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Abstract
Autoimmunity is thought to result from a combination of genetics, environmental triggers, and
stochastic events. Gender is also a significant risk factor with many diseases exhibiting a female
bias. Although the role of environmental triggers, especially medications, in eliciting
autoimmunity is well established less is known about the interplay between gender, the
environment and autoimmunity. This review examines the contribution of gender in autoimmunity
induced by selected chemical, physical and biological agents in humans and animal models.
Epidemiological studies reveal that environmental factors can be associated with a gender bias in
human autoimmunity. However many studies show that the increased risk of autoimmunity is
often influenced by occupational exposure or other gender biased activities. Animal studies,
although often prejudiced by the exclusive use of female animals, reveal that gender bias can be
strain specific suggesting an interaction between sex chromosome complement and background
genes. This observation has important implications because it argues that within a gender biased
disease there may be individuals in which gender does not contribute to autoimmunity. Exposure
to environmental factors, which encompasses everything around us, adds an additional layer of
complexity. Understanding how the environment influences the relationship between sex
chromosome complement and innate and adaptive immune responses will be essential in
determining the role of gender in environmentally-induced autoimmunity.
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1. Introduction
Autoimmunity is thought to result from a combination of genetics, environmental triggers,
and stochastic events. The multitude of susceptibility genes, symptoms and immunological
abnormalities suggest the involvement of numerous pathogenic pathways [1-3]. Among the
most striking of these is the contribution of gender (sex) as autoimmunity often occurs more
frequently in women [4-8]; in this review gender is synonymous with biologically
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determined sex. The influence of gender on the development of autoimmunity is most often
viewed from the standpoint of biological differences between males and females [9, 10].
However susceptibility to autoimmune disease can be impacted by environmental factors
[11] which encompass everything around us including the air we breathe, the water we
drink, the food we eat, synthetic and natural chemicals, microorganisms, radiation, industrial
by-products, and physical factors [12]. The role of environmental triggers, especially
medications, in eliciting autoimmunity has been well established in both humans and animal
models [13]. However it is unclear if idiopathic and induced disease arise by common
mechanisms [11, 14]. Additionally there is no clear understanding of the role that gender
plays in the spectrum of environmentally-induced autoimmunity [15]. These deficiencies are
significant barriers to our understanding of the totality of the autoimmune disease process.

In this review I examine the roles that gender plays in the development of autoimmunity
elicited by exposure to environmental factors with emphasis on chemical, physical and
biological agents. The definitions of chemical, physical and biological agents are based on
wording contained in the mission statement of the National Institute of Environmental
Health Sciences (NIEHS), viz. “The terms chemical, physical and biological agents, and
social environmental are interpreted broadly to include chemical and physical agents found
in the ambient environment to which humans are exposed as well as social and behavioral
influences and lifestyle choices. Chemical factors may include industrial chemicals and
solvents, air pollutants, pesticides, heavy metals, food additives, and dietary and nutritional
factors. Physical factors may include electric and electromagnetic fields, sunlight, and
radiation. Biological agents may include diet/nutrition factors, molds, mycotoxins, and
marine toxins. Social, behavioral, and cultural factors may include socioeconomic status,
neighborhood environments, psychosocial stress, social support systems, and community
and institutional influences. Exposure may occur by absorption, inspiration, ingestion,
transmission, or behavior.” Examination of all chemical, physical and biological agents that
may contribute to autoimmunity is obviously beyond the space limitations of this review.
Therefore I have selected agents where convincing data exists for autoimmunity in either
human and/or animal studies in order to examine the contribution that gender bias plays.

2. Gender in idiopathic human autoimmunity
The prevalence of idiopathic autoimmune diseases ranges between 3.2-9.4% depending
upon study parameters [16-18]. Gender ratios (Table 1) reveal that many autoimmune
diseases have a striking female predominance [5, 6, 19]. This is particularly true for
systemic autoimmune diseases such as systemic lupus erythematosus (SLE), Sjögren’s
syndrome, and mixed connective tissue disease and organ specific diseases like primary
biliary cirrhosis (PBC), chonic active hepatitis, and autoimmune thyroid diseases. However
other conditions including inflammatory bowel diseases, immune-mediated (type 1)
diabetes, and autoimmune myocarditis show little or no female predominance. Although
several explanations have been proposed to explain gender differences in idiopathic
autoimmune diseases, no consensus has been reached [4, 6, 7, 10].

