximum contig lengths were both between
one-third and one-half of those of VO and VF1. The estimated
genome size ranged from 30.9 to 33.6 Mb, with the largest being
from VF1. The number of reads used in the VO and VF1 assem-
blies was not quite twice the number of used reads from VF2 and
VF3, and the number of unused reads was about one-third of the
number of used reads, regardless of the assembly. The number of
contigs (>100 bp) was greatest for the VF1 assembly (16.9 thou-
sand [16.9K]) and fewest for the VF2 assembly (11.2K). Overall,
the majority of the contigs were quite short (e.g., only 861 contigs
were =3 kb in the VF1 assembly). By converting k-mer coverage to
nucleotide coverage (47), we obtained the following nucleotide
coverage values for each maximum N50 assembly: 146X for VO,
167X for VF1, 95X for VF2, and 100X for VF3.

The Venn analysis gave us a more concrete guide for identify-
ing an optimal assembly. We were able to use the distribution of
quality scores and N’s of the filtered used reads to directly assess
how the filters were affecting the assemblies. For the VO assembly,
there were 28.2 million unused reads that were not filtered, 2.9
million unused reads that were filtered (moot reads), and 1 mil-
lion filtered used reads (see Fig. S3A in the supplemental mate-
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rial). The intersection is moot because the reads were already re-
moved by Velvet, and subsequent removal by the filter was
redundant. For the VF1 assembly, there were 14.0 million unused
reads that were filtered, 14.7 moot reads, and 36.2 million filtered
used reads (see Fig. S3B in the supplemental material).

A closer examination of the 1 million filtered used reads of the
VO assembly showed that they were of very low quality and had
many ambiguous base calls (Fig. 2). The majority (58%) of the
bases had bad scores (B or D) (Fig. 2A). More than 50% of
the reads had bad scores starting at read position 35, and 100% of
the reads had bad scores starting from read position 44 (Fig. 2B).
There was an abundance of long N-mers =5 (Fig. 2C), and the
number of N’s per read was =5 (Fig. 2D). There were about 6,000
N-mers greater than a 35-mer in length, and there were 6,400
reads that had more than 40 N’s per read. The frequencies of
N-mers of lengths of 1 to 4 ranged from 71,564 for an N-mer of 1
to 1,147 for an N-mer of 4. The frequencies of 1 to 4 N’s per read
ranged from 52,268 to 307, respectively. Since k equals 45 for the
VO assembly, the k-mers from these used reads would certainly
contain long stretches of low-quality sequence. Therefore, we rea-
soned that the accuracy of the VO assembly could be improved by
removing these 1 million reads with F1. This was corroborated by
the assembly metrics (Table 1), where we saw an increase in the
specificity or k of the VF1 assembly (k = 45 for VO, and k = 51 for
VF1), with only a minor reduction in the maximum N50 (maxi-
mum N50 = 66.2 for VO, and maximum N50 = 65.8 for VFI).

Figure 3 charts a similar analysis of the 36.2 million filtered
used reads of the VF1 assembly. This time, however, the majority
of the reads were of acceptable quality. Only 10% of the bases had
bad scores (Fig. 3A), and the percentage of reads with a bad score
did not exceed 50% until read position 74 (Fig. 3B). Even if we
consider that 10% of 36.2 million reads equals 3.62 million reads
with bad scores, the frequencies of numbers of N-mers of =5 (Fig.
3C) and N’s per read of =5 were extremely low. The longest N-
mer was a 22-mer, and there were only 27 N-mers greater than a
10-mer. The maximum number of N’s per read was 26, and there
were only 595 reads with more than 10 N’s per read (Fig. 3D). The
frequencies of numbers of N-mers of <5 were as follows: 3.4 mil-
lion for an N-mer of 1; 53,083 for an N-mer of 2; 757 for an N-mer
of 3; and 287 for an N-mer of 287. The frequencies of <5 N’s per
read were as follows: 3.3 million for 1 N per read; 116,784 for 2 N’s
per read; 5,872 for 3 N’s per read; and 1,539 for 4 N’s per read.
Given that the total number of bases in the contigs of the VF1
assembly was 6.5 GD, it was unlikely that these single N's would
affect the assembly since they were well below the 1% SNP rate
that was shown previously not to affect accuracy of the Velvet
assembly in tests with simulated data (48). Therefore, we con-
cluded that VF1 was our optimal assembly, obviating the need to
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FIG 2 Quality analysis of the reads in the original data set that were in the
filtered used region (see the shaded region of Fig. S3A in the supplemental
material). The bar charts plot the percent distribution of the quality scores (A),
the percentage of reads with a bad base by read position (B), the frequency of
N homopolymers (C), and the frequency of N’s per read (D). The filter re-
moved reads with 38 or more bad bases.

