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Abstract

The prediction of the correct b-sheet topology for pure b and mixed a=b proteins is a critical intermediate step toward the
three dimensional protein structure prediction. The predicted beta sheet topology provides distance constraints between
sequentially separated residues, which reduces the three dimensional search space for a protein structure prediction
algorithm. Here, we present a novel mixed integer linear optimization based framework for the prediction of b-sheet
topology in b and mixed a=b proteins. The objective is to maximize the total strand-to-strand contact potential of the
protein. A large number of physical constraints are applied to provide biologically meaningful topology results. The
formulation permits the creation of a rank-ordered list of preferred b-sheet arrangements. Finally, the generated topologies
are re-ranked using a fully atomistic approach involving torsion angle dynamics and clustering. For a large, non-redundant
data set of 2102 b and mixed a=b proteins with at least 3 strands taken from the PDB, the proposed approach provides the
top 5 solutions with average precision and recall greater than 78%. Consistent results are obtained in the b-sheet topology
prediction for blind targets provided during the CASP8 and CASP9 experiments, as well as for actual and predicted
secondary structures. The b-sheet topology prediction algorithm, BeST, is available to the scientific community at http://
selene.princeton.edu/BeST/.
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Introduction

Many approaches have been introduced to address the three

dimensional protein structure prediction problem, and can be

divided broadly into homology modeling, fold recognition and first

principles based methods. Recent reviews provide detailed

accounts of each of these classes of protein structure prediction

techniques [1–4].

The hierarchical theory of protein folding has gained a lot of

support over the last few decades [5–9]. A number of first

principles based structure prediction algorithms use the hierarchi-

cal theory of protein folding to divide the extremely complex

protein structure prediction problem into a number of subprob-

lems tackling local and tertiary structural features of the protein

[10–15]. An important intermediate step is the prediction of the

arrangement of b-strands in a protein, that is the b-sheet topology

prediction problem. Given that the knowledge gained at each

intermediate step of a hierarchical algorithm is used to narrow the

three dimensional search space of the protein, the b-sheet

prediction stage provides invaluable information with respect to

spatial proximity of non-consecutive amino acids along the

sequence of the protein chain. Further, the importance of the b-

sheet topology is reflected in the fact that an isolated b-strand can

be stabilized only in the presence of a hydrogen bonding ladder

with another b-strand in the protein. The main challenge with the

prediction of b-sheets is the presence of non-local hydrogen bonds.

It is noteworthy that the b-sheet topology prediction is regarded as

the primary bottleneck towards the three dimensional structure

prediction, as evidenced through all CASP blind predictions. This

is also evidenced from Table 1 and Table S1 which show the

number of possible b-sheets for a given number of b-strands.

In order to determine rules based on conformational and

biological observations of proteins, b-sheet topologies observed in

nature have been categorized into a broad set of categories. Some

of the earliest work in this direction classified proteins based on

tertiary structure patterns [16,17]. Subsequently, protein struc-

tures have been classified in large databases like SCOP and

CATH, based on the structural family that they belong to [18–21].

Considerable work has been carried out over the years, aiming

to determine conformational and structural restrictions in b and

mixed a=b proteins. Orengo and Thornton [22] classified mixed

a=b proteins into broad categories: the a{b sandwich where a
helices and b-strands form unique layers like a sandwich, and the

a{b rolls where the b-sheet forms folds or rolls, thus creating a

cradle for the a-helices. Similarly, extensive analysis on the

extraction and classification of the greek key motif in b-sheets has

been presented by Hutchinson and Thornton [23]. Research has

also aimed to eliminate certain b-sheet arrangements based on

topological arguments. It has been seen that crossover arrange-

ments (i.e. connections between consecutive parallel strands in a

given sheet, irrespective of whether they are actually contacting

each other) are right handed in nature [24,25]. Aside from

elaborate topological studies which present generic rules for the

elimination of strand arrangements, pointers were provided
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towards elimination of topologies under specific conditions or

preferences towards specific arrangements of b-strands. One of the

most significant reductions in the allowed topologies comes from

the contribution by Richardson [26], who presented a series of

simple rules which eliminate a large number of topologies of

proteins depending on handedness of connections and the

elimination of ‘‘knots’’, or crossing loops, in the structure. An

exhaustive analysis of b-sheets with upto 6 strands was presented

[27]. A detailed analysis of the small b-sheets displayed preference

of b-sheets with the same type of contact between pairs of b-

strands, along with a strong rejection of b-strand arrangements

which caused the formation of knots or pretzel-like structures.