3. Gender in drug-induced human autoimmunity
There is clear evidence that medications elicit autoimmune disease, most commonly a lupus-
like syndrome [13, 20]. Identification of drug-induced lupus as a subset of lupus related
diseases is strong evidence that exposure to exogenous agents can elicit autoimmunity. Such
a clear association is often not the case with non-therapeutic chemical, physical and
biological agents. This is due in large part to the fact that medications are most often taken
under medical supervision and exposure is closely monitored and can be terminated at any
time. Almost 100 drugs have been associated with lupus [20] but only two, procainamide
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and hydralazine, can be considered to pose a high risk [13] although both are seldom used
today [21]. The clinical and laboratory features of procainamide and hydralazine-induced
lupus overlap considerably with idiopathic lupus except that idiopathic disease is
characterized by greater presence of anti-double-stranded DNA antibodies,
hypocomplementemia, and glomerulohephritis [13]. The high female predominance
observed in idiopathic SLE is not observed in drug-induced lupus [13, 20], nonetheless
females are disproportionally represented. In procainamide-treated patients the male-to-
female ratio of those with lupus–like symptoms was 2:1, while for asymptomatic patients
the ratio was 5:1 [22], showing an increased presence of females in the symptomatic
patients. In hydralazine-induced lupus the incidence at three years was higher in women
(11.6%) than in men (2.8%) and was dose dependent, only occurring in men (4.9%) on the
highest dose (200 mg daily). Women treated with 200 mg daily had a high incidence
(19.4%) [23]. In a separate study the ratio of women to men with hydralazine-lupus was also
4:1 [24]. A male predominance has been observed for chlorpromazine-induced lupus but not
for other drugs [25]. Surprisingly, proposed mechanisms of drug-induced autoimmunity do
not include consideration of the sexually dimorphic nature [13, 20, 21].

4. Gender in environmentally-induced human autoimmunity
In the following sections studies of gender bias in autoimmune diseases associated with
environmental exposures have been grouped according to the type of exposure (e.g.
chemical, biological, or physical) and are summarized in Table 2.

4.1 Chemical
4.1.1. Silica—Silica exposure is associated with mining and the dusty trades, including
sandblasting, rock drilling, granite cutting, construction work, bricklaying, and cement
work. The linkage between autoimmune disease and silica exposure can be traced back to
Bramwell’s description of diffuse scleroderma in (male) stonemasons in 1914 [26]. In 2007
the US Occupational Safety and Health Administration (OSHA) estimated that almost 2
million individuals in the USA are occupationally exposed to respirable crystalline silica
[27]. Epidemiologic data provides convincing evidence of the contribution of silica exposure
to systemic autoimmunity including SLE [28-30]. Silica dust exposure is associated with
high titers of anti-nuclear antibodies (ANA) [31]. Additionally both the presence of
autoantibodies and clinical symptoms are positively linked with the intensity (e.g.
concentration and frequency) of exposure [32, 33].

Three population based control studies in North America provided evidence that silica
exposure contributes to development of SLE [28-30]. Only one of these examined the effect
of gender and found that the association between SLE and silica exposure was seen in both
sexes [30].

A meta-analysis of 16 studies examining the association between scleroderma and
occupational exposure to silica (3 cohort studies, 9 case-control studies, and 4 other designs)
determined a combined estimator of relative risk (CERR) of 3.02 (95% CI 1.24-7.35) for
males with the CERR being much higher in the cohort studies (15.49, 95% CI 4.54-52.87)
than case control studies (2.24, 95% CI 1.65-3.31) [34]. The CERR for studies in females
was 1.03 (95% CI 0.74-1.44).

A meta-analysis of 10 studies examining the association between rheumatoid arthritis (RA)
and exposure to silica (6 cohort studies, 2 case-control studies, and 2 proportionate mortality
studies) showed significant positive associated between silica exposure and RA [35]. The
relative risk was 3.43 (95% CI 2.25-5.22) for all studies, and 4.45 (95% CI 2.24-8.86) for
the 4 male cohort studies. While gender differences could not be established due to
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insufficient female studies it is interesting to note that the relative risk in the one female
cohort study was 5.08 (95% CI 3.31-7.79).

These studies argue that the gender bias in autoimmunity associated with silica exposure
suggests a male bias but this may be consistent with occupational exposure rather than a sex
influenced bias.

4.1.2. Mercury—Epidemiological analysis has suggested that exposure to mercury in an
occupational setting can be associated with increased risk of SLE [28]. Other studies suggest
that exposure elicits aspects of systemic autoimmunity but do not document specific
autoimmune diseases. Exposure to mercury during gold mining has been shown to result in
the production of autoantibodies and pro-inflammatory cytokines [36, 37], The human
populations at risk of exposure in artisanal mining communities are sizable and diverse.
Mercury is used by small scale gold miners in 50 developing countries and is a major source
of mercury contamination in the associated rural communities [38, 39]. It is believed that
between 10-15 million people, including women and children, are directly involved in
artisanal gold mining [38, 40] including over 400,000 in China alone [41]. Among 98
Brazilian gold miners, 56% of whom were male, 51% had ANA and 37% had ANoA [36];
in comparison ANA and ANoA occurred in less than 3% of diamond and emerald miners.
Anti-fibrillarin autoantibodies, a characteristic MHC-restricted response in murine mercury-
induced autoimmunity (mHgIA) [42] were not identified in serum from ANoA positive
individuals [37]. Twenty-five of the gold miners (16M/9F) had both high mercury exposure
and were ANoA positive and in this group serum IL-1β, TNF-α, and IFN-γ were
significantly higher compared to individuals with lower mercury exposures. The presence of
autoimmune diseases was not documented.