carry VF2 and VF3 through a similar Venn analysis. In hindsight,
we can now further interpret the assembly metrics of Table 1.
Comparing VF1 to VF2, we observed a 1.4X loss of specificity (k
dropped from 51 to 37, respectively) and a 2.8 X decrease in the
maximum N50 (65.8 and 23.7, respectively). The decreases in
maximum N50 and maximum contig length were larger than the
drop in k-mer coverage, suggesting that high-stringency filters
caused the complete dropout of contigs rather than a progressive
decrease in coverage.

The distribution of contigs in our optimal assembly, VF1, were
as follows: 361 contigs = 20 kb, 3 kb = 500 contigs < 20 kb, and
100 bp = 16,001 contigs << 3 kb. The 861 contigs that were =3 kb
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FIG 3 Quality analysis of the reads in the first filtered data set that were in the
filtered used region (see the shaded region of Fig. S3B in the supplemental
material). The bar charts plot the percent distribution of the quality scores (A),
the percentage of reads with a bad base by read position (B), the frequency of
N homopolymer lengths (C), and the frequency of N’s per read (D). The filter
removed reads with one or more bad bases.

covered 28.4 Mb, or 84.5% of the genome, for an estimated ge-
nome size of 33.6 Mb. Of these 861 contigs, 392 had no internal
gaps. The gap frequency histogram (not shown) showed 2 peaks:
123 gaps at =10 bp and 24 gaps at 195 bp. The largest single gap
was 283 bp. It should be noted that Velvet converts ambiguous
base calls in the reads to A’s and reserves N’s to denote gaps of a
known size but an unknown sequence.

Gene prediction. A total of 9,262 complete genes were pre-
dicted from the VF1 assembly. Long contigs (=20 kb) and short
contigs (=3 kb and <20 kb) produced 8,137 and 1,125 gene pre-
dictions, respectively. The gene statistics are listed in Table 2,
along with values reported previously for S. lacrymans (12) and P.
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TABLE 2 Comparison of gene descriptive statistics for F. radiculosa, S.
lacrymans, and P. chrysosporium"

Value

Descriptive statistic F. radiculosa  S. lacrymans  P. chrysosporium

No. of complete genes 9,262 11,238 10,048
Avg gene length (bp) 1,817 1,600 1,667
Avg CDS length (bp) 1,432 1,022 1,366
Avg intron length (bp) 70 77 64
Avg exon length (bp) 221 222 234
Avg no. of exons/gene 6.5 5.6 5.9

% GC content of CDS ~ 53.8 48.0° 53.2

@ Gene statistics for S. lacrymans monokaryon S7.9 v1.0 and P. chrysoporium v2.0 were
taken from data reported previously by Eastwood et al. (12) and Vanden Wymelenberg
etal. (41), respectively.

b’ D. C. Eastwood, personal communication.

chrysosporium (41). All gene statistics for F. radiculosa and P.
chrysosporium were within 10% of each other. Comparing F. ra-
diculosa with S. lacrymans, average intron and exon lengths were
within 10%; the gene lengths, percent GC contents of CDSs; and
numbers of exons/gene were within 15%j and numbers of com-
plete genes and average CDS lengths were within 30%.

