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Abstract

The admission noncontrast head computed tomography (CT) scan has been demonstrated to be one of several
key early clinical and imaging features in the challenging problem of prediction of long-term outcome after acute
traumatic brain injury (TBI). In this study, we employ two novel approaches to the problem of imaging clas-
sification and outcome prediction in acute TBI. First, we employ the novel technique of quantitative CT (qCT)
image analysis to provide more objective, reproducible measures of the abnormal features of the admission head
CT in acute TBI. We show that the incorporation of quantitative, rather than qualitative, CT features results in a
significant improvement in prediction of the 6-month Extended Glasgow Outcome Scale (GOS-E) score over a
wide spectrum of injury severity. Second, we employ principal components analysis (PCA) to demonstrate the
interdependence of certain predictive variables. Relatively few prior studies of outcome prediction in acute TBI
have used a multivariate approach that explicitly takes into account the potential covariance among clinical and
CT predictive variables. We demonstrate that several predictors, including midline shift, cistern effacement,
subdural hematoma volume, and Glasgow Coma Scale (GCS) score are related to one another. Rather than being
independent features, their importance may be related to their status as surrogate measures of a more funda-
mental underlying clinical feature, such as the severity of intracranial mass effect. We believe that objective
computational tools and data-driven analytical methods hold great promise for neurotrauma research, and may
ultimately have a role in image analysis for clinical care.
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Introduction

Noncontrast head computed tomography (CT) is the
imaging test of choice in the initial rapid assessment and

triage of acute head trauma patients. The initial head CT di-
rectly guides immediate management decisions, including the
need for surgical decompression or for invasive intracranial
pressure (ICP) monitoring. Follow-up head CT at 2–6 h after
injury is often performed to assess for growth of intracranial
hematomas or brain herniation requiring surgical decom-
pression.

In addition to its role in immediate management decisions,
the initial noncontrast head CT is known to carry longer-term
prognostic significance following acute traumatic brain injury
(TBI). Previous studies have converged upon several key early
clinical and imaging parameters that are most highly predic-
tive of long-term outcome: age, components of the Glasgow

Coma Scale (GCS) score at admission, pupillary reactivity,
hypotension, hypoxia, and certain features of the admission
head CT (Chestnut et al., 2000; Eisenberg et al., 1990; Huk-
kelhoven et al., 2005; Husson et al., 2010; Jacobs et al.,
2010a,2010b,2011; Maas et al., 2007,2005; Marshall et al., 1991;
MRC CRASH Trial Collaborators, 2008; Murray et al., 2007;
Nelson et al., 2010; Perel et al., 2009; Steyerberg et al., 2008;).

In the current study, we focus on two new approaches to
the problem of imaging classification and outcomes predic-
tion in acute TBI. Our first strategy focuses on features of the
admission head CT. The best-known head CT classification
systems in acute TBI, the Marshall CT classification (Marshall
et al., 1991) and more recent Rotterdam classification (Maas
et al., 2005), are based on qualitative features of the admission
head CT. These include the presence or absence of any acute
traumatic intracranial abnormality (Marshall et al., 1991),
presence or absence of significant midline shift, usually
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defined as exceeding 5 mm (Maas et al., 2005; Marshall et al.,
1991), presence or absence and severity of basal cistern
effacement (Maas et al., 2005; Marshall et al., 1991), presence
or absence of a large intracranial hematoma, defined as a
hematoma with volume exceeding 25 cubic centimeters
(Marshall et al., 1991), presence or absence of acute traumatic
subarachnoid hemorrhage (SAH; Maas et al., 2005), and
presence or absence of epidural hematoma (EDH; Maas et al.,
2005). We explore the feasibility and potential strengths of
quantitative CT (qCT), a quantitative approach to the evalu-
ation and description of the abnormal features of the admis-
sion head CT. In particular, we use computer-aided image
analysis to derive quantitative measures of those qualitative
or subjective CT features that have been previously validated
as predictors of outcome (Chestnut et al., 2000; Eisenberg
et al., 1990; Hukkelhoven et al., 2005; Husson et al., 2010;
Jacobs et al., 2010b,2011; Maas et al., 2005,2007; Marshall et al.,
1991; MRC CRASH Trial Collaborators, 2008; Murray et al.,
2007; Nelson et al., 2010; Steyerberg et al., 2008), and explore
the potential of these quantitative CT features to improve
outcome prediction. It has been proposed in general that more
quantitative, objective analysis of brain imaging studies in
head trauma, with development of standardized metrics for
abnormal features, may improve prediction of outcome, as
well as triage to more appropriate early treatment (Saatman
et al., 2008).

Our second strategy is to apply principal component
analysis (PCA) to predictor variables prior to constructing a
regression model of outcome on those variables. A challeng-
ing feature of outcomes prediction in general is the existence
of numerous potential predictor variables. Many predictors
are not independent, but rather are correlated with one an-
other because they are governed at least in part by the same
underlying mechanism. The inclusion of variables that are
significantly correlated with one another can invalidate the
results of regression analyses. In particular, this approach
may result in a spurious lack of statistical significance of one
or more predictor variables, inaccurate regression coefficients,
and erroneous conclusions regarding relationships among the
dependent and predictor variables. In the current study, we
use PCA to demonstrate partial collinearity of certain pre-
dictor variables. Then, through reduction of a set of clinical
and quantitative CT predictors to a smaller number of non-
covarying predictors using PCA, we both corroborate certain
key features of the prior Rotterdam CT classification, and
demonstrate improved predictive power through the use of
computer-aided quantitative image analysis.

Methods

Study population

One hundred ninety-one patients (ages 13–97 years) ad-
mitted to the neurosurgery intensive care unit of San Fran-
cisco General Hospital for acute closed head trauma from
September 2008 to June 2009 were scheduled for assessment
of the Extended Glasgow Outcome Scale (GOS-E) score at 6
months following injury. Admission GCS scores ranged from
3–15, with a mean of 10.6, standard deviation of 4.4, and
median of 13. Of these, 115 patients (60%) completed the GOS-
E assessment at 6 months, 71 patients (37%) were lost to fol-
low-up, and 5 patients (3%) declined the GOS-E interview. Of
the 115 patients who completed GOS-E assessment at 6

months, 2 patients with a concurrent diagnosis of acute an-
eurysm rupture at the time of TBI, 4 patients whose earliest
head CT had been performed after acute surgical intervention,
2 patients whose initial head imaging consisted of post-
contrast head CT, 22 patients at the extremes of age ( £ 16
years of age or > 75 years of age), and 19 patients whose head
CT studies demonstrated motion, severe rotation, or exclusion
of a portion of the head from the field of view or other tech-
nical difficulties precluding automated computer evaluation,
were excluded. For the final study population of 66 patients,
admission GCS scores ranged from 3–15, with a mean of 11.2,
standard deviation of 4.2, and median of 13. All GOS-E scores
were assigned through structured interviews performed by a
research assistant or research nurse who generally had no
specific knowledge of the patient’s admission head CT results
or admission GCS score, although he or she was generally
aware of the patient’s age or age range. The interviewers had
no knowledge of the hypotheses investigated in this study
regarding the use of quantitative CT for outcome prediction.