Mercury exposure can also occur from skin care products and has been documented to lead
to membranous nephropathy [43]. Mercury containing skin care products are widely used,
with one commercially successful product being available in 35 countries [44]. Although
regulated in the USA, use of mercury containing skin lightening creams has been
documented in Hispanic women on the Texas-Mexico border [45]. More recently use of
mercury containing skin-lightening creams accounted for reportable levels of urinary
mercury (≥20 g/L) in 9 of 13 individuals identified during a screen of 1,840 adult New
Yorkers [46]. All 13 were women and either Hispanic (N=11; 10 born in the Dominican
Republic) or black (n=2) between the ages of 21 and 51. The presence of autoimmune
diseases was not documented. A retrospective study of mercury-induced membranous
nephropathy identified 11 individuals aged 15 to 45 years, 10 of which were women [43];
exclusion criteria included those with SLE and those with prior renal disease or abnormal
urinary tests. Mercury exposure was due to mercury-containing pills (5 patients), skin
lightening creams (4 patients), hair drying agent (1 patient), and mercury vapor (1 patient).
Four of these patients, all female, were found to be ANA positive. Of these 2 were being
treated for rheumatoid arthritis by mercury containing pills while the other 2 had no primary
disease and were using skin-lightening cream.

Although these studies suggest that mercury exposure can elicit features of autoimmunity
they fall short of a clear demonstration between exposure and specific diseases. The
relationship between gender and induction of autoimmune features by mercury reveal no
specific sex bias. Instead the reported effects fit with occupational, cosmetic or non-
conventional therapeutic exposure.

4.1.3. Pesticides—Pesticides are known to accelerate systemic autoimmunity in murine
models of systemic lupus [47]. ANA positivity was significantly associated with lifetime
exposure to pesticides specifically to carbamate, organochlorine (including aldrin,
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chlordane, dieldrin, endrin, heptachlor, and lindane, but excluding DDT and methoxychlor),
and pyrethroid insecticides and to phenoxyacetic acid herbicides, including 2,4-D [48]. The
relationship between ANA and exposure to the herbicide bromoxynil (3,5-dibromo-4-
hydroxybenzonitrile) was examined in a study of residents of a cereal-producing region in
Saskatchewan, Canada. Female gender was found to be a positive predictor of ANA
detection [49]. Analysis of data from the Women’s Health Initiative Observational Study
(post menopausal women, ages 50-79) concluded that insecticide exposure is associated
with increased risk of autoimmune rheumatic diseases [50].

Although intriguing these studies fall short of demonstrating that a specific pesticide
exposure is associated with a particular autoimmune disease. Further studies are also needed
to clearly establish a link between pesticides and female gender bias in autoimmune
diseases.

4.1.4. Solvents—Millions of workers are exposed to solvents on a daily basis. Health
hazards may include toxicity to the nervous system [51], liver [52], kidney [53], lungs [54],
and skin [55]. Scleroderma (SSc), a rare and severe connective tissue disease, is associated
with solvent exposure [56]. A meta-analysis of seven case-control studies and one cohort
study dealing with SSc and solvent exposure found a relative risk for all eight studies of 2.91
(95% CI 1.60-5.30), and a relative risk for the seven case-control studies of 3.14 (95% CI
1.56-6.33) [57]. A more recent study extended the meta-analysis to eleven studies and found
that the relative risk was higher in men (odds ratio 2.96, 95% CI 1.89-4.64) than in women
(odds ratio 1.75, 95% CI 1.48-2.09) although adjustment for publication bias reduced the
difference between the sexes [58]. Meta-analysis of studies examining exposure to the
industrial solvent trichloroethylene (TCE) and scleroderma found an odds ratio of 2.5 (95%
CI 1.1-5.4) for men and 1.2 (95% CI 0.58-2.6) for women [59]. SSc is 3 to 5 fold more
common in women than men (Table 1) arguing that occupational exposure to solvents is not
a major risk factor in female SSc patients [56]. Whether occupational exposure to organic
solvents is a risk factor for SSc in males will require additional studies of specific solvent
exposures.

4.1.5. Smoking—A meta-analysis of recent studies that assessed the morbidity and
mortality associated with smoking found a substantial gender effect with high-level use with
the point estimate for females who smoked at high levels being 2.75 (95% CI 2.14-3.52),
higher than the estimate of 1.95 (95% CI 1.70-2.24) for males [60]. An association with
smoking has been found for RA, SLE, Graves’ disease, multiple sclerosis (MS) and PBC
[61]. Cigarette smoking is argued to be the most significant environmental risk factor for
seropositive RA [61].

Review of 17 studies, including both case-control and cohort, concluded that the relative risk
of RA is greater in men (odds ratio range 1.9-4.4) compared to women (odds ratio range
0.6-2.5) [61]. However several studies have noted an increased risk for RA in women. One
study observed that the duration but not the intensity of smoking increased the risk in
women [62]. Women who currently smoked (≥ 25 cigarettes/day) had 32% increased risk
compared to women who never smoked (relative risk 1.32, 95%CI 1.19-1.46), while those
who smoked for more than 20 years had a 27% increased risk (1.27, 95% CI 1.18-1.36). In a
separate study heavy smoking (≥ 20 pack-year; a pack-year is smoking 20 cigarettes a day
for one year) was associated with severity of RA in women including rheumatoid nodules
(p=0.01) and joint damage (p=0.02) as well as a positive correlation between smoking and
rheumatoid factor (RF) levels [63]. The relative risk of RA was found to be elevated for both
current (1.43 95% CI, 1.16-1.75) and past (1.47, 95% CI 1.23-1.76) female smokers in the
Nurses’ Health Study [64]. Risk was also increased with increasing pack-years and longer
duration and was greatest in those patients with RF positive RA. Past smoking has been
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associated with increased risk of PBC (adjusted odds ratio 1.57, 95% CI 1.29-1.91) in a
study of 1032 patients, 93% of which were female [65]. Comparison between male and
female patients with Graves’ disease suggested greater risk for female (odds ratio 2.82, 95%
CI 1.18-6.73) than male (odds ratio 0.76, 95% CI 0.27-2.16) smokers [66].