A number of approaches have been used to combine the

secondary structure prediction, and the b-sheet topology predic-

tion problems. These algorithms take as input the primary

sequence of the protein, and provide the locations of the b-strands

in addition to the arrangement of these strands in the three

dimensional space. Klepeis and Floudas [28] presented an integer

linear optimization based framework, which produces a rank-

ordered list of b-strand arrangements, along with the locations of

cysteine-cysteine disulphide bridges. Starting from an amino acid

sequence, and following the separation of all a-helical residues,

their approach creates a superset of possible b-strand regions.

Using binary variables to represent residue-to-residue and strand-

to-strand contacts, the algorithm predicts the locations and

arrangements of the b-strands by maximize the hydrophobic

contact potential of contacting amino acids. Other methods have

used database driven algorithms like conditional random fields

[29] for the simultaneous prediction of b-strands and b-sheets.

A number of methods have employed data mining based

methods to derive contact potentials for pairs of residues which

are present in b strands [30–32]. Initial work in this direction aimed

to use residue pair potentials to determine the alignment of strands

[33]. The authors used a combination of neural network based

secondary structure prediction, a pair potential, and hidden markov

models for fold recognition. Other researchers presented work

where tripeptides were used to derive potentials for the prediction of

b-sheets [34]. Similarly, stochastic tree grammar was used for the

identification of b-sheets [35], although the test set for this algorithm

was very limited. Steward and Thornton [31] used an information

theoretic approach to develop sets of tables with pair information

values. Similarly, residue pairwise potentials have been derived for

residue pairs in contact, as well as offset by up to two amino acids

[30]. These pairwise potentials were used to derive a weighted

contact potential between b-strands, and to derive a rank-ordered

list of predicted b-sheet topologies. Cheng and Baldi [32] presented

an algorithm BetaPro, which predicts the arrangement of b-strands

in a three stage approach. 2D recursive neural networks were

trained to predict the contact potential between amino acid pairs.

These pseudo contact potentials are used in a dynamic program-

ming framework to determine the best alignment between pairs of

strands. Finally, a greedy algorithm is used to predict the

arrangement of b-strands, while keeping basic biological constraints.

Two approaches were further presented which combined the

BetaPro approach with integer optimization and an enhanced

greedy approach to accommodate folding cooperativity [36]. Any

contact formed between pairs of b-strands resulted in an increase in

the strand-to-strand contact potentials of neighboring strands, thus

mirroring a zipper-like cooperativity in the formation of contacts

between strands that are not sequentially continuous.

Bayesian approaches were introduced for the prediction of b-

sheet topologies [37]. Separate algorithms were presented for

proteins upto six strands, and for proteins with more than six

strands. Given the larger amount of available training data, proteins

with up to six strands have been modeled using a probabilistic

framework by combining residue pairing potentials derived out of

apriori knowledge of known b-sheet architectures. For proteins with

more than six strands, a modified approach to that of Cheng and

Baldi [32] was proposed, by introducing penalties for gaps in strand

alignments, and by accounting for the formation of b-bulges.

In this paper, we propose a framework, BeST, based on mixed-

integer linear optimization for the prediction of b-sheet tooplogies in

b and mixed a=b proteins. The algorithm addresses the problem of

b-sheet topology prdiction in all non-barrel b and mixed a=b
proteins. While a number of theoretical studies have presented the

general principles and driving forces in the formation of b-barrels

[38,39], the algorithm presented in this article targets the wide

variety of non b-barrel proteins, as it was estimated that almost

95.3% of proteins with extended conformations in the database of

sequentially dissimilar proteins used in this study do not have a

barrel like formation. The proposed approach is shown in Figure S1

and the algorithm BeST is available at http://selene.princeton.

edu/BeST. The only inputs required are the protein sequence and

its secondary structure elements. The output is a rank-ordered list of

the best predicted b-sheet topologies. Large-scale testing on 2102

proteins reveals greater than 78% average precision and recall

within the top five predictions.

Results

The b-sheet topology prediction approach requires as input

only the sequence and secondary structure of a target b or mixed

a=b protein. For the assignment of secondary structure for this

work, we use the dictionary of secondary structure of proteins,

DSSP [40]. Based on the DSSP algorithm, PROMOTIF [41] was

used to determine the native arrangement of the b-strands of the

protein. A number of metrics have been used for the evaluation of

the accuracy in prediction of the b-sheet topology. These include

Precision, Recall and Matthews Correlation Coefficient, which are

described by the following equations, respectively.