Quantitative and qualitative evaluation of CT features

We used a suite of computer algorithms written in the
MATLAB 7.0.1 programming environment (The Mathworks,
Natick, MA) and described previously (Yuh et al., 2008), to
perform semiautomated evaluation of the initial trauma head
CT obtained upon admission for each of the following features:
volume of acute subarachnoid hemorrhage (SAH) and in-
traparenchymal hemorrhage (IPH), volume of acute subdural
hemorrhage (SDH), volume of acute epidural hematoma
(EDH), midline shift defined as the shift of the centroid of the
lateral ventricles relative to the midline falx plane, and volume
of the basal cisterns. The software displays these features as
color overlays on the original noncontrast head CT data (Fig. 1).
For example, in Figure 1 the software depicts suspected SDH
and SAH. Each pixel corresponding to acute hemorrhage cor-
responds to a volume per pixel of 0.923 cubic millimeters,
based on a field of view (FOV) of 22 cm, 512 · 512 matrix, and
slice thickness 5 mm for each head CT image. Normal struc-
tures such as the dorsum sella and midline falx plane are
identified automatically, and allow localization and automated
measurement of the basal cistern volume and midline shift.

Previous work (Yuh et al., 2008) described sensitivity and
specificity of the software for acute intracranial hemorrhage,
midline shift, and basal cistern effacement, when used in a fully
automated fashion. As the original software was designed to
have very high sensitivity for acute intracranial hemorrhage at
the cost of lower specificity, for the current study we used the
software in semiautomated, supervised fashion, allowing a
neuroradiologist to either confirm or invalidate each computer
designation of an area of acute intracranial hemorrhage. The
basis for this was that any spurious intracranial hemorrhage
identified by the software would add variability to predictor
variables and decrease the strength of the model. To investigate
the interobserver reliability of these supervised software in-
terpretations, a second board-certified neuroradiologist re-
viewed the head CT software interpretations for a random
selection of 10 of the 66 study subjects, and classified 77 areas of
software-detected acute intracranial hemorrhage as subdural,
subarachnoid, or epidural in location, or likely artifactual.
Cohen’s kappa for agreement between the two neuroradiolo-
gists was 0.92 ( p < 10–30). The only discrepancies were in 4 of 77
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areas, each less than 0.5 cubic centimeter in volume; three of
these were designated as subarachnoid in location by one
neuroradiologist and subdural in location by the other; and one
was designated artifactual by one neuroradiologist and sub-
dural in location by the other.

Exploratory principal component analysis: Uncovering
relationships among outcome and predictor variables

Statistical analyses were performed using SPSS Statistics 18
(SPSS, Chicago, IL) with OMS syntax for bootstrapping
analysis. First, for exploratory purposes, we applied PCA to
the entire set of variables consisting of both the outcome
measure (GOS-E at 6 months), and the predictor variables
(age, admission GCS score, and CT features). PCA is a method
for uncovering covariances among variables in a data set. Our
aim in this first analysis was to use PCA (1) in a global, ex-
ploratory fashion to determine which predictor variables, if
any, were strongly correlated with GOS-E at 6 months, and (2)
to determine whether covariances among the predictor vari-
ables themselves (independent of the outcome measure) were
significant. The initial, ‘‘exploratory’’ PCA was performed on
two sets of variables. One set of variables was comprised of (1)
GOS-E score at 6 months, (2) patient age, (3) admission GCS
score, and (4) the component features of the Rotterdam CT
classification, consisting of qualitative assessments of the
admission head CT for the presence or absence of midline shift
exceeding 5 mm, the presence or absence and severity of basal
cistern effacement, the presence or absence of acute traumatic
SAH, and the presence of absence of EDH. The component
features of the Rotterdam CT classification were determined
by review of CT studies by a board-certified neuroradiologist
(E.L.Y.), without concurrent access to the patient’s age, ad-
mission GCS score, or 6-month GOS-E score. The other set of
variables consisted of GOS-E score at 6 months, age, GCS
score, presence or absence and severity of basal cistern
effacement, and quantitative CT parameters, including the
volumes of subarachnoid, subdural and epidural hemor-
rhage, and severity of midline shift. The exploratory PCA
analysis was coupled to a bootstrapping procedure to miti-
gate the impact of spurious relationships among variables and
to increase the reliability of pattern detection.

Principal component analysis applied to predictors
only, to address non-independence of predictors

We employed PCA analysis again, this time for the purpose
of reducing the set of predictor variables to an equivalent,
non-covarying set of variables. We emphasize that for this
second PCA analysis, the outcome measure (GOS-E at 6
months) was omitted from the variable set. This is because the
aim of this second PCA analysis was to transform the original,
covarying predictor variables to an equivalent set of inde-
pendent predictor variables suitable for use in construction of
a regression model for the prediction of 6-month GOS-E. PCA
was thus again performed on two sets of candidate predictor
variables. The first set of predictor variables consisted of (1)
patient age, (2) admission GCS score, and (3) the qualitative
component features of the Rotterdam CT classification as
described above. The second set of predictor variables con-
sisted of age, GCS score, and quantitative CT parameters,
including volumes of subarachnoid, subdural and epidural
hemorrhage, and severity of midline shift. As before, both sets

FIG. 1. Software estimation of volumes of acute intracranial
hemorrhage. Suspected extra-axial hemorrhagic collections
(a–d) are identified through computer analysis of images and
assigned a numeric identifier. Most of these initially-identified
collections are excluded through further quantitative analysis
of their three-dimensional properties. Collections that satisfy
criteria for acute intracranial hemorrhage are identified as
color overlays (red, subarachnoid hemorrhage; blue, subdural
hematoma) on the original computed tomography (CT) im-
ages, and the volume of each collection is calculated. Midline
shift is measured as the shift of the lateral ventricles relative to
the computer-estimated falx plane (green line). The dorsum
sella is detected (a, horizontal green bar), and the basal cistern
volume is measured as the volume of fluid surrounding and
superior to the dorsum sella.