These studies suggest that smoking is a risk factor for autoimmunity in both sexes and that
both the degree of smoking (pack-years) and duration increase risk.

4.1.6. Cosmetics—Cosmetics exposure is very common, particularly among women.
Relative risk for SLE was increased in occupations involved in applying nail polish or nail
applications (odds ratio 10.2, 95% CI 1.3-12.3) [28]. An analysis of 1032 patients with PBC
(93% female) reported use of hair dye (p=0.044) and nail polish (p<0.0001) was more
frequent in patients than controls matched for sex, age group, race and geographical area
[65]. A case controlled study found that women who were occupationally exposed to
hairdressing chemicals had greater risk of developing RA (odds ratio 3.0, 95% CI 1.0-9.4)
than unexposed women [67]. Greater attention needs to be paid to occupational exposures of
women to cosmetic agents involved in hairdressing and nail polish and nail applications.

4.2 Biological
4.2.1. Infection—Infectious agents have long been considered one of the factors involved
in autoimmunity [68-70]. Of 196 SLE patients 195 had previously been exposed to Epstein
Barr virus (EBV) (odds ratio 9.3, 95% CI 2.4-57) [71]. In a case-control study of 87
Taiwanese SLE patients 82% were positive for EBV compared to 49% of 174 controls (odds
ratio 4.64, 95% CI 2.5-8.62) [72]. In both studies over 90% of the SLE patients were female;
however it is unclear if gender was a risk factor for the presence of EBV. EBV has also been
associated with MS [73]. The mechanistic significance of these findings in SLE and MS are
questionable given the lack of reproducibility in detecting the virus itself in tissue [70, 73].

4.2.2. Diet—Ingestion of L-tryptophan as a dietary supplement has been associated with
eosinophilia-myalgia syndrome (EMS) [74]. The source of L-tryptophan appeared to be a
significant risk factor in development of EMS [75]. Initial commentary suggested that EMS
had a striking sex ratio with 80% of patients being female [74] and this was confirmed by a
CDC study [76] and a study in Germany [77]. Other studies in the USA [75, 78] do not
support a gender bias. EMS bears striking similarity to Toxic Oil Syndrome (TOS) as both
include eosinophilia, severe myalgia and arthralgia [74, 78]. The TOS epidemic occurred in
Spain in 1981 as a result of ingestion of adulterated cooking oil containing crude rapeseed
oil denatured with 2% aniline [79]. The number of victims totaled over 20,000 with a
female-to-male ratio of 1.5:1 [80]. Follow-up studies have supported the 2-to-1
predominance in females [80, 81] and have noted that the prevalence of severe scleroderma-
like changes [81] and TOS-related deaths [80] are 2-to-3 fold higher in women than men.

Coeliac disease (CD) is triggered by ingestion of wheat gluten (gliadin and glutenin) and
related prolamins from rye (secalin) and barley (hordein). CD is identified by the presence
of gluten-dependent clinical manifestations, specific autoantibodies, enteropathy and genetic
susceptibility [82]. In a study of Italian patients CD was found to be over 3 times more
common in women than men, and was also diagnosed earlier and was more severe in
women [83]. North American CD patients also have a female predominance [84]. Factors
other than gluten ingestion may influence the incidence of CD. During a ten year period
beginning in the mid-1980s there was a threefold increase in incidence of CD in Swedish
children [85]. Moreover the two fold increased risk for CD in girls compared to boys (1.9,
95% CI 1.7-21) was constant throughout the epidemic. Possible causative factors for the
epidemic include changes in infant feeding practices [86].
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4.3 Physical
4.3.1. Ionizing radiation—Radiation therapy for treatment of Hodgkin’s disease results
in a number of thyroid diseases including hypothyroidism and Graves’ disease [87]. In adult
patients who developed hypothyroidism the chief risk factor was gender with women having
a relative risk 1.6 times greater than men. In contrast, sex was not a risk factor in
development of Graves’ disease.

There is some evidence that environmental radiation may be associated with features of
thyroid autoimmunity [88]. The presence of antibody positive hypothyroidism was found to
be almost two fold greater in female atomic bomb survivors in the Nagasaki Adult health
Study cohort [88]. Individuals presumed exposed to atmospheric releases of I131 from the
Hanford nuclear site in southeastern Washington State showed an overall cumulative
incidence of autoimmune thyroiditis of 18.2% with women affected (23.1%) more than men
(13.1%) [89]. Autoimmune thyroiditis, which as defined by the presence of thyroid
peroxidase antibodies or anti-thyroid microsomal antibodies, did not increase with
increasing radiation dosage.