Precision~
TP

TPzFP
ð1Þ

Recall~
TP

TPzFN
ð2Þ

MCC~
TP � TN{FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(TPzFN)(TPzFP)(TNzFN)(TNzFP)
p : ð3Þ

In the expressions shown, the terms TP,FP,TNandFN refer to

true positive, false positive, true negative and false negative

contacts, respectively.

Table 1. The number of motifs possible for a protein with n
strands (n!X2n{2).

Strands Number of Motifs Strands Number of Motifs

2 2 3 12

4 96 5 960

6 11520 7 161280

8 2580480 9 46448640

10 928972800 11 2:0437 � 1010

doi:10.1371/journal.pone.0032461.t001
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PDBSelect25 Data Set
In order to extensively test the accuracy of the proposed

algorithm, we have used the current PDBSelect25 dataset, where

the pairwise sequence similarity between any pair of proteins is less

than 25%. The dataset consists of 2102 proteins with at least three

strands, with 595 b and 1417 mixed a=b proteins. A graph

showing the distribution of the number of proteins with number of

strands is provided in Figure S2.

The weighted average precision, recall, and MCC results for the

entire data set, for the top 25 generated solutions are presented in

Figure 1. The weighted average precision for any given number of

solutions is given by:

Precision~

PN
n~1 precn �NprotnPN

n~1 Nprotn

ð4Þ

Here, precn is the average precision observed among all proteins

with n strands, while Nprotn is the number of proteins with n

strands. Similar expressions were used for the evaluation of the

weighted average recall and correlation coefficient.

As can be seen from Figure 1, we achieve for the top solution

precision, recall and MCC of about 63%, 62% and 0.48

respectively. When the top five solutions from the model are

considered, the average precision, recall and MCC increase to

about 79%, 78% and 0.71, respectively. As the number of

solutions considered is increased to 25, the average precision and

recall values increase gradually, and take up a value close to 84%

and 81%, respectively. Table 1 shows that the number of

arrangements of b-strands increase significantly with the number

of strands in the protein. Even with the large number of

arrangements of strands possible in proteins, we observe a very

large degree of accuracy in average precision and recall values in

the top 25 generated solutions over the entire data set.

Figure S3 shows the distribution of the average precision and

recall results for varying number of strands, when the number of

solutions considered are the top 1, 5, 10, 15, 20 and 25,

respectively. It is observed that proteins with smaller number of

strands (i.e., less than or equal to 7) reach high values of precision

and recall within the top five solutions. As expected, proteins with

three strands reach almost 100% precision and recall within the

top five solutions. While a small degree of fluctuation is seen with

respect to the precision and recall values for proteins with large

number of strands, these could be classified as outlier points, given

that the number of proteins that these bars represent are very few.

Further, as would be expected, we see an almost monotonic

change in average precision and recall percentage values as the

number of b-strands (upto 20 b-strands) in the proteins increase.

In order to analyze the effectiveness of the dynamic program-

ming algorithm in assigning the right amino acid pairs for any

correct strand alignment, the fraction of correctly assigned amino

acid pairs for each pair of strands was evaluated for the

PDBSelect25 data set. Backbone hydrogen bonds between pairs

of amino acids in b-strands are identified. If an amino acid is

observed to form backbone hydrogen bonds with more than one

partner, the nearest partner is identified as the correct contact.

Among the correctly predicted pairs of b-strands in any topology

prediction [41], 67.3% of amino acid pairs were correctly aligned

to each other.

In a different classification of the results, Figure S4 shows the

accuracy of results in b and mixed a=b proteins. It is observed that

the performance of precision and recall is superior in the case of

the mixed a=b proteins. The explanation is that more local

contacts were observed in the case of the mixed a=b proteins in the

PDBSelect25 data set, when compared to the pure b proteins. This

could be due to the presence of a-helices in these proteins, which

would cause a certain degree of compartmentalization in the b-

strand register, thus encouraging the formation of local contacts. A

second explanation can be postulated based on the derivation of

the pseudo-contact potential. The number of mixed a=b proteins

exceed the number of pure b proteins significantly, and the

pseudo-contact model may be biased towards the mixed a=b set.