QUANTITATIVE CT IMPROVES OUTCOME PREDICTION IN ACUTE TBI 737



of candidate predictor variables included a qualitative as-
sessment of basal cistern effacement (none, partial effacement,
or complete effacement).

Ordinal logistic regression of 6-month GOS-E
on principal component scores

Following principal component analysis of each of the two
sets of predictors, ordinal logistic regression of the 6-month
GOS-E score upon each of the two sets of PCA-derived pre-
dictors was performed using a logit link function. Significance,
R-squared, coefficients for the ordinal logistic regression
model, and their corresponding p values and 95% confidence
intervals were determined for each of the two models.

Results

Characteristics of study population

Figures 2 through 4 demonstrate characteristics of the
study population. Figure 2b shows that slightly over half of
the study population had an admission GCS score between 13

and 15, with the remainder divided between GCS scores in the
moderate (9–12) and severe (3–8) head injury categories.

Quantitative and qualitative evaluation of CT features

Figure 3 demonstrates qualitative features of the admission
head CT for the study population, including all of the indi-
vidual component features of the Rotterdam CT classification.
Subdural hematoma was identified in over half of patients
(Fig. 3a). Subarachnoid and/or intraparenchymal hemor-
rhage was seen in over 70% of patients (Fig. 3b). Epidural
hematoma occurred in fewer than 10% of cases (Fig. 3c), while
slightly over 10% of patients had midline shift exceeding
5 mm (Fig. 3d). Figure 3e shows that approximately 25% of
patients had some basal cistern effacement, divided evenly
between partial and complete effacement.

Figure 4 also demonstrates admission head CT results.
Unlike Figure 3, however, Figure 4 shows quantitative, rather
than qualitative, versions of the CT features. These include
volumes of subdural hematoma (Fig. 4a), subarachnoid/in-
traparenchymal hemorrhage (Fig. 4b), and epidural hema-
toma (Fig. 4c). Quantitative midline shift consisted of the
measured displacement of the centroid of the lateral ventricles
relative to the falx cerebri plane (Fig. 4d). The largest midline
shift was greater than 1.5 cm (Fig. 4d). Over half of patients
had at least trace subdural hemorrhage (Fig. 4a). Subdural
hemorrhages ranged from very small volumes up to nearly 40
cubic centimeters; small subdural hemorrhages up to 5 cubic
centimeters were most common (Fig. 4a). Though seen in over
70% of patients, subarachnoid/intraparenchymal hemor-
rhage was observed most commonly in small quantities up to
3 cubic centimeters (Fig. 4b).

Figure 5 shows the distribution of the outcome measure,
the GOS-E score at 6 months after head injury. The mean 6-
month GOS-E score was 5.2 with a standard deviation of 2.5,
and median of 6.

Results of global ‘‘exploratory’’ PCA applied
to outcome variable and predictors

Tables 1 and 2 show results from the ‘‘exploratory’’ PCA
applied to the entire set of variables consisting of both 6-
month GOS-E and quantitative CT features. We used a
bootstrapping technique, performing 2000 iterations of the
analysis, with each iteration carried out on a random sample
of 60% of the original cases. Table 1 shows the loading matrix
and Table 2 the eigenvalues and percentage of variance ex-
plained by each of the components, where each value in these
tables is derived from averaging over the 2000 iterations.
Although the size of our study population is relatively small,
prior highly-cited work in PCA (Nunnally, 1978; Tabachnkik
and Fidell, 2007) has suggested 5 to 10 samples for each pre-
dictor variable is adequate; this criterion is satisfied in our
analysis.

Examination of the eigenvalues and percent variance ex-
plained (Table 2) demonstrates the presence of 2 prin-
cipal components with eigenvalues equal to or greater than
1.0. The first principal component accounts for 41% of the
variance in the data. The loading matrix (Table 1) demon-
strates significant loading (coefficient ‡ 0.3) on this first
principal component by the following variables: 6-month
GOS-E score, GCS score, subdural hematoma volume, quan-
titative midline shift, and cistern effacement. The loading of

FIG. 2. Distribution of (a) ages and (b) admission Glasgow
Coma Scale (GCS) scores in the study population. Both pa-
tient age and admission GCS scores demonstrated significant
variability. Although slightly over half of the admission GCS
scores were in the mild head injury range (GCS 13–15), sig-
nificant numbers of cases in the moderate and severe head
injury categories were included. Principal component anal-
ysis (PCA) is based partly on the recognition that predictors
without substantial variability are less likely to account for
differences in the observed outcome measure.
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subarachnoid hemorrhage/hemorrhagic contusion volume
on the first component is 0.22, falling short of the conventional
0.3 threshold for significant loading (Tabachnick and Fidell,
2007). Table 2 shows that the second principal component
accounts for an additional 16% variance in the data; Table 1
demonstrates strong loading on this second principal com-
ponent by epidural hematoma size, with smaller loading by
the patient’s age. The significant co-loadings by GOS-E, GCS,
and certain quantitative CT features on the first principal
component in this case suggests that (1) certain quantitative
CT features are strongly correlated with, and therefore should
be predictive of, the outcome measure (6-month GOS-E), and
(2) there is, in addition, a substantial relationship (covariance)
among several clinical and quantitative CT predictor vari-
ables themselves, making their direct unaltered use in a re-
gression model for prediction of 6-month GOS-E possibly
problematic.

Tables 3 and 4 show results for a similar PCA analysis
applied to the set of variables consisting of 6-month GOS-E,
age, GCS score, and qualitative CT features. Examination of
the eigenvalues and percent variance explained (Table 4)
demonstrates the presence of 3 principal components with
eigenvalues equal to or greater than 1.0. This global PCA

analysis of clinical and qualitatitve CT features again dem-
onstrates an interdependence of 6-month GOS-E, GCS, and
qualitative CT predictors related to intracranial mass effect
(SDH volume, shift, and cistern effacement). Although similar
to the results for quantitative CT, the loading coefficients for
GOS-E and quantitative CT in Tables 1 and 2 were larger. This
suggests that the 6-month GOS-E is more strongly correlated
with quantitative CT predictors than with qualitative CT
predictors. Therefore, a regression model of GOS-E on age,
GCS, and quantitative CT features should be stronger than
one employing only qualitative CT features.