The Chernobyl disaster at the Chernobyl Nuclear Power Plant in Ukraine in April 1986
resulted in some 5 million individuals in Ukraine, Belarus and the Russian Federation being
exposed to radioactive fallout [90]. In a study of a large Ukrainian cohort (of over 12,000
individuals with mild to moderate iodine deficiency who were under 18 years of age and had
thyroid radioactivity measurements at the time of the disaster) it was found that in minimally
exposed individuals (<0.14 Gy) females were 5 time more likely to have autoimmune
thyroiditis than men. However at higher radiation doses men appeared to have higher risk
(odds ratio 3.26, 95% CI 1.34-7.93 at 0.96-1.49Gy).

4.3.2. Ultraviolet radiation—Abundant evidence exists for a profound effect of the
environment on the causality of multiple sclerosis [91, 92]. The latitude gradient is a
unambiguous example of how the environment affects the risk of MS with prevalence
increasing from 5–10 per 100,000 near the equator to around 200 per 100,000 at latitude
59°N, an increase of more than 20 fold [91]. In a New Zealand study the latitudinal gradient
of MS prevalence was mostly driven by European females [93] while in Canada a rapid
increase in female to male sex ratio for individuals born between 1931-1980 was suggested
to have environmental origins [94]. The environmental differences responsible are suggested
to include climatic factors, dietary characteristics, infectious agents, and/or gene-
environment interactions. Another possibility is solar radiation. A study of prevalence data
for six regions in Australia revealed a negative correlation between ultraviolet radiation
(UVR) and MS prevalence [95]. In a meta-analysis of 650 prevalence estimates from 321
peer-reviewed studies the age standardized prevalence was 4.09 (95% CI 2.80-5.39) for
male and 7.19 (95% CI 4.84-9.53) for female cases per 100,000 per degree of latitude.
However this difference was not statistically significant, arguing that there is no
distinguishable difference in the female/male ratio of age-standardized prevalence with
latitude [92]. Although this global analysis conflicts with the increasing prevalence sex ratio
over time in Canada [94] and over latitude in New Zealand [93], it has been argued that
environment is more important than genetics (and sex) in the causation of MS [91].
Although sun exposure has an association with SLE [28] no SLE prevalence gradient has
been found in relation to latitude around the world [96].

5. Gender in animal models of autoimmunity
Like their human counterparts animal models of autoimmunity can show gender bias (Table
3). Female predominance is found in lupus-prone strains including the prototypical
(NZBW)F1 [97] and F1 hybrids of NZBxSJL [98] and SWRxSJL [99]. Sex bias in the
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(NZBW)F1 has been associated with sex hormones [100] but can also be segregated by
mixed breeding of the F1 progeny [101]. The resulting NZM strains show considerable
phenotypic differences including presence or absence of female bias (Table 3). In the six
surviving NZM strains only one, NZM2410, has no sex bias while the others show varying
degrees of female bias NZM88>2328>391=2758>64 [102]; however sex bias does not
predict disease severity [101, 102]. Modulation of single gene expression in different genetic
backgrounds can also influence disease expression in a gender specific manner. For
example, lupus-prone MRL-Faslpr and MRL-Fas+/+ have no sex bias [97]. Rendering both
strains C1q deficient does not modify disease expression in MRL-Faslpr mice while C1q
deficient MRL-Fas+/+ mice have accelerated disease which was more severe in females
[103].

Disease in the lupus-prone BXSB mouse has a male predominance [97]. The sex bias in
male BXSB mice is due to an abnormality in its Y chromosome, designated Yaa (Y-linked
autoimmune acceleration) [104]. The Yaa mutation is due to translocation of the telomeric
end of the X chromosome onto the Y chromosome resulting in duplication of the Toll-like
receptor 7 (Tlr7) gene [105]. Interestingly, aged female C57BL/6 mice and young lupus-
prone female (NZBW)F1 mice have TLR7 dependent CD11c+ B cells which produce
autoantibodies [106]. The percentage of these B cells in blood correlated with the age of
female RA patients [106]. Intriguingly plasmacytoid dendritic cells (pDCs) from women
produce markedly more interferon-α (IFN-α) in response to virus-encoded TLR7 ligands
than pDCs from men [107]. This suggests that gender may contribute to the vital role that
pDCs and type I INF play in autoimmunity [108]. Another gene showing gender bias in
lupus mice is interferon regulatory 5 (Irf5). Irf5 is a human lupus susceptibility factor [109]
and its expression is higher in autoimmune female mice than in strain and age-matched
males and absence of the estrogen receptor was associated with reduced Irf5 [110].

NOD mice, a model for diabetes mellitus type 1 [111], have significant female bias which is
in contrast to the human disease [5]. This increased susceptibility may be due to estrogen
activation of STAT4 leading to IL-12 induction and an enhanced Th1 immune response
[112]. Experimental autoimmune encephalomyelitis (EAE), an animal model of MS,
exhibits strain specific gender bias with female SJL, A.SW and NZW being more
susceptible that males while B10.PL and PL/J have a male bias and the C57BL/6 and NOD
have no sex bias [113].