TargetP recognized 287 gene products as being localized to the
mitochondria and 1,213 as being secreted. For the gene products
localized to the mitochondria, SignalP identified 188 with signal
peptides and 99 with membrane signal anchors. For the secreted
products, SignalP found 986 with signal peptides and 227 with
signal anchors. SignalP found another 250 gene products not lo-
calized by TargetP, 103 of which had signal peptides and 148 of
which had signal anchors. A total of 1,750 proteins were localized
by TargetP and SignalP.

Annotation. Results of the Blast2GO analysis (9,262 total pre-
dicted genes) showed that 5,407 genes (58%) had GO annotations,
985 genes (11%) were mapped but had no annotations, 1,833
genes (20%) could not be mapped, and 1,037 genes (11%) had no
product matches in the NCBI nr database (E value threshold set to
1E—3). Overall, most of the translated proteins exhibited a high
level of similarity with at least one gene product in the nr database
(80%, or 7,459 genes, had top blastp hits with E values equal to or
less than 1E—20). The greatest number of top blastp hits were
against P. placenta (2,973 top hits) and S. lacrymans (2,910 top
hits). The types (and distributions) of GO level 2 annotations were
as follows: metabolic process (3,072 genes), cellular metabolic
process (1,702 genes), localization (676 genes), biological regula-
tion (495 genes), cellular component organization (295 genes),
response to stimulus (246 genes), signaling (193 genes), develop-
mental process (128), and multicellular organismal process (103
genes).

Genes for copper tolerance. The numbers of putative gene
models with functions related to oxalate metabolism are shown in
Table 3. A notable difference was the absence of oxalate efflux
transporters in F. radiculosa and P. placenta. There was also more
variation in the number of gene homologs detected for glyoxylate
dehydrogenase-like proteins and oxalate decarboxylase than for
citrate synthase, aconitase, isocitrate lyase, malate synthase,
malate dehydrogenase, and oxaloacetate hydrolase. More varia-
tion means that one of the species had a gene count that was at
least =3 from the F. radiculosa count. Of the F. radiculosa oxalate
metabolism genes, one isocitrate lyase (gene 415) and three
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TABLE 3 Numbers of putative gene models with functions related to
copper tolerance in F. radiculosa and their homologous sequences in P.
placenta and S. lacrymans

No. of putative gene models

Gene annotation F. radiculosa  P. placenta S. lacrymans

Oxalate metabolism

Citrate synthase 3 3 4
Aconitase 2 4 2
Isocitrate lyase 2 2 2
Glyoxylate dehydrogenase-like® 6 5 3
Malate synthase 1 1 1
Malate dehydrogenase 3 2 4
Oxaloacetate hydrolase 1 2 1
Oxalate decarboxylase 7 4 3
Oxalate efflux transporter 0 0 1
Subtotal 25 23 21
Copper homeostasis
Copper-transporting ATPase 3 4 2
Copper homeostasis CutC” 1 1
Subtotal 4 5 3
Total 29 28 24

“ The F. radiculosa annotations were mitochondrial cytochrome or protein, but the
sequences were homologous (E value of <107 '%°) to the deduced protein of gene 1257,
which had a top blastp hit to the cytochrome c-dependent glyoxylate dehydrogenase of
F. palustris.

b The E value threshold was lowered to 10~ °° because at least one of the F. radiculosa
sequences was short (<320 residues).

glyoxylate dehydrogenase-like gene products (genes 1257, 1757,
and 2821) carried peroxisomal target signals, and four oxalate
decarboxylase genes (genes 5380, 6399, 7157, and 8686) carried
signal peptide motifs for an extracellular function.

Among the genes with roles in regulating copper concentra-
tions (Table 3), there were three copper-transporting ATPases
and one copper homeostasis CutC gene in F. radiculosa. The only
major difference was that one copper-transporting ATPase gene
(gene 4719) had no homolog in S. lacrymans. Of the four F. ra-
diculosa genes, one copper-transporting ATPase (gene 974) en-
coded a signal peptide.