Figure 1. Changes in the average precision, recall and mcc values over the number of solutions.
doi:10.1371/journal.pone.0032461.g001
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Out of the 916 proteins used in the model by Cheng and Baldi

[32], only 187 could be considered pure b proteins. Finally, it is

seen that the mixed a=b proteins formed a smaller number of

sheets than the pure b proteins, when the same number of strands

were considered. Given that our model aims to maximize contacts

between strands, it is expected that indirectly, the model would

aim at minimizing the number of b-sheets formed. This could

potentially be a contributing factor to the improved performance

in the mixed a=b proteins.

CASP8 and CASP9 Targets
The model has also been tested on a set of blind targets,

provided during recently concluded critical assessment of structure

prediction techniques (CASP8 and CASP9) experiments. Table S2

provides a distribution of the number of proteins over the number

of strands observed in CASP8 and CASP9 proteins. The precision

and recall observed in the top five solutions are presented in

Figure 2. As can be seen from the results, the top solution is seen to

have an average precision and recall of 66.1% and 65.8%, while

the top five solutions have the corresponding values of 75.1% and

74.4%. This shows that the approach produces similar results

when tested on a set of blind targets.

The aforementioned results were based on the actual secondary

structure assignments, generated out of DSSP [40]. However, in a

blind target structure prediction experiment, the true secondary

structure assignments are unavailable. To address this problem, we

carried out secondary structure prediction using CONCORD [42]

(http://helios.princeton.edu/CONCORD), an integer linear op-

timization based consensus secondary structure prediction ap-

proach. The predicted secondary structure for any target protein

can contain more, less or the same number of b-strands as the

native secondary structure assignment. In order to evaluate the

accuracy of the b-sheet topology prediction algorithm, a map

between predicted and actual b-strands is established. All strands

which were seen to have a mapped partner are included in the

evaluation of results. Based on the predicted secondary structure,

the top solution is seen to have an average precision and recall of

62.4% and 61.7%, respectively. The best solution among the top

five solutions predicted have precision and recall values of 72.8%

and 71.3%, respectively.

Discussion

We have presented a novel integer linear optimization based

algorithm for the prediction of b-sheet topologies in globular b and

mixed a=b proteins. The algorithm uses strand pairing potentials

derived previously [32], and modifies these values to account for any

bias to local contacts. The model consists of constraints to enforce

structural, physical and biological plausibility on all the topologies

that are predicted. Further, a number of constraints have been

introduced to restrict the number and types of non-local contacts,

thus ensuring a hierarchical nature to the sheet formation process.

The set of constraints that have been introduced are vital to

eludicating biologically and structurally meaningful topologies for

any given protein. A number of these constraints are based on

literature study of existing b and mixed a=b proteins, and can be

explained on the basis of steric, entropic or energetic consider-

ations. A significant improvement was seen in the prediction of

non-local contacts. This was brought about in part by restricting

the total number of local contacts, as well as the introduction of

hierarchical constraints defining the possible superset of non-local

contacts. This idea of co-operation between the set of strand

contacts is consistent with the idea of the zipping and assembly

model of protein folding [43]. Dill and co-workers presented this

approach to protein folding, wherein the presence of a given set of

non-local contacts restricts the movement of the remainder of the

chain, thus bringing other non-sequential parts of the primary

sequence into spatial proximity [44].

One of the key advantages of the proposed approach is its ability

to produce a rank-ordered list of b-sheet topologies for any target

protein. Hence, one would be able to analyze a small set of

potential topological solutions. For blind target proteins where the

b-sheet topology is unknown, the knowledge of the top set of

solutions, would be helpful in narrowing down the possible set of

topology solutions drastically.

The b-sheet topology prediction algorithm, BeST, is available to

the scientific community at http://selene.princeton.edu/BeST.

Methods

This section presents the b-sheet topology prediction model in

detail.

Figure 2. Top five results for proteins in the blind target test set from CASP8 and CASP9.
doi:10.1371/journal.pone.0032461.g002
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The first step for the prediction of the b-sheet topology of the

protein is the identification of the b-strand regions in the protein.