In total these observations argue that genetic factors, in addition to gender, play a significant
role in spontaneous expression of autoimmunity. However it is also becoming clear that sex-
linked (Tlr7) and non-sex linked (Irf5) genes can confer susceptibility to autoimmunity and
influence gender bias.

6. Gender in animal models of environmentally-induced autoimmunity
The female gender predominance in many human autoimmune diseases has resulted in many
investigators using female animals, mostly mice, in studies of autoimmune disease induced
by environmental factors. Although this severely limits identifying a gender bias, it does at
least establish whether or not females are sensitive to the environmental factor under
investigation. In the following sections I have identified as clearly as possible whether
gender comparisons were done, or if a single sex was used. Environmental exposures have
been grouped according to the type of exposure (e.g. chemical, biological, or physical) and
are summarized in Table 4.
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6.1 Chemical
6.1.1. Silica/Asbestos—Very few studies have examined induction of autoimmunity by
silica and/or asbestos in animals. Male and female lupus-prone NZM 2410 mice exposed to
crystalline silica had reduced survival, increased proteinuria, circulating immune complexes
and autoantibodies [114]. Female C57BL/6 mice exposed to asbestos had a significantly
higher frequency of ANA and renal IgG deposits compared to controls [115]. These studies
do not allow determination of gender bias in silica/asbestos-induced murine autoimmunity.

6.1.2. Mercury—Although the role for mercury exposure in human autoimmune disease
remains to be fully explored, there is clear evidence that mercury produces systemic
autoimmunity in several animal models, especially mice [11, 116]. Murine mercury–induced
autoimmunity (mHgIA) can be induced by numerous exposure routes and chemical forms
including subcutaneous injection or oral ingestion of HgCl2, inhalation of mercury vapor,
and dental or peritoneal implantation of mercury containing dental amalgam [11]. The
severity of disease is dependent upon strain [117, 118] and dose [119, 120]. Gender also
contributes to susceptibility because although the A.SW strain develops the MHC class II
restricted ANoA response at a lower body burden of HgCl2 than the B10.S, the males of
both strains are less susceptible than females [120]. This female bias is not universal because
male (SJLxC57BL/6)F1 mice are much more likely to develop ANoA than females while
(SJLxDBA/2)F1 mice show no gender preference in autoantibody development [117].

Mercury also influences autoimmune disease in spontaneous and induced animal models.
Mercury exposure exacerbates autoimmune disease in female (NZBxNZW)F1 mice
[121-123]. Both male and female BXSB mice showed evidence of accelerated disease
following mercury exposure, although the severity was greater in male mice carrying the
Yaa mutation [124]. Older female mice (8 weeks) proved more sensitive to mercury-induced
acceleration of autoimmunity than younger (4 weeks) females [124]. Lupus-prone
(SWRxSJL)F1 male and female mice showed no exaggeration of spontaneous autoimmunity
following mercury exposure [125]. However, metal exposure did suppress the spontaneous
the anti-Sm response and the serum IgG concentration in male mice. Mercury exposure in
female NOD mice suppressed development of insulitis and postponed the onset of diabetes
while inducing hypergammaglobulinemia and IgG renal deposits [126]. Mercury
exacerbated myocarditis induced by coxsackievirus B3 infection in male BALB/c mice
[127].

These studies suggest that here is evidence for greater sensitivity of female mice to mHgIA.
However it is possible that more significant gender bias in mHgIA may be obscured by the
considerable differences in response among mouse strains.

6.2.3. Pristane—Tetramethylpentadecane (TMPD, or pristane)-induced lupus is a murine
model of SLE [128]. In female mice a single i.p. dose of TMPD leads to antibodies against a
number of autoantigens although the frequency, level, and time of onset can vary between
strains [129]. Female SJL/J mice exposed to TMPD exhibit greater mortality, kidney disease
and autoantibodies than their male counterparts [130]. Induction of autoimmunity has been
examined in SJL mice in which the testes-determining Sry gene has been deleted from the Y
chromosome [131]. Using both the pristane-induced lupus and EAE models it was
determined that the XX sex chromosome complement confers greater susceptibility to
autoimmune disease than XY. Whether female bias is common among other mouse strains
exposed to pristane remains to be investigated.

6.2.4. TCDD—Dioxins are waste contaminants [132]. The most potent is the halogenated
aromatic hydrocarbon 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) which is a known
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contaminant in Agent Orange, a herbicide used in the Vietnam War. TCDD has significant
but complex effects on autoimmunity. Chronic TCDD treatment suppresses the development
of autoimmune diabetes in female NOD mice [133] and systemic autoimmunity in female
(NZBW)F1 mice [134]. This suppression is likely mediated via the interaction of TCDD
with its specific receptor, the aryl hydrocarbon receptor (AhR), leading to regulatory T cell
(Treg) differentiation [135]. There is some indication that TCDD can promote autoimmunity
when exposure occurs during fetal or early neonatal development. C57BL/6 mice that
received TCDD mid-gestation showed signs of male biased autoimmunity with increased
autoantibodies and immune deposits in 48 week old male mice compared to females [136].
These observations suggest that mid-gestation exposure to TCDD may provide a model for
the age related increase of SLE in males. Gender differences in autoimmune parameters
were observed following TCDD mid-gestation in both C57BL/6 and lupus–prone SNF1
mice at 24 weeks of age [137]. The mechanisms responsible for these complex gender
biased outcomes following TCDD exposure at different life stages are unknown.