Principal component analysis of quantitative CT
features versus qualitative CT features

The initial global exploratory PCA revealed a substantial
covariance among certain clinical and qCT predictors: sub-
dural hematoma volume, quantitative midline shift, and basal
cistern effacement, and GCS. This observation is separate and
independent of the finding of a substantial covariance of the
outcome measure (6-month GOS-E) with these predictors.
Therefore, we next performed PCA on the predictors alone, to
further elucidate the relationship among these predictors, as

FIG. 3. Distribution of qualitative computed tomography (CT) features in the study population. (a) Slightly over half of
patients had subdural hematoma. (b) Subarachnoid hemorrhage (SAH) and/or intraparenchymal hemorrhage (IPH) was
seen in over two-thirds of patients. (c) Epidural hematoma occurred in less than 10% of cases. (d) Slightly over 10% of patients
had midline shift exceeding 5 mm. (e) Approximately 25% of patients had some basal cistern effacement, divided evenly
between partial and complete effacement.
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well as to construct a new set of non-covarying predictors
suitable for use in a regression model for prediction of 6-
month GOS-E.

Table 5 shows the loading matrix resulting from PCA ap-
plied to predictor variables only, comprised of age, admission
GCS, and quantitative CT features. This PCA analysis of
clinical factors and qCT features yielded a set of 7 compo-
nents. The components were of two types: those driven pri-
marily by one feature and those driven by a combination of

features. A principal component that is driven purely by a
single predictor demonstrates a coefficient of exactly 1.00 for a
single predictor, and a coefficient of 0.00 for all other predic-
tors under consideration. This idealized scenario does not
arise in the situation of real experimental data. However, we

FIG. 4. Distribution of quantitative computed tomography (qCT) features in the study population. Computer-aided quanti-
tative estimates of (a) subdural hematoma (SDH) volume, (b) subarachnoid hemorrhage (SAH) and intraparenchymal hem-
orrhage (IPH) volume, (c) epidural hematoma volume, and (d) midline shift. Subdural hematoma was present in slightly over
half of patients, with volumes ranging from trace amounts to nearly 40 cubic centimeters. Subarachnoid and intraparenchymal
hemorrhage was present in over 70% of patients, usually in small quantities less than 3 cubic centimeters, although volumes of
12 or more cubic centimeters were also observed. Epidural hematoma was observed in less than 10% of patients. Midline shift
exceeding 5 mm was seen in slightly more than 10% of patients. Shifts from 7 mm to over 1.5 cm were observed.

FIG. 5. Extended Glasgow Outcome Scale (GOS-E) scores
at 6 months following the traumatic brain injury (TBI) event.
GOS-E scores at 6 months following head injury also dem-
onstrated wide variability. High variability in the outcome
measure in a given study population increases the likelihood
of achieving statistical significance of the regression model
based on the study population.

Table 1. Loading Matrix for Principal Component

Analysis (PCA) of 6-month Extended Glasgow

Outcome Scale (GOS-E), Quantitative CT (qCT)

Predictors, Age, and Glasgow Coma Scale (GCS) Score

Components

Predictors 1 2 3 4

Age 0.21 - 0.30 0.02 0.17
GCS - 0.51 0.17 0.01 0.03
SAH/IPH volume 0.22 0.24 0.53 0.35
SDH volume 0.69 0.03 0.05 0.21
EDH volume - 0.03 0.50 0.28 0.13
Shift 0.73 0.10 0.01 0.29
Cistern effacement 0.72 - 0.01 0.06 0.17
GOS-E at 6 months - 0.53 0.18 - 0.11 - 0.15

Loading matrix for principal component analysis of 6-month GOS-
E, quantitative CT predictors, age, and GCS score. Numbers
represent individual loading coefficients of qCT predictors, age,
and GCS upon the first four principal components. Boxes highlight
significant loading coefficients with magnitude ‡ 0.3. This global
PCA analysis, performed on outcome and predictor variables
together, demonstrates a strong covariance of GOS-E with GCS,
and with several CT predictors (SDH volume, shift, and cistern
effacement) that are related to intracranial mass effect.

GCS, Glasgow Coma Scale; SAH, subarachnoid hemorrhage; IPH,
intraparenchymal hemorrhage; SDH, subdural hematoma; EDH,
epidural hematoma; qCT, quantitative CT.
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can define, for the purpose of this discussion, a principal
component driven predominantly by a single predictor as one
that is characterized by a single very large coefficient ( ‡ 0.98),
and no other coefficient ‡ 0.3. For example, Table 5 shows that
components 3, 5, and 6 were each driven predominantly by a
single feature (age, SAH/IPH volume, and epidural hema-
toma volume, respectively), indicating that these features had
little collinearity with each other or with other predictors. In
contrast, components 1, 2, 4, and 7 consisted of significant

contributions from more than one qCT predictor, including
subdural hematoma volume, severity of midline shift, and
severity of basal cistern effacement, indicating multi-
collinearity among these predictors. Component 2 demon-
strated significant collinearity of subdural hematoma volume,
cistern effacement, and severity of midline shift, and Com-
ponent 1 demonstrated a negative correlation of admission
GCS with severity of cistern effacement; both of these result
from an entirely data-driven PCA approach, yet are also in-
tuitively satisfying.

Table 6 shows the loading matrix resulting from PCA
analysis of age, GCS, and qualitative features of the admission
CT, including all components of the Rotterdam CT classifi-
cation. Components 4, 5, and 6 were each driven predomi-
nantly by a single feature (subarachnoid/intraparenchymal
hemorrhage, epidural hematoma, and age, respectively). As
expected, there was re-demonstration of a negative correla-
tion between GCS score and severity of basal cistern efface-
ment, as seen in Component 2.

Ordinal logistic regression of GOS-E upon PCA
components: Quantitative CT features versus
qualitative CT features

Table 7 compares the results of ordinal logistic regression of
6-month GOS-E score upon clinical and CT features. Both
qualitative CT and quantitative CT models were statistically
significant ( p £ 10–5). With incorporation of quantitative ra-
ther than qualitative CT features, the Nagelkerke R-squared
improved from 43% to 51%. Thus, quantitative CT features,
age, and GCS account for approximately 51% of the vari-
ability in 6-month GOS-E scores after acute head injury,
compared to 43% when qualitative CT features, age, and GCS
are used.