Genes for wood degradation. Twelve glycoside hydrolase
(GH) families that had putative roles in lignocellulose degradation
are listed in Table 4. The majority of the GH genes in F. radiculosa
(74%) possessed signal peptide motifs. The species that were con-
sidered dissimilar lacked homologs to one or more F. radiculosa
genes. One GH5 cellulase (gene 4419), which had a conserved
domain for carbohydrate binding module 1, had no homologin P.
placenta, while four of the other GHS5 cellulases (genes 440, 508,
509, and 7362) had no homologs in S. lacrymans. Of the five GH5
cellulases that had homologs in S. lacrymans, however, some were
more numerous, and the total number of GH5 cellulases for each
of the three species was close (9 or 10 genes). Two GH28 proteins
(genes 532 and 3577) had no homologs in P. placenta, and four
GH28 proteins (genes 189, 1512, 1513, and 3577) lacked ho-
mologs in S. lacrymans. Two GH43 genes (genes 2569 and 2570)
also had no similar sequences in P. placenta or S. lacrymans. An-

aem.asm.org 2277


http://aem.asm.org

Tang et al.

TABLE 4 Numbers of putative gene models with functions related to
wood degradation in F. radiculosa and their homologous sequences in P.
placenta and S. lacrymans

No. of putative gene models

Gene annotation F. radiculosa P. placenta S. lacrymans

Glycoside hydrolases
GH2 possible 3-mannosidase 3 6 2
GH3 possible B-glucosidase or 6 6 9
B-xylosidase
GHS5 cellulase 9 10 9
GHS5 BgIC endoglucanase 3 7 3
GHS6 cellobiohydrolase 0 0 1
GHI10 related to 3 3 1
endo- 3-xylanase”
GH12 related to 2 3 2
endo-B-glucanase”
GH28 polygalacturonase and 8 7 4
rhamnogalacturonase
GH43 3 1 1
GH51 a-L-arabinofuranosidase 1 2 1
GH53 arabinogalactan 1 2 1
endo-1,4-B-galactosidase
GHe61? 2 3 3
GH115 a-glucuronidase 2 1 1
Subtotal 43 51 38
Cellulose binding
Carbohydrate binding module 1° 2 0 8
Subtotal 2 0 8
H,0, metabolism
Alcohol oxidase and alcohol 6 6 4
oxidase-like
Aryl-alcohol oxidase 4 3
Copper radical oxidase 3 3 3
Catalase 3 6 3
Subtotal 16 18 10
Lignin modification
Laccase 2 3 4
Multicopper oxidase 2 3 2
Low-redox peroxidase 1 2 0
Subtotal 5 8 6
Iron redox cycling
Iron reductase 3 5 2
Quinone reductase 4 7 3
Iron binding glycoprotein” 1 1 0
Cellobiose dehydrogenase 0 0 2
Subtotal 8 13 7
Total 73 90 69

“ The E value threshold was lowered to 10> because at least one of the F. radiculosa
sequences was short (<320 residues).

b The number of genes with a carbohydrate module 1 binding domain was detected by a
keyword search of each species database.

“ Gene 4419 is also a GH5 cellulase.
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other prominent difference was the absence of GH6 cellobiohy-
drolase in F. radiculosa and P. placenta. The remaining four fam-
ilies (GH2, GH3, GH5 BgIC endoglucanase, and GH10) were
distinguished by differences in the numbers of homologs detected,
but no consistent pattern was observed. The GH12, GH51, GH61,
and GH115 families all had similar numbers of homologs (within
*1 of the F. radiculosa gene count). Another related finding con-
cerned the number of genes with cellulose binding motifs (Table
4). There were 2 genes with carbohydrate binding module 1 in F.
radiculosa, none in P. placenta, and 8 in S. lacrymans.

Among the genes involved in H,0, metabolism (Table 4), a
notable discovery was that S. lacrymans had no homolog to the
four F. radiculosa aryl alcohol oxidases (genes 5573, 8290, 8291,
and 8299). S. lacrymans also had two fewer homologs than either
species when alcohol oxidase-like genes were compared, and both
F. radiculosa and S. lacrymans had three catalase homologs, com-
pared to six for P. placenta. The numbers of copper radical oxi-
dases, on the other hand, were more consistent across species. The
numbers of signal peptides found for the F. radiculosa alcohol
oxidase-like protein, aryl-alcohol oxidase, copper radical oxidase,
and catalase genes were 0, 3, 3, and 1, respectively.