6.2.5.Pesticides—Chronic exposure to organochlorine pesticides such as o,p’-
dichlorodiphenyltrichloroethane (DDT), methoxychlor, and chlordecone is known to
exacerbate autoimmunity in ovariectomized female (NZBW)F1 mice [47]. Chronic
chlordecone treatment also reduced time to onset of autoantibody and renal disease in a
dose-related manner in ovary-intact (NZBW)F1 mice but not female BALB/c mice [138].
Because chlordecone has estrogenic effects it was hypothesized that chlordecone might
increase circulating prolactin levels, and that prolactin might be an important mediator of
chlordecone effects on autoimmunity [139]. However chlordecone decreased serum
prolactin in ovariectomized female (NZBW)F1 mice in a dose dependent manner arguing
that chlordecone exacerbates autoimmunity independent of prolactin [139].

6.2 Biological
6.2.1. Infection

Infection with Theiler’s murine encephalomyelitis virus (TMEV) causes an immune-
mediated demyelinating disease similar to human multiple sclerosis [140, 141]. The disease
shows strain dependence and is biphasic with acute encephalitis in the first few weeks
followed by chronic demyelination [142-144]. Although male mice are susceptible [142]
many studies use female mice [145] with female SJL/J mice being susceptible while female
C57BL/6 mice are not [146]. In SJL mice the early phases of the disease have been shown to
have a female bias [145] with male mice having more severe neurologic deficits later in the
disease [143]. This pattern of gender bias in SJL mice has been argued to closely resemble
human MS where males have more severe deficits and deteriorate faster than females [143].

Myocarditis can be induced in mice with coxsackievirus B3 virus [147]. Both strain and
gender differences have been observed with susceptible mice being male 129/J and female
SWR/J and C57BL/6 while both sexes of BALB/c and CD-1 are non-susceptible [148].
Using female mice another study also found variations in susceptibility to coxsackievirus
B3-induced myocarditis in a number of strains with A.BY, A.SW, A.CA and C3H.NB mice
having late stage myocarditis and heart-specific autoantibodies [149]. In another study
fulminant myocarditis occurred in male but not female BALB/c mice [150]. Female BALB/c
mice given exogenous testosterone and progesterone had tenfold more virus in their hearts
than mice given estradiol [151]. Increased inflammation in male BALB/c mice was not due
to increased viral replication in the heart but to increased proinflammatory cytokines
including IFN-γ [152]. The same group also found that sex related differences in BALB/c
mice also included elevated TLR4 and reduced Treg in male mice and increased IL-4 and
Treg in female mice [153]. Castration of male BALB/c mice reduced inflammation in the
heart but IL-4+CD4+ T cells and Foxp3+Treg were increased [154].
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6.2.2. Diet (caloric restriction)
Caloric restriction (CR) ameliorates the clinical course of EAE in female SJL and C57BL/6
mice [155] and male Lewis rats [156, 157], reduces the histological severity of disease in
salivary glands of female (NZBW)F1 mice [158], delayed onset of autoimmune disease
[159], and improved survival in female (NZBW)F1 mice [160]. A common finding was
reduction of proinflammatory cytokines [155, 158, 161] supporting the belief that one of the
major benefits of dietary restriction is reduction of system-wide inflammatory processes
[162].

6.3 Physical
6.3.1. Ultraviolet radiation

Ultraviolet radiation (UVR) dramatically increased mortality and accelerated autoimmunity
in male compared to female BXSB mice [163]. No effect was seen with autoimmune prone
MRL-Faslpr or (NZBW)F1 mice nor with nonautoimmune BALB/c or B10.A mice.
Filtering out UVB negated the effect. Interestingly UVA was found to prolong survival and
improve immune function in female (NZBW)F1 mice [164]. Why male BXSB mice are so
exquisitely sensitive to UVB radiation in not known, but suspicion must fall on the Yaa
mutation. It is also worth noting that mice lacking the autoantigen SS-A/Ro60 develop a
lupus-like disease and can display increased sensitivity to UV radiation [165].

7. Conclusions
Autoimmunity in humans often, but not always, has a female bias. The mechanisms for
gender bias in human autoimmunity are not clear and studies which further our
understanding of sex differences will be highly rewarding. This will include an
understanding of the contribution of sex chromosomes particularly the X chromosome in
modulating the innate and adaptive immune pathways involved in autoimmunity [10, 113].

Numerous epidemiological studies have demonstrated an association between environmental
factors and increased risk of autoimmunity in humans. This is most clearly demonstrated by
drug-induced autoimmunity. For some environmental exposures there is a female gender
bias (e.g. Toxic Oil Syndrome, eosinophilia-myalgia syndrome, coeliac disease), others
show increased risk for both sexes (e.g. smoking and RA), and others increase the risk of
gender biased diseases (e.g. cosmetics and increased risk of SLE, PBC, RA). However,
underlying many of these studies is the likelihood that the presence or absence of gender
bias is influenced by occupation (e.g. silica), sex biased activity (e.g. cosmetics) or non-
conventional therapeutic/cosmetic exposure (e.g. mercury). Nonetheless the recognition of
potential gender bias in autoimmunity associated with environmental factors identifies
potential areas of investigation regarding possible mechanisms.