To address the issue of whether the difference in prediction
strength between the quantitative and qualitative CT models
is more than could be expected by chance, we performed
permutation testing. First, we calculated the absolute values

Table 2. Eigenvalues and Percent Variance Explained

for Principal Component Analysis (PCA) of 6-Month

GOS-E, Quantitative CT (qCT) Predictors,

Age, and GCS

Component Eigenvalue
Percent variance

explained

1 3.29 41.1%
2 1.30 16.3%
3 0.98 12.3%
4 0.80 10.0%
5 0.61 7.7%
6 0.47 5.8%
7 0.34 4.2%
8 0.21 2.6%

Eigenvalues and percent variance explained for principal compo-
nent analysis of 6-month GOS-E, quantitative CT (qCT) predictors,
age, and GCS score. Boxes indicate two principal components that
have eigenvalues ‡ 1.0. The first principal component accounts for
41% of the variance in the data, and the second principal component
accounts for an additional 16% of the variance in the data.

PCA, principal component analysis; GOS-E, Extended Glasgow
Outcome Score; qCT, quantitative CT; GCS, Glasgow Coma Scale.

Table 3. Loading Matrix for Principal Component

Analysis (PCA) of 6-month GOS-E, Qualitative

CT Predictors, Age, and GCS

Components

Predictors 1 2 3 4

Age 0.12 0.30 0.15 - 0.19
GCS - 0.40 0.16 0.17 0.06
SAH/IPH (present/absent) 0.27 0.40 0.32 0.11
SDH (present/absent) 0.49 0.23 0.14 0.02
EDH (present/absent) 0.02 - 0.08 0.13 0.75
Shift > 5 mm (present/absent) 0.62 0.12 0.08 0.08
Cistern effacement 0.65 0.09 0.05 - 0.02
GOS-E at 6 months - 0.40 0.02 0.06 0.04

Loading matrix for principal component analysis of 6-month GOS-E,
qualitative CT predictors, age, and GCS. Numbers represent indi-
vidual loading coefficients of qualitative CT predictors, age, and
GCS upon the first four components. Boxes highlight significant
loading coefficients with magnitude ‡ 0.3. This global PCA analysis,
performed on outcome and predictor variables together, demon-
strates an interdependence of 6-month GOS-E, GCS, and several
qualitative CT predictors related to intracranial mass effect (SDH
volume, shift, and cistern effacement). Although similar to results for
quantitative CT, the loading coefficients for GOS-E and quantitative
CT in Table 1 were larger, suggesting stronger covariances among
these factors.

PCA, principal component analysis; GOS-E, Extended Glasgow
Outcome Score; GCS, Glasgow Coma Scale; SAH, subarachnoid
hemorrhage; IPH, intraparenchymal hemorrhage; SDH, subdural
hematoma; EDH, epidural hematoma.

Table 4. Eigenvalues and Percent Variance Explained

for Principal Component Analysis (PCA) of 6-Month

GOS-E, Qualitative CT predictors, Age, and GCS

Component Eigenvalue Percent variance
explained

1 3.23 40.4%
2 1.21 15.2%
3 1.00 12.5%
4 0.79 9.9%
5 0.65 8.2%
6 0.52 6.5%
7 0.36 4.5%
8 0.24 3.0%

Eigenvalues and percent variance explained for principal compo-
nent analysis of 6-month GOS-E, qualitative CT predictors, age, and
GCS. Boxes indicate the three principal components that have
eigenvalues ‡ 1.0. The first principal component accounts for 40% of
the variance in the data, the second principal component accounts
for 15% variance in the data, and the third principal component
accounts for an additional 13% variance in the data.

PCA, principal component analysis; GOS-E, Extended Glasgow
Outcome Scale; GCS, Glasgow Coma Scale.
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of the residuals for each of the two different models. The mean
difference between the absolute values of the residuals for the
quantitative and qualitative CT models was 0.27, signifying
that the mean improvement in GOS-E prediction per patient
by the quantitative CT model relative to the qualitative CT
model, averaged across all 66 subjects, was 0.27. We then
constructed a permutation distribution of the mean differ-
ence, based on 105 random permutation resamples of the 66
subjects with the assumption that there is no difference be-
tween the two models. The p-value was 0.03 for the likelihood
that the difference in means of the absolute values of the re-
siduals between the two models would equal or exceed 0.27
by random chance.

Table 8 shows the estimated B coefficients and corre-
sponding significance levels in the ordinal logistic regression
of 6-month GOS-E on age, GCS, and quantitative CT predic-
tors using a logit link function. As shown, Components 1, 3, 4,
and 7 (in boldface) are statistically significant predictors of the
dependent variable, the 6-month GOS-E, in this model. The

major clinical and quantitative CT predictors that drive each
component (extracted from Table 5) are summarized in the
second column. As shown, Component 4, driven primarily by
subdural hematoma volume, and to lesser degree midline
shift, demonstrates the largest magnitude of the B coefficient
(with corresponding odds ratio, exp-B, per unit reduction in
the 6-month GOS-E). Components 1, 3, and 7, driven pre-
dominantly by GCS, age, and cistern effacement, also dem-
onstrated significant contributions to the model.

Discussion

A challenging feature of outcomes prediction is the capa-
bility of measuring and including numerous potential pre-
dictor variables. The inclusion of numerous predictors, some
or many of which provide little or no predictive power to a
model, reduces the overall significance of the model. For ex-
ample, as additional predictors are added to a regression
model, the R-squared statistic generally increases, but the

Table 5. Principal Component Analysis of Quantitative CT (qCT) Predictors, Age, and GCS

Components

Predictors 1 2 3 4 5 6 7

Age - 0.05 0.07 0.98 0.09 0.02 - 0.13 0.09
GCS 0.95 - 0.11 - 0.06 - 0.17 - 0.06 0.09 - 0.21
SAH/IPH volume - 0.05 0.02 0.02 0.05 0.99 0.04 0.06
SDH volume - 0.18 0.27 0.10 0.92 0.07 - 0.04 0.18
EDH volume 0.08 - 0.02 - 0.13 - 0.03 0.05 0.99 - 0.03
Shift (distance) - 0.12 0.91 0.08 0.28 0.02 - 0.02 0.28
Cistern effacement - 0.29 0.34 0.13 0.21 0.08 - 0.04 0.86

Principal component analysis of quantitative computed tomography (qCT) predictors, age and GCS. Thick-lined boxes highlight high
loading coefficients ‡ 0.9. Thin-lined boxes demonstrate intermediate loading coefficients from *0.3 up to 0.9. A principal component that is
driven purely by a single predictor demonstrates a coefficient of 1.0 for a single predictor, and a coefficient of zero for all other predictors
under consideration. Here, components 3, 5, and 6 were each driven almost solely (loading coefficient ‡ 0.98) by a single feature (age, SAH/
IPH volume, and epidural hematoma volume, respectively), indicating that these predictors had little collinearity with each other or with
other predictors. In contrast, components 1, 2, 4, and 7 consisted of significant contributions from more than one predictor. Components 2, 4,
and 7 demonstrated covariances among features related to intracranial mass effect, including subdural hematoma volume, severity of midline
shift, and severity of basal cistern effacement, and Component 1 demonstrated a negative correlation of admission GCS with severity of
cistern effacement; both of these result from an entirely data-driven principal component analysis approach, yet are also intuitively satisfying.

qCT, quantitative CT; GCS, Glasgow Coma Scale; SAH, subarachnoid hemorrhage; IPH, intraparenchymal hemorrhage; SDH, subdural
hematoma; EDH, epidural hematoma.