A difference observed among the lignin modification genes
(Table 4) was the presence of low-redox peroxidase homologs in
F. radiculosa and P. placentabut notin S. lacrymans. In addition, S.
lacrymans had two more laccase homologs than F. radiculosa. The
numbers of multicopper oxidases, however, were similar among
all three species. Motifs for extracellular localization were found
on all the F. radiculosa lignin modification genes except for one
multicopper oxidase.

A comparison of the iron redox genes displayed some interest-
ing differences (Table 4). Although an iron binding glycoprotein
was found in F. radiculosa and P. placenta, none was detected in S.
lacrymans. In contrast, neither F. radiculosa nor P. placenta had
cellobiose dehydrogenase genes, but two homologs were found in
S. lacrymans. The numbers of homologs to the F. radiculosa iron
reductases and quinone reductases varied, with P. placenta and S.
lacrymans exhibiting the highest and lowest gene counts, respec-
tively. Another feature of the iron redox genes of F. radiculosa was
the relatively low number of secretion motifs. One iron reductase
had a signal peptide, and one iron binding glycoprotein had a
signal anchor. Genes showing similarity to the Gt factor (15 amino
acids) were not detected.

DISCUSSION

Our results showed that it was entirely feasible to produce a com-
prehensive set of structurally and functionally annotated genes for
a basidiomycete fungus using only short-read sequencing. Our
approach utilized a paired-end strategy because it was known to
increase the N50 by 3-fold compared to single-end reads in Esch-
erichia coli (5). The rationale for selecting a 76-nt read length was
because it approximated the 60-nt read length barrier of Saccha-
romyces cerevisiae (5). The read length barrier is the threshold
above which assemblies fail to improve and below which assem-
blies deteriorate (5). Furthermore, we selected Velvet because it
was known to produce highly accurate assemblies (6, 10, 33), even
in the presence of 1% sequencing errors or single-nucleotide poly-
morphisms (48). This was critical, since short-read sequencing
has a higher error rate than Sanger methods, and in our case, we
did not know whether the genome that we sequenced was haploid
or diploid. Our search for allelic pairs produced few candidates,
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suggesting either that DNA isolations came from haploid hyphae
or that the error removal algorithms in Velvet caused sequence
differences of allelic pairs to be simplified to a single consensus
sequence.

Once we knew that we could produce an assembly with our
data, we proceeded to develop a systematic method for refining
the assembly. Our approach used stepwise filters to create smaller,
higher-quality data sets. By varying the k for each data set, we were
able to find the value of k that produced the assembly with the
maximum N50 value (47). Having identified the maximum N50
assemblies for the unfiltered and filtered data sets, our next goal
was to find the threshold for filtering. We developed a Venn anal-
ysis to identify the filtered used reads and then assessed their qual-
ity. By performing this analysis, we showed that the best assembly
from the four data sets (original data set plus 3 filtered data sets)
was not the one with the largest maximum N50 but, rather, was
the assembly with the maximum k or specificity. Analysis of the
quality of the filtered used reads showed that a high-stringency
filter caused reductions in N50 with only minor gains in accuracy,
while a low-stringency filter produced modest gains in N50 at the
expense of accuracy.

The gene prediction tool GeneMark-ES v2 was chosen because
it was shown previously to be accurate and sensitive when tested
on the genomes of nine different fungal species (39). For basidio-
mycetes like F. radiculosa, the branch point sequence, which
guides lariat formation during splicing, is conserved (27).
GeneMark allows for the presence and absence of branch point
sequences in the intron model, which gives the algorithm more
flexibility to correctly locate intron boundaries. This version of
GeneMark also predicts genes ab initio, meaning that the hidden
Markov model trains directly on the assembly, and a separate EST
data set to train the algorithm is not needed.