We used the Dictionary of secondary structure of proteins (DSSP)

for the identification of b strands [40]. This secondary structure

information (including positions of helices in the protein) was used

for the generation of residue-residue contact potential generation

from the method of Cheng and Baldi [32]. For any pair of strands

the best alignment score was determined by sliding one strand

across the second in parallel and antiparallel fashion. Let us denote

the strand-strand contact potentials as EP,n(si,sj) and EAP,n(si,sj),
where si and sj are indices representing strands. Given that the

pseudo contact potential is derived from database driven methods,

it is expected to have a bias towards local contacts. This can be

attributed to the asymmetric distribution of training data available

for local and non-local contacts. To correct for the bias towards

local contacts, all strand-to-strand contacts were corrected using

the following weighting scheme:

EAP(si,sj)~(1z0:5 � (sj{si)) � EAP,n(si,sj) ð5Þ

Similar corrections were carried out for parallel contacts

between pairs of strands. We define three sets of binary variables:

y(i,j) for any residue pair (i,j) denoting a contact between them;

and wAP(si,sj) and wP(si,sj) denoting antiparallel and parallel

contacts between strands (si,sj), respectively.

Since all contacts are commutative, all binary variables are set

up such that the second index is greater than the first. The

objective of the model is to maximize the contact potential of the

predicted b-sheet topology, and takes the form:

OBJECTIVE~
X

si

X

sj

EAP(si,sj)wAP(si,sj)

z
X

si

X

sj

EP(si,sj)wP(si,sj):
ð6Þ

Several constraints are included to ensure that we obtain

physically realistic b-sheet topologies. The first set of constraints

link the binary variables for residue-residue contacts (y(i,j)) to the

binary variables for strand-strand contacts(wAP(si,sj) and

wP(si,sj)). By evaluating the strand-strand contact potentials

EP(si,sj) and EAP(si,sj), we know the best alignment of any

strand pair. We hence define two binary matrices

ResidueContactAP(i,j) and ResidueContactP(i,j), wherein en-

tries are 1 if i and j can form a contact at all. In addition, we define

parameters Strand(i) which represent the strand to which residue

i belongs. Of course, this contact would depend on whether the

strands they belong to are in contact. This condition can be

expressed as:

y(i,j)~wAP(si,sj) � ResidueContactAP(i,j)

zwP(si,sj) � ResidueContactP(i,j)

VStrand(i)~si,Strand(j)~sj,sjwsi:

ð7Þ

The constraint expresses the relation between the sets of binary

variables by enforcing that the binary variable y(i,j) is active if the

amino acids can form a contact (represented by

ResidueContactAP(i,j) and ResidueContactP(i,j)) and the cor-

responding strands are in contact (represented by wAP(si,sj) and

wP(si,sj)). Any two strands si and sj can at most form one type of

contact with each other. which becomes:

wAP(si,sj)zwP(si,sj)ƒ1 Vsjwsi: ð8Þ

A strand residue can have a maximum of two contacts.

However, this does not mean that the strand itself can only have

two contacts. It is possible for a long strand to pair up with more

than one strand on one side. Hence, the maximum number of

contacts a strand can make is taken as 3. In the entire set of

proteins, only four proteins had one strand with four contacts and

none had more than four contacts. At the same time, it is required

that each strand have atleast one contact. These constraints can be

represented as:

X

j=i

y(i,j)ƒ2Str(i)=Str(j) ð9Þ

X

sj=si

wAP(si,sj)z
X

sj=si

wP(si,sj) ƒ 3 V si ð10Þ

X

sj=si

wAP(si,sj)z
X

sj=si

wP(si,sj) § 1 V si ð11Þ

For a non barrel protein structure, the total number of contacts

does not exceed Nstr{1, where Nstr is the total number of strands

in the protein. This is expressed as:

X

si

X

sj

wAP(si,sj)z
X

si

X

sj

wP(si,sj)ƒNstr{1: ð12Þ

Since hydrogen bonding and hydrophobic collapse are believed

to be the driving force for b-strands to form sheets, the strands aim

to minimize exposed area [25,45]. Moreover, since b sheets

typically form the core of the protein, the possibility of unsatisfied

side chains forming hydrogen bonds with the solvent reduces. This

exposed area comes about when two unequal strands form a

contact, or when a contact is off-centre. In order to ensure

that strands with similar lengths form contacts, and that the

hydrogen bonding requirements of the strand are satisfied, we

enforce that the total residues contacting a given strand should lie

between (lensi{2) and (2lensiz3), where lensi is the length of the

strand si. We introduce parameters NcontactAP(si,sj) and

NcontactP(si,sj), defined as:

NcontactAP(si,sj)~
X

i[si

X

j[sj

ResidueContactAP(i,j) ð13Þ

NcontactP(si,sj)~
X

i[si

X

j[sj

ResidueContactP(i,j) ð14Þ

The constraint can hence be written out such that the total

contacts made by any strand si, which would be a product of the

above mentioned parameter with their respective binary variable,

should lie between lensi{2 and 2lensiz3. In a number of

instances, it is seen that a longer strand pairs with more than one

smaller strand on one side. While Equation 9 ensures that any

strand residue does not have more than 2 contacts, there could still

be a possibility wherein the third contacting strand is predicted to

wrap around the first strand, thus satisfying criteria for maximum

Beta Sheet Topology Prediction
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number of strand and residue contacts. In order to avoid this, we

introduce parameters Overlap(si,sj,sk), which measure the

overlap in contacting residues of strands si and sj, when both

contact strand sk. Thus, for any triplet of strands (si,sj,sk)
contacting a fourth strand sl, we impose that the overlap of atleast

one pair be zero. This is written as:

wAP(si,sl)zwAP(sj,sl)zwAP(sk,sl)ƒ2

VOverlap(si,sj) �Overlap(sj,sk) �Overlap(si,sk)§1
ð15Þ

Similar constraints can be written involving parallel contacts.

Further, it was observed that for strands making three antiparallel

contacts, at least one contact was made with its neighbors, or one

of the edge strands. A number of strands forming 3 contacts made

their third contact with a very small strand, which was typically

either its own neighbor (by merely proving to be a small extended

region following a b-turn) or at either end of the protein sequence,

thus resulting in a much smaller impact on entropy loss. This

constraint can be written as

X

sj=si

wAP(si,sj)ƒwAP(si,siz1)zwAP(si,N)z2

z wAP(1,si)zwAP(si{1,si)

ð16Þ

Based on the idea presented by Przytycka et al. recently [46],

non-local contacts can be classified into specific classes. In this

article, the authors are able to re-create 80% of existing topologies

using a small set of rules for bringing sequentially distant strands

together. At each implementation of a rule, strands ended up

forming new neighbors (i.e. a new set of strands could potentially

come together to form a contact). Hence, for any non local contact

to form (here, we define a non-local contact to be a contact

between strands si and sj such that sj§siz3), the constraint is

expressed as:

wAP(si,sj)ƒwAP(si{1,sjz1)zwAP(si{1,sjz1)

zwAP(siz1,sj{1)zwAP(siz1,sjz1)
ð17Þ

A few qualifiers for the validity of Equation 17 have been put in

place. A circular definition of neighbors has been employed, (i.e.

the strand preceding the first strand is taken as the last strand).

Similarly, the strand following the last strand is the first one in the

sequence. A similar approach was used previously while

determining the rules of formation of b-sandwich topologies in

pure b proteins [47,48]. Further, if a neighbor of a given strand is

of length two or three, we move further along in the sequence in

the same direction till we identify a valid neighbor to the current

strand. The rationale behind this idea is that a very small strand is

not influential enough to actually bring sequentially separated

parts of the protein together in space. For strands i and j such that

j~iz2, we add two additional terms to the equation, representing

the contact of strand iz1 with strands i and j. A similar set of

equations is written out for parallel contacts.

Driven by hydrophobic collapse, it is expected that the most

hydrophobic strands would form the core of the b sheet, while the

less hydrophobic and shorter strands would form the terminals on

both sides [49]. This would mean that the less hydrophobic and

shorter strands are likely to have one contact, while the more

hydrophobic or longer strands are likely to have more than one

contact. The strands are first sorted by length. Within a given

length, the strands are sorted by the number of hydrophobic

residues. Starting from the smallest strand, we postulate claim that

atleast one of the first two would have just one contact. We

continue to grow this set in a similar manner, (i.e. atleast 2 of the

first four would have one contact each, and so on). The number of

such sets created depends on the total number of strands, and one

such set is added for every five strands in the entire protein.