Table 6. Principal Component Analysis of Qualitative CT Predictors, Age, and GCS

Components

Predictors 1 2 3 4 5 6 7

Age 0.05 - 0.05 0.11 0.16 - 0.16 0.96 0.08
GCS - 0.12 0.96 - 0.10 - 0.06 0.11 - 0.05 - 0.20
SAH/IPH (present/absent) 0.09 - 0.06 0.11 0.97 - 0.06 0.16 0.11
SDH (present/absent) 0.15 - 0.10 0.95 0.11 - 0.04 0.12 0.17
EDH(present/absent) - 0.04 0.10 - 0.04 - 0.05 0.98 - 0.15 - 0.04
Shift > 5 mm (present/absent) 0.95 - 0.12 0.15 0.10 - 0.04 0.05 0.23
Cistern effacement 0.35 - 0.30 0.25 0.16 - 0.06 0.11 0.83

Principal component analysis of qualitative CT predictors, age, and GCS. Thick-lined boxes highlight high loading coefficients ‡ 0.9. Thin-
lined boxes demonstrate intermediate loading coefficients from *0.3 up to 0.9. Components 4, 5, and 6 were each driven predominantly by a
single feature (subarachnoid/intraparenchymal hemorrhage presence/absence, epidural hematoma presence/absence, and age). Again, there
is re-demonstration of covariance among features related to intracranial mass effect (presence/absence of midline shift, presence/absence of
cistern effacement, and presence/absence of subdural hematoma) in Components 1 and 3, as well as some collinearity between admission
GCS and severity of cistern effacement (Component 2).

GCS, Glasgow Coma Scale; SAH, subarachnoid hemorrhage; IPH, intraparenchymal hemorrhage; SDH, subdural hematoma; EDH,
epidural hematoma.
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adjusted R-squared, which includes a penalty for each addi-
tional predictor in the model, may sharply decrease if the
added predictor(s) do not significantly contribute added va-
lue to the true predictive power of the model.

A more serious drawback of inclusion of too many pre-
dictor variables is that two or more of the predictors may
not be independent of one another, but rather may be
correlated with one another, because they are driven at
least in part by the same underlying principle or mecha-
nism. If two or more predictor variables that are signifi-
cantly correlated with one another are considered within a
regression analysis, there may be a resulting spurious lack
of statistical significance of one or more of these predictor
variables, inaccurate regression coefficients, and erroneous
conclusions regarding the relationships among the inde-
pendent and predictor variables.

Principal component analysis is an accepted method for
simplifying a set of numerous variables into a smaller fun-
damental set of variables that (1) are not correlated with one
another, and (2) contain most of the variability in the predictor
variables (Shlens, 2009). In the current study, reduction of
numerous predictor variables to a smaller number of uncor-
related predictors had several advantages over prior models:

(1) demonstration of the collinearity among certain predictor
variables, which in itself yields important insights, (2) re-
duction of collinear variables to a smaller set of independent
(uncorrelated) predictors, allowing for more stable and con-
sistent regression results, (3) corroboration of certain key as-
pects of the prior Rotterdam CT classification, and (4)
improvement of predictive power over previous outcomes
models, through the computer-aided quantitative analysis of
the admission head CT.

Our initial ‘‘global’’ exploratory PCA performed on the set
of variables including both GOS-E and predictor variables
demonstrated not only a significant correlation of GOS-E with
certain predictors, but also indicated significant covariance
among certain predictor variables themselves. This finding
justified a second PCA analysis, which was performed on the
predictor variables alone.

The second PCA analysis yielded important insights into
underpinnings of previous successful outcomes models, such
as the Rotterdam classification. In the PCA analyses of clinical
and CT predictors, principal components that clearly corre-
sponded to intracranial mass effect were identified. These
components were characterized by significant contributions
from midline shift, basal cistern effacement, and subdural

Table 7. Ordinal Logistic Regression of 6-Month GOS-E on Age, GCS, and Quantitative

Versus Qualitative CT Predictors Using Logit Link Function

Outcome variable Covariates Significance
Cox and

Snell R-squared
Nagelkerke
R-squared

Quantitative CT model 6-month GOS-E Componentsa 1 - 7 in Table 5 2 · 10 - 7 48.8% 50.1%
Qualitative CT model 6-month GOS-E Componentsa 1 - 7 in Table 6 1 · 10 - 5 41.6% 42.6%

aEach of the 7 covariates in each of the two ordinal logistic regression models above is one of the principal components shown in Tables 5
and 6.

Ordinal logistic regression of 6-month GOS-E on age, GCS, and quantitative versus qualitative computed tomography (qCT) predictors
using logit link function. Thus, each covariate consists of the complete linear combination of age (in years), admission GCS, subdural
hematoma volume (in cubic centimeters), subarachnoid/intraparenchymal hemorrhage volume (in cubic centimeters), epidural hemorrhage
volume (in cubic centimeters), cistern effacement (ordinal variable from 1 to 3, corresponding to normal, partly-effaced, or severely-effaced
cisterns), and midline shift (in millimeters), utilizing the exact coefficients for those variables as listed in Tables 5 and 6. With the use of
quantitative rather than qualitative CT features, Nagelkerke R-squared improved to 50% from 43%. Thus, qCT features, age, and GCS
account for approximately 50% of the variability in 6-month GOS-E score after acute head injury, compared to 43% when qualitative CT
features, age, and GCS are used.

GOS-E, Extended Glasgow Outcome Score; GCS, Glasgow Coma Scale.