Animal model studies have proven of great use in defining disease mechanisms in
environmentally-induced autoimmunity [11]. However examination of gender bias has been
limited because many studies have been restricted to female animals because of the known
female bias in human autoimmune diseases. Restriction of gender and/or strain in animal
model studies does not help confirm gender bias and may actually obscure gender effects.
This is because it is clear that gender bias can be strain specific [163] suggesting an
interaction between sex chromosome complement and background genes [113]. This
observation has significant implications for human studies as it suggests that even within
gender biased autoimmunity there may be individuals in which gender does not contribute to
disease and vice versa. Environmental exposure likely adds an additional layer of
complexity. Determining the interaction between environmental factors and sex hormones
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and sex chromosome function will be essential in defining the contribution that sex
differences play in environmentally-induced autoimmunity.
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Gender is a significant risk factor with many autoimmune diseases.

Increased risk of autoimmunity is influenced by gender biased activities.

Gender bias may result from the interaction between sex chromosomes and background
genes.
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Table 1

Gender ratios in human autoimmune diseases.

Autoimmune Disease Ratio (female/male)

Sjögren’s syndrome 9:1 - 20:1

Primary biliary cirrhosis 9:1 - 10:1

Systemic lupus erythematosus 9:1

Antiphospholipid antibodies 9:1

Mixed connective tissue disease 8:1

Chonic active hepatitis 8:1

Autoimmune thyroid diseases 8:1

Systemic sclerosis (scleroderma) 3:1 - 5:1

Rheumatoid arthritis 3:1 - 4:1

Myasthenia gravis 2:1 - 3:1

Multiple sclerosis 2:1 - 3:1

Autoimmune thrombocytopenic purpura 2:1

Diabetes mellitus type 1 1:1 - 2:1

Ulcerative colitis 1:1

Autoimmune myocarditis 1:1.2

See text for details.
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Table 2

Gender in human environmentally-induced autoimmunity

Environmental Agent Autoimmune Disease Gender Predominance

Silica SLE None

SSc Male (occupational?)

RA None

Mercury ANA, inflammatory cytokines None

Membranous nephropathy Female (cosmetic or non-conventional
therapeutic)

Pesticides ANA Female

Solvents (TCE) SSc Possible male (occupational?)

Smoking RA Increased risk for both sexes, higher in males

PBC Increased risk (female predominant disease)

Graves’ disease Female

Cosmetics SLE Increased risk (female predominant disease)

PBC Increased risk (female predominant disease)

RA Increased risk (female predominant disease)

Infection (EBV) SLE Increased risk (female predominant disease)

Diet

-L-tryptophan EMS Female or none

-Adulterated cooking oil TOS Female

-Gliadin CD Female

Ionizing radiation Hypothyroidism Female

Graves’ disease None

Ultraviolet radiation MS Global none; Canada female, New Zealand
female

See text for details.
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Table 3

Gender in animal models of autoimmunity

Animal Model Autoimmune Disease Gender Predominance

Spontaneous

MRL-Faslpr SLE None

MRL-Fas+/+ SLE None

(NZBxNZW)F1 SLE Female

(NZBXSJL)F1 SLE Female

(SWRxSJL)F1 SLE Female

NZB SLE, Autoimmune hemolytic
anemia (AIHA)

Female (moderate)

NZM SLE Female NZM88, 2328, 391,
2758, 64

No sex bias NZM2410

BXSB SLE Male

NOD Type 1 diabetes Female

Genetically modified

C1q deficient MRL-Fas+/+ SLE Female

C1q deficient MRL-Faslpr SLE None

Induced

EAE Multiple sclerosis (MS) Female SJL, A.SW, NZW
Male B10.PL, PL/J
No sex bias C57BL/6, NOD

See text for details.
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Table 4

Gender in animal models of environmentally-induced autoimmunity

Environmental Agent Animal Model/Strain Autoimmune disease Gender Predominance

Silica NZM2410 SLE None

Asbestos C57BL/6 Silica-induced (lupus-
like)

Only female tested

Mercury B10.S Mercury-induced
(lupus-like)

Female

A.SW Mercury-induced
(lupus-like)

Female

(NZBxNZW)F1 SLE Only female tested

BXSB SLE Greater severity in
male mice

BALB/c Coxsackievirus B3
induced myocarditis)

Only male tested

Pristane SJL Pristane-induced
(lupus-like)

Female

TCDD C57BL/6 (mid-gestation
exposure)

TCDD-induced
(lupus-like)

Male

Pesticides (NZBxNZW)F1 SLE Only ovariectomized
females tested

Infection SJL TMEV-induced MS Greater severity in
male mice

BALB/c Coxsackievirus B3
induced myocarditis)

Greater severity in
male mice

Caloric restriction SJL, C57BL/6 EAE (suppression) Only female tested

(NZBxNZW)F1 SLE (suppression) Only female tested

Ultraviolet radiation BXSB SLE Male

See text for details.

J Autoimmun. Author manuscript; available in PMC 2013 May 1.