However, genomic analysis based on short-read sequencing
alone has its limitations. The first is that without EST or other
RNA sequence data, there was no way to validate CDS predictions
or predict genes from splice sites that use donor and acceptor
sequences other than the canonical GT-AG introns. The frequen-
cies of GC-AG introns are 0.6% in Caenorhabditis elegans (14),
0.7% in mammals (4), and 1.0 to 1.2% in the Ascomycota (35).
For the Basidiomycota, genome surveys of noncanonical splice
site frequencies have not yet been reported, but initial data suggest
that the rate may be as high as 3%. In a survey of four genes, 1/38
introns had a GC-AG splice site in Armillaria mellea (31). Another
limitation is that without longer reads from a another platform,
we were unable to join the contigs into the longer scaffolds that
characterized the G. clavigera (10) and S. macrospora (33) assem-
blies. In spite of these limitations, we were still able to predict the
sequences of over 9,000 genes, assign functional annotations to
58% of the genes, and then identify 102 genes with potential roles
in copper tolerance and wood decay.

A comparison of the F. radiculosa gene descriptive statistics
with those obtained previously for P. chrysosporium (41) and S.
lacrymans (12) showed that the average exon length was within
6%, the average intron length was within 10%, and the average
number of exons/gene was within 15%. Since these wood decay
saprobes are from different taxonomic orders, we would expect
the greatest evolutionary pressure to be exerted on keeping the
average exon length the most similar, which was what we ob-
served. A comparison of the deduced protein sequence similarity
showed that F. radiculosa was most closely related to P. placenta,
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with S. lacrymans coming in right behind. This was expected, how-
ever, since F. radiculosa and P. placenta exhibit similar biologies
and taxonomical relationships. They are both highly copper tol-
erant (19, 20). They cannot decay wood unless it is in direct con-
tact with moisture, and they belong to the order Polyporales. S.
lacrymans, on the other hand, is less copper tolerant (20, 22), has
the ability to translocate water and decay wood that is not in direct
contact with moisture, and belongs to the order Boletales.

We found some notable differences among the putative gene
homologs with roles in copper tolerance. The first difference was
that only S. lacrymans had a homolog of the characterized oxalate
efflux transporter from F. palustris (43). This finding was surpris-
ing, since both F. radiculosa and P placenta are known to secrete
some of the highest levels of oxalate in response to high copper
concentrations (20). The absence of genes for oxalate transport
may indicate that F. radiculosa and P placenta have evolved a novel
structure for this gene product. The second discovery was that S.
lacrymans had no homolog of one of the copper-transporting
ATPases. Since copper-transporting ATPases prevent intracellu-
lar concentrations of copper from becoming toxic in non-wood-
decaying fungi (45), it is possible that this homolog may contrib-
ute to the higher levels of copper tolerance that distinguish F.
radiculosa and P. placenta from S. lacrymans.

A more subtle difference was the variation in the number of
genes involved in oxalate metabolism. The greater number of
glyoxylate dehydrogenase genes than oxaloacetate hydrolase genes
in F. radiculosa and P. placenta suggests that the shortcut pathway,
which produces oxalate directly from glyoxylate, may function in
these two highly copper-tolerant brown rot species. This contrasts
with the longer pathway that has been described for F. palustris,
where oxalate production proceeds through the intermediates
malate and oxaloacetate (32). Another distinction was that S.
lacrymans had the fewest homologs of glyoxylate dehydrogenase
and oxalate decarboxylase. It remains to be determined, however,
if this difference contributes to the smaller amount of oxalate se-
creted by this species.

Although all three species showed many similarities in the
numbers and types of putative genes involved in the oxidative and
hydrolytic decay of wood, when differences were found, the gen-
eral pattern observed was that F. radiculosa and P. placenta exhib-
ited more similarities than did F. radiculosa and S. lacrymans. For
example, GH6 cellobiohydrolase and cellobiose dehydrogenase
were found in S. lacrymans but not in F. radiculosa and P. placenta.
Or, we observed the opposite pattern. Aryl alcohol oxidases, a
low-redox peroxidase, and an iron binding glycoprotein were
found in F. radiculosa and P. placenta but not in S. lacrymans. For
the GH5 cellulases and the GH28 pectinases, F. radiculosa and P.
placenta shared more homologs than did F. radiculosa and S. lacry-
mans. There were only two exceptions where F. radiculosa and P.
placenta differed. F. radiculosa had two GH43 homologs that were
absent in both P. placenta and S. lacrymans, and P. placenta lacked
any gene products with carbohydrate domain module 1.