Table 8. Ordinal Logistic Regression (GOS-E Upon Age, GCS, and Quantitative CT (qCT) Predictors

Component Main constituents of component (from Table 5) Estimate (95% CI)
Standard

error Wald p Value

1 GCS, cisterns 1.19 (0.63, 1.74) 0.28 17.6 0.00003***
2 Midline shift (distance), cistern effacement,

SDH volume
- 0.38 ( - 0.91, 0.15) 0.27 2.0 0.16

3 Age 20.59 ( - 1.06, - 0.13) 0.24 6.2 0.013*
4 SDH volume, midline shift (distance) 21.29 ( - 2.05, - 0.53) 0.39 10.9 0.001***
5 SAH/IPH volume - 0.45 ( - 0.91, 0.01) 0.23 3.6 0.056
6 EDH volume 0.46 ( - 0.33, 1.26) 0.41 1.3 0.25
7 Cistern effacement, midline shift 20.97 ( - 1.52, - 0.43) 0.28 12.1 0.0005***

*p £ 0.05; ***p £ 0.001.
Estimated B coefficients and corresponding significance levels in an ordinal logistic regression model of 6-month GOS-E on age, GCS, and

quantitative computed tomography (qCT) predictors using logit link function. As shown, Components 1, 3, 4, and 7 (in boldface) are
statistically significant predictors of the dependent variable, the 6-month GOS-E, in this model. The major clinical and quantitative CT
predictors that drive each component (extracted from Table 5) are summarized in the second column. As shown, Component 4, driven
primarily by subdural hematoma volume, and to lesser degree midline shift, demonstrates the largest magnitude of the B coefficient (with
corresponding odds ratio, exp-B, per unit reduction in the 6-month GOS-E). Components 1, 3, and 7, driven predominantly by GCS, age, and
cistern effacement, also demonstrated significant contributions to the model.

GOS-E, Extended Glasgow Outcome Score; GCS, Glasgow Coma Scale.
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hematoma volume, and little contribution from other vari-
ables. These mass effect principal components, governed
primarily by subdural hematoma size, midline shift, and cis-
tern effacement, were shown to be powerful predictors of 6-
month GOS-E scores. This result strongly corroborates the
Rotterdam CT classification, in which features of mass effect
account for 3 points in a maximum possible score of 6 points in
the prediction of likelihood of 6-month mortality after TBI.

Several other observations of the loading coefficients of the
PCA analysis of clinical and qCT predictors were also intui-
tively satisfying. In particular, GCS was negatively correlated
with the severity of cistern effacement. The volume of sub-
dural hematoma was significantly correlated with degree of
midline shift and with severity of basal cistern effacement, but
was not significantly correlated with volume of subarach-
noid/intraparenchymal hemorrhage. Although epidural he-
matoma volume was not found to be a statistically significant
predictor in our model, this was also most likely attributable
to the small number of epidural hematoma cases; a trend
toward significance ( p = 0.25) was observed (Table 8). Simi-
larly, although subarachnoid/intraparenchymal hemorrhage
volume was not a statistically significant predictor, a trend
toward significance ( p = 0.06) was demonstrated (Table 8).
Patient age, epidural hematoma volume, and subarachnoid/
intraparenchymal hemorrhage volume were not significantly
correlated with each other or with other predictors.

Our study also shows that with incorporation of quanti-
tative rather than qualitative CT features, the results of
logistic regression of 6-month GOS-E score upon clinical and
CT features improve substantially (Table 7). Two of the best-
known head CT classification systems in acute TBI are the
Marshall CT classification and subsequent Rotterdam clas-
sification. The Marshall CT classification (Marshall et al.,
1991) divided severe head trauma patients into 6 groups
according to head CT findings, and has been widely used for
descriptive purposes; later, it was also used for prediction
of mortality. The subsequently developed Rotterdam CT
classification (Maas et al., 2005) achieved an improved dis-
criminative value for the prediction of long-term outcome
(6-month mortality) through regrouping of some CT features
underlying the Marshall classification, and inclusion of CT
evidence of epidural hematoma and traumatic subarachnoid
hemorrhage as additional predictors in the model. Although
the Marshall and Rotterdam classifications have demon-
strated prognostic power, the head CT features in these
classification schemes are qualitative features that are sus-
ceptible to observer bias. Some features, particularly the
assessment of basilar cistern effacement and subfalcine her-
niation (Maas et al., 2007), and the presence or absence of
parenchymal contusions/hematomas (Chun et al., 2007;
Laalo et al., 2009) have been demonstrated to be limited by
interobserver variability. In addition, trace quantities of in-
tracranial hemorrhage in these classifications are not differ-
entiated from larger volumes of hemorrhage, even though it
has been suggested that in milder TBI, the volume of intra-
cranial subarachnoid hemorrhage may be a marker of overall
severity of brain injury (Chieregato et al., 2005). We dem-
onstrate that use of quantitative rather than qualitative CT
features along with age and GCS as predictors results in a
substantial increase in the adjusted R-squared, to 0.50 from
0.43 (Table 7). Thus, qCT features, age, and GCS accounted
for 50% of the variability in 6-month GOS-E score after acute

head injury, compared to 43% when qualitative CT features,
age, and GCS were used.

The purpose of the current study was not to construct a
comprehensive outcome model, as in prior studies (Hukkel-
hoven et al., 2005; MRC CRASH Trial Collaborators, 2008;
Murray et al., 2007; Perel et al., 2009; Steyerberg et al., 2008).
Rather, we sought primarily to compare the effectiveness of
quantitative versus qualitative CT measures in predicting
outcome, using a fixed set of clinical features that have pre-
viously been established as strong predictors of outcome.
Steyerberg and associates (2008) did essentially the inverse,
using a fixed CT classification system (Marshall CT classifi-
cation) as a predictor, while varying the clinical and labora-
tory predictors. Other previous models of outcomes have also
used different inclusion criteria and different statistical ap-
proaches, making direct comparison of our results to these
prior studies difficult. The three-tier outcomes prediction
model by Steyerberg and colleagues (2008) for the prediction
of mortality and GOS score at 6 months after injury was de-
veloped using the IMPACT database. A core model based
only on age, motor GCS score, and pupillary reactivity pro-
vided baseline discriminatory ability with areas under the
curve (AUCs) ranging from 0.66–0.84. Slightly higher dis-
criminative ability with AUCs ranging from 0.71–0.87 could
be achieved through augmentation by additional tiers of
predictors, including Marshall CT classification, hypotension,
hypoxia, presence or absence of epidural hematoma, presence
or absence of traumatic subarachnoid hemorrhage, and serum
glucose and hemoglobin on admission. Binomial logistic re-
gression and proportional odds logistic regression analysis
were used for that study, appropriate for the bivariate out-
come (fatality versus nonfatality at 6 months), and ordinal
outcome (GOS score at 6 months) measures considered in that
study. Although our study has some similarities, a direct
quantitative comparison of our results to these is difficult, as
this and many prior studies (Eisenberg et al., 1990; Jacobs
et al., 2010b,2011; Hukkelhoven et al., 2005; Maas et al.,
2005;2007; Steyerberg et al., 2008) or meta-analyses (Chestnut
et al., 2000; Husson et al., 2010) included only moderate and
severe head-injury patients, while fully half of our study
population consisted of mild head injury (GCS score 13
p = 15), with the other half divided between moderate and
severe head injury (GCS score 3–12). Furthermore, prior
studies have used 6-month mortality (Maas et al., 2005; Nel-
son et al., 2010; Steyerberg et al., 2008), or a dichotomized
version of the 6-month GOS score (Nelson et al., 2010; Perel
et al., 2008; Steyerberg et al., 2008), in contrast to the 6-month
GOS-E score used in the current study that includes the wide
spectrum of mild, moderate, and severe head injury.