Past and recent work in literature have aimed to predict the

total number of hydrogen bonds in a protein, given the number of

amino acids of the protein. Stickle et al. [50] used a small set of b
proteins to derive a linear expression for the total number of

hydrogen bonds, NH , given as:

NH~0:714 �N{6:8 ð18Þ

where N is the number of amino acids of the protein. More

recently [51], a much larger data set of proteins was used to derive

a modified linear expression of the form:

NH~0:678 �N{3:35 ð19Þ

Both of these equations predict the total number of hydrogen

bonds in a globular protein. For the b-sheet prediction algorithm

presented in this article, primary interest lies among the backbone

hydrogen bonds formed between amino acids in the b-strands of

the protein. Past studies presented the total number of hydrogen

bonds (NHB) as a function of the fraction of secondary structure

elements in the protein [50]:

NHB~1:49fa �Nz0:65fb �Nz0:5 � (1{fa{fb) �N ð20Þ

where fa and fb are the fractions of a-helical and b-strand residues

in the protein, respectively. From Equation 20, we can see that the

three terms on the right hand side represent the expected

contributions of the helical, extended and coil regions, respective-

ly, to the total number of hydrogen bonds in the protein. In a

manner similar to the derivation of linear equations relating the

number of hydrogen bonds to the protein length and the fractions

of secondary structure elements presented in literature [50,51], the

number of hydrogen bonds associated with the b regions of a

protein was evaluated. By solving a least squares fit for the total

number of hydrogen bonds as a function of the fraction of each

secondary structure type, the corrected value of the coefficient for

the second term (i.e. the term associated with the b strand regions

of the protein) on the right hand side of Equation 20 is 0.638.

Since we aim to identify the arrangement of the b-strands of a

target protein, the only expression used for the prediction of total

number of residue-residue contacts in a protein is the second term

of the right hand side of Equation 20 (i.e. 0.638*fb �N). Using this

expression, restrictions are introduced on the total number of

hydrogen bonds (or ‘‘contacts’’) between amino acids in b-strands,

by allowing a 15% error range around the predicted value.

Mathematically, this is written as:

NHB,minƒ

X

i

X

j

y(i,j)ƒNHB,max Vi[si; j[sj,sjwsi ð21Þ

One of the arrangements of b-strands conspicuous by its

absence is commonly referred to as the ‘‘pretzel’’ [52], and were

used recently [53]. For any quartet of b-strands (si,sj,sk,sl) which

lie in the same b-sheet, this constraint prevents the possibility of

Beta Sheet Topology Prediction

PLoS ONE | www.plosone.org 6 March 2012 | Volume 7 | Issue 3 | e32461



arrangements which result in the four strands lining up as

(sk,si,sl,sj) or (sj,sl,si,sk). This restriction is written as:

wAP(si,sk)ƒ2{wAP(si,sl)zwAP(sj,sl) ð22Þ

Recent work has shown specific patterns that have emerged out

of the analysis of b-sandwich proteins. These proteins are

characterized by a pair of b-sheets packed against each other like

a sandwich [54,55]. The first observation was the absence of

parallel contacts between strands. Further, it was observed that for

any non-local strand pairing (si,sj) in one sheet, a counter-

balancing non-local contact between siz1 and sjz1 is observed

in the opposite sheet, thus forming an ‘‘interlock’’. These

constraints cannot be directly applied to our model, since the

aim is to able to develop a prediction algorithm for any kind of b
or mixed a=b protein. Hence, we generalize this condition to

include any quartet of strands (si,sj,sk,sl) such that sivskvsjvsl
and postulate that an interlock is formed between strand pairs

(si,sj) and (sk,sl), given by the following constraint:

X

sk

X

sl

wAP(sk,sl)§
X

si

X

sl

wAP(si,sj): ð23Þ

This constraint also encompasses the additional requirement of

each non-local contact to be a part of exactly one ‘‘interlock’’, also

observed previously in literature [55].

The advantage of creating an integer linear optimization based

model is the facility to create of a rank-ordered list of solutions. We

aim to predict a small subset of topologies for each protein. In a

number of cases, the objective function value of two topologies are

highly similar to each other. By enlisting a small subset of top

solutions, it enables us to differentiate between the topologies using

a more detailed force field at the final stage. This can be achieved

through the introduction of integer cuts. Since we are fixing the

anchor points for contacts between two strands, the integer cuts

would not involve the residue specific binary variables y(i,j). At

each iteration, the addition of an integer cut eliminates the current

top solution from the feasible set, thus forcing the model to look for

the next best solution. We divide the set of strand-strand binary

variables into two subsets: A(x) defines the subset of variables x
which are assigned value 1, while I(x) comprises of all contacts

which were not active. Let NA be the cardinality of the subset

A(x). The index x runs over all antiparallel and parallel contacts

between strands. The integer cut constraint can be written as:

X

(si,sj)[A(x)

wAP(si,sj)z
X

(si,sj)[A(x)

wP(si,sj)