Results of gene expression studies have shown an active role of
many glycoside hydrolases during the growth of P. placenta (30,
40) and S. lacrymans (12) on wood (or microcrystalline cellulose).
Several of these genes were homologous to the F. radiculosa genes.
For example, in S. lacrymans, five of the GH5 cellulase homologs
exhibited increased expression levels on wood (genes 355683,
361086, 362272, 433208, and 433209) (12). Two of these genes
(genes 355683 and 433209) had carbohydrate binding module 1
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domains and were homologous to F. radiculosa gene 4419. Of the
GHS5 cellulase homologs found in P. placenta, four showed in-
creased expression levels (genes 115648, 121713, 121831, and
95568) and one exhibited decreased expression levels (gene
117690) on wood (30, 40). Other homologous genes that showed
increased expression levels on wood were GH2 (genes 114395 and
57564), GH3 (gene 46915), GH10 (genes 113670 and 105534),
and GH28 (gene 111730) in P. placenta (30, 40) and GH10 (gene
349170), GH28 (gene 453971), and GH61 (genes 335267 and
465649) in S. lacrymans (12). Thus, it appears that many of these
homologous glycoside hydrolases are expressed and are likely re-
sponsible for the enzymatic breakdown of pectin, cellulose, and
hemicellulose.

Oxidative decay in brown rot fungi involves the highly reactive
hydroxyl free radical produced chemically by the Fenton reaction
(Fe** + H,0, + H" = Fe’* + - OH + H,0) (2,21, 25, 26). These
highly reactive but short-lived free radicals are capable of ran-
domly fragmenting long molecules of cellulose by scission (25).
Unlike the role that the glycoside hydrolase genes play in polysac-
charide degradation, there are still many unresolved questions
concerning the origins of the Fenton reactants. For example, in
oxalate-producing brown rot fungi, laccase has been proposed to
be a necessary participant. It causes a one-electron abstraction
from hydroquinones to produce semiquinone radicals that, in
turn, interact with other chemicals in a series of redox reactions to
produce the Fenton reactants (44). Gene expression data linking
increased oxalate production with laccase, however, have not yet
been reported. Only an increased expression level of laccase has
been observed (gene 111314 in P. placenta [40] and gene 362730 in
S. lacrymans [12]), and the increases in expression levels observed
on wood were relatively low. It is possible, however, that the lack
of evidence could be attributed to the timing of the analysis. Hy-
droxyl free radical attack has been associated with incipient decay,
during which the hydroxyl free radicals cause an increase in wood
pore size (15, 23). On the other hand, most studies have been
conducted when the gene expression levels of the later-acting
hemicellulases and cellulases were high (12, 30, 40).

Another issue is that theoretical calculations predict that the
action of laccase alone is sufficient to generate enough Fenton
reactants for incipient decay (44). If so, then why do we see
increased expression levels of genes for H,O, production dur-
ing brown and dry rot decay? An extracellular-acting alcohol
oxidase and a copper radical oxidase exhibited increased ex-
pression levels in S. lacrymans (gene 439506) (12) and P. pla-
centa (gene 56703) (40), respectively. However, with regard to
iron and quinone reduction, there were no differentially ex-
pressed quinone reductase genes in S. lacrymans (12) but in-
creased expression levels of three iron reductases (30) and one
1,4-benzoquinone reductase (30, 40) in P. placenta.

It is clear that we still do not understand many of the complex
relationships that tie the observed copper tolerance of brown rot
fungi to oxalate production and the generation of Fenton reac-
tants. Furthermore, we cannot ignore that almost half the pre-
dicted gene sequences still had no annotations, and for those that
did, they are only as good as the evidence codes upon which they
are based. Once a genome is sequenced, however, we possess a
powerful tool that can systematically interrogate and track the
network of biological processes that make nutrients quickly avail-
able to the fungus while ensuring its survival during the harsh and
changing conditions of extracellular digestion.
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