A recent study did analyze the relationship between 6-
month mortality and quantitative CT measures of hematoma
volume and midline shift in 605 patients, finding a mono-
tonically increasing relationship between mortality at 6
months and both hematoma volume and midline shift ( Jacobs
et al., 2011). Our findings corroborate these results, but sug-
gest through a global simultaneous analysis of numerous CT
features through PCA that subdural hematoma volume,
midline shift, and basal cistern effacement are not indepen-
dent predictors, but are significantly correlated with one an-
other. Our results, in fact, are very closely related to those in
the relatively few prior studies that have used a multivariate
approach that explicitly takes into account the covariance
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among clinical and CT predictors (Eisenberg et al., 1990;
Nelson et al., 2010), rather than univariate or stepwise mul-
tivariate regression approaches that do not. Recently, Nelson
and colleagues (2010) performed a detailed analysis of fea-
tures of the admission head CT and their relationship to
outcome; as part of this analysis, they demonstrated a sig-
nificant interdependence of certain quantitative CT predictors
such as midline shift and hematoma volume (measured
manually by a radiologist). They concluded, for example, that
a separate measure of hematoma volume is redundant if
quantitative midline shift is included, because of the strong
collinearity between these predictors. Furthermore, they
found that quantitative midline shift, measured manually by
the radiologist, was the single strongest CT predictor affecting
outcome. Although our approach differs from that of Nelson
and colleagues (2010) in that (1) our quantitative measures of
midline shift and hematoma volume are derived from com-
puter analysis of images, and (2) Nelson and associates (2010)
used a very different statistical technique, the support vector
machine, rather than PCA to demonstrate strong covariances
among quantitative CT predictor variables, our results are
strikingly similar. It is intuitively appealing from these results
that the three CT predictors of midline shift, hematoma vol-
ume, and basal cistern effacement may be important pre-
dominantly as surrogates for a more fundamental predictor
such as prolonged elevated intracranial pressure.

A limitation of our study is that the sample size in our study
is far smaller than that analyzed in many prior studies, such as
the Marshall CT classification study (746 patients; Marshall
et al., 1991), Rotterdam CT study (2269 patients from the tir-
ilazad trials; Maas et al., 2005), the CRASH trial (10,008 pa-
tients; Perel et al., 2008), the Karolinska study (861 patients;
Nelson et al., 2010), and the IMPACT study (8509 patients;
Steyerberg et al., 2008). Additional important limitations are
the rate of loss-to-follow-up or denial of the GOS-E interview
of 40%, and exclusion of an additional 17% of the initial cohort
whose admission head CT could not be evaluated by the
software due to the presence of contrast, non-traumatic acute
intracranial hemorrhage, severe motion artifact, or other
technical difficulties, raising concern for potential effects of
selection bias on our results. Patients £ 16 years old or > 75
years old were not included in the study, and our results
therefore cannot be generalized to those at the extremes of
age. Finally, the initial cohort consisted only of patients ad-
mitted to the neurosurgical intensive care unit (ICU), and
therefore would tend to exclude milder head injuries from the
study population. Finally, it is certainly possible that the
quantitative parameters we present here (hematoma volume
and quantitative midline shift) actually derive their predictive
value mainly as surrogates for a confounding factor of which
we are not aware (e.g., not intracranial mass effect, but a
different fundamental parameter such as coagulopathy,
which could result, for example, in a larger rate of hematoma
growth, and thus larger measured hematoma volumes and/
or midline shifts at any given time point when averaged
across patients).

In summary, in the current study, we applied two new
approaches to the problem of TBI classification and outcomes
prediction. Our first strategy was to pursue a more objective,
quantitative description of the abnormal features of the ad-
mission head CT. More quantitative, objective analyses of
brain imaging studies in head trauma, with development of

standardized metrics for abnormal features, may improve
prediction of outcome as well as more immediate triage to
appropriate early treatment. Second, we employed principal
component analysis, first in a global exploratory analysis for
possible relationships among outcome and predictor vari-
ables, and second in an analysis of the predictor variables
alone as groundwork for construction of an ordinal logistic
regression model of the 6-month GOS-E. Reduction of nu-
merous predictor variables, including quantitative rather than
qualitative CT predictors, to a smaller set of independent
predictors demonstrated a substantial collinearity among
certain predictor variables, corroborating the prior Rotterdam
CT classification and more recent work of Nelson and asso-
ciates (Nelson et al., 2010), while demonstrating an im-
provement in predictive power through the computer-aided
quantitative analysis of CT images. The finding of an im-
provement in predictive power using quantitative CT fea-
tures, and employing two different types of statistical analysis
(global PCA on outcome and predictors, and PCA on pre-
dictors followed by logistic regression), is a promising re-
sult. Given the small study population and modest follow-up
rate, this should be regarded as hypothesis-generating work
that warrants further investigation. Future directions will
include improvement of software accuracy using enhanced
algorithms and possible exploration of different CT slice-
reconstruction methods, and validation of our results in a
larger multicenter population with a higher follow-up rate to
lessen the effects of selection bias. Study of a larger population
will also allow consideration of a larger variety of clinical
variables in conjunction with qCT predictors. We believe that
further development and application of objective computa-
tional tools and data-driven analytical methods hold great
promise for neurotrauma research and may ultimately have a
role in image analysis for clinical care.
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