{
X

(si,sj)[I(x)

wAP(si,sj){
X

(si,sj)[A(x)

wAP(si,sj)ƒNA{1
ð24Þ

Since the objective is to maximize the contact potential between

strands, most solutions would be cyclic in nature. Given that the

fraction of proteins which form b barrels is much smaller than

proteins which do not, we choose to eliminate the possibility of all

barrel-like structures (since about 4.7% of all proteins with

subsequences in extended conformations have a barrel-like struc-

ture). Given the exponentially large number of cyclic, or sub-cyclic,

solutions that are possible for a fixed number of strands, we do not

add constraints to eliminate all of them up front. Instead, we check

each solution for circular tours and sub-tours, and eliminate them

from the feasible space using integer cuts added at each iteration.

The algorithmic details of the implementation and detailed results

have been presented in the Text S1. Furthermore, a detailed analysis

of the constraints which provide statistical evidence of the validity of

each set of constraints is provided in the Text S1.

Since the prediction of strand pairings forms a set of unordered

pairs of integers, the verification of a set of basic biological

consistencies is rendered difficult. One of the primary features of

observed b-sheet topologies is the consistency of contact type along

any given face of a b-strand (i.e. all contacts of a given b-strand

along one of its two faces are either antiparallel or parallel) [36]. In

order to ensure that a consistent assignment is possible for a given

topological prediction, each predicted topology is checked for two-

colorability (i.e. we check if the predicted b-sheet topology can be

re-drawn as a two-colorable graph) [36]. To do this, all contacts

between strands in the predicted topology are re-cast as nodes of a

graph. Two ‘‘nodes’’ are connected if the corresponding contacts

share a b-strand. In addition, the two contacts should either be of

opposing natures (i.e. one should be parallel, and the second

antiparallel) or they should share at least one amino acid of the

common strand. The two-colorability of a graph is a well

established problem, and can be solved by a breadth-first search

algorithm. At the end of the algorithm, a large number of

predicted sheet topologies for the target protein are received,

which are ranked by the total strand-to-strand contact potential

defined previously. However, in a number of cases, it was observed

that the difference between the objective function values of the top

few solutions was extremely low, perhaps falling into error

tolerance limits. Hence, it becomes important to provide an

improved ranking of the predicted sheet topologies using a

detailed, atomistic level approach. Hence, we have developed a re-

ranking strategy based on torsion angle dynamics and clustering,

which would identify the top set of predicted topologies.

While a number of algorithms for the prediction of feasible

structures satisfying a sparse set of distance and dihedral angle

constraints have been presented in the literature [56,57], torsion

angle dynamics provide a very attractive alternative. Unlike

classical molecular dynamics simulations, torsion angle dynamics

algorithms combine steric-based energy terms with constraint

violation based penalty expressions, thus allowing for faster

calculations. Moreover, the primary idea moves from energy

minimization to identification of feasible structures. For our

algorithm, the CYANA package [58] proves to be a very useful

tool for carrying out torsion angle dynamics simulations. For each

predicted sheet topology, the predicted residue-to-residue contacts

are converted into lower and upper bounding distance constraints,

by using a small error tolerance on the hydrogen bond that would

be formed between contacting amino acids. These sets of bounds,

along with dihedral angle bounds on the amino acids in the b-

strands restricting them to the correct region of the Ramachan-

dran plot, are provided as input to the torsion angle dynamics

package. Using CYANA, we generate 200 feasible structures for

each predicted sheet topology.

In order to separate out the topologies from each other, we need

to assemble a small subset of representative structures from each

predicted topology. To this end, we use a traveling salesman

problem based clustering algorithm, ICON [59–62]. Here, each

feasible structure generated by CYANA is considered as a node on

a traveling salesman path. The problem is then reduced to one of

identifying the globally optimal path to navigate through each of

the ‘‘nodes’’. Once such a path is established, it is partitioned into

clusters such that the resulting clusters minimize the global sum of

intra-cluster errors.

The computational time for the algorithm depends on the

number of strands in a protein, and on the number of amino acids
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in the b-strands of the protein. For a typical eight strand protein,

the mixed-integer linear optimization formulation for the

prediction of 100 b-sheet topologies takes 5 minutes. The re-

ranking algorithm involving torsion angle dynamics and clustering

requires 10 minutes per topology to generate 200 structures.

When implemented in parallel on a cluster of nodes, the entire set

of topologies can be handled faster, depending on the number of

processors available.
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