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Half a century ago Hurst introduced Rescaled Range (R/S) Analysis to study fluctuations in time series.
Thousands of works have investigated or applied the original methodology and similar techniques, with
Detrended Fluctuation Analysis becoming preferred due to its purported ability to mitigate nonstationaries.
We show Detrended Fluctuation Analysis introduces artifacts for nonlinear trends, in contrast to common
expectation, and demonstrate that the empirically observed curvature induced is a serious finite-size effect
which will always be present. Explicit detrending followed by measurement of the diffusional spread of a
signals’ associated random walk is preferable, a surprising conclusion given that Detrended Fluctuation
Analysis was crafted specifically to replace this approach. The implications are simple yet sweeping: there is
no compelling reason to apply Detrended Fluctuation Analysis as it 1) introduces uncontrolled bias; 2) is
computationally more expensive than the unbiased estimator; and 3) cannot provide generic or useful
protection against nonstationaries.

A
n observed time series is generally considered to be decomposable into a signal, corresponding to the state
of a process describing the system of interest, and noise. For time series dominated by stochastic prop-
erties, Hurst introduced a simple means of characterizing the dependence of observations separated in

time. Hurst’s heuristic Rescaled Range (R/S) Analysis1 splits a time series into adjacent windows and inspects the
range R of the integrated fluctuations, rescaling by the standard deviation S as a function of window size (acting as
a characteristic ruler). In other words, by treating the time series as noise driving a (possibly correlated) random
walk, it can be characterized by measuring the dispersion on a scaling support. Empirically, it is found that the R/S
statistic is approximately related to the window size by a power law: as a point of reference, the (Hurst) exponent
of this power law is 0.5 for white noise. Many natural systems display long-range dependence (often interpreted as
correlated noise) with a Hurst exponent near 0.72.

It is simple to apply R/S Analysis to a time series. However, the records one is confronted with are often poor,
brutish, and short. Further compounding this unfortunate situation, the tools available to study time series are
typified as being only asymptotically correct, and cannot be expected to be robust in the presence of measurement
noise or, worse, nonstationaries resulting from a time series being short relative to the characteristic times of the
generating processes, or the measurement being polluted by an external signal.

Detrended Fluctuation Analysis (DFA) is a technique for measuring the same power law scaling observed
through R/S Analysis. It was introduced specifically to address nonstationaries3. Like R/S Analysis, a synthetic
walk is created, however a detrending operation is performed where a polynomial (originally, and usually, linear) is
locally fit to the walk within each window to identify the trend, and then that trend is subsequently removed. DFA
is typically described as enabling correct estimation of the power law scaling (Hurst exponent) of a systems’ signal
in the presence of (extrinsic) nonstationaries while eliminating spurious detection of long-range dependence. This
purported protection against nonstationaries effects is attributed to the ‘‘detrending’’ operation performed and is
thought to provide an important distinction from spectral or other approaches. Empirically, it has been found that
when estimating scaling in well-defined test cases, such as fractional Brownian noise4, DFA performs well com-
pared to other heuristic techniques, including R/S Analysis, and is competitive, in the limit of large window sizes,
with theoretically justified estimators such as the local Whittle method5. The combination of DFA being specifically
designed to seamlessly deal with nonstationaries (intent) and its relatively good performance on simple test cases
(observation) has solidified the opinion that DFA is effectively a turn-key approach: one can simply feed data in
and obtain a meaningful parameterization as embodied by the scaling parameter (Hurst exponent). As a result,
DFA is a popular approach, and is specifically chosen if nonstationaries are either suspected or known to exist.

However, as the analyzed walk is generated from the noise there is a clear and necessary relation to spectral
methods; the only difference between analysis of the noise and its walk is due to the structure of the algorithm used.
This structure may tease out information (i.e., is more or less correct, relying on a constraining parametric structure
built into the algorithm) or induce bias (i.e., artifacts, or incorrect parametric structure inadvertently introduced by
the algorithm). Indeed, independent studies6,7 assert that, via formal manipulations, DFA can be directly mapped to
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the spectrum. In Ref.6 the relationship was formed using an approxi-
mation of the spectrum, and the authors conclude there is no reason to
recommend DFA over spectral analysis. In Ref.7, it was determined
that the detrending operation in DFA effectively creates frequency-
weights, making DFA equivalent to a weighted spectral measure. The
authors also conclude that it is not tenable to believe that DFA is
unique from spectral analysis. The precise meaning and suitability
of the weights were not discussed; however, unless weights can be
justified on theoretical grounds, they are likely to introduce bias.
Both basic considerations and detailed investigations dictate that the
spectral and DFA approaches are strongly related, suggesting that the
ability of DFA to account for nonstationaries is overestimated.

Such considerations indicate that DFA can, at best, only deal with
a limited subset of the possible nonstationaries. Empirical investi-
gations of specific trends demonstrate that even very simple nonsta-
tionaries, such as sinusoidal periodicities or monotonic global
trending8,9, affect DFA estimates. In a related publication10, more
complex nonstationaries are considered with the same finding:
DFA is affected in a significant and detrimental manner (we note
that rather than shattering the belief DFA can effectively detrend,
these works8,9,10 are widely cited as demonstrating efficacy).
Additionally, formal asymptotic analysis suggests that DFA is ‘‘not
robust at all and should not be applied for trended processes’’11.
These considerations have led some practitioners to hold a more
nuanced view that DFA cannot eliminate the effects of all nonsta-
tionaries and that some ‘‘preprocessing’’ may be required10.
However, the prevailing anchor belief is that DFA can mitigate non-
stationaries – possibly requiring the use of higher order polyno-
mials8, or some other improved detrending scheme.

The aim of this short report is to critically examine the algorithmic
structure of DFA in order to determine to what extent DFA can be
expected to mitigate effects due to nonstationaries. We show the
source of spurious curvature empirically and ubiquitously observed
in DFA and R/S plots arises out of small sample effects induced by the
scheme used to segment and measure the data, as a result serious
spurious curvature will always be introduced. Furthermore, as DFA
partitions data by sweeping through differing window sizes and then
performs local regression within the segmentation windows, addi-
tional spurious curvature will be induced for any smooth nonlinear
trend: i.e. rather than mitigating nonstationaries, DFA will introduce
uncontrolled artifacts in the presence of nonlinear trends. The result
is that DFA cannot be expected to provide meaningful protection
against smoothly varying nonstationaries.

We focus on a comparison between standard diffusion analysis, also
known as Fluctuation Analysis (FA), and DFA. Despite DFA being
specifically crafted to improve upon and replace FA, and in stark con-
trast to prevailing opinion, it appears FA is a more compelling approach.

Results
Detrended fluctuation analysis: basic algorithm. DFA consists of
two steps:

(1) the data series B(k) is shifted by the mean Bh i and integrated

(cumulatively summed), y kð Þ~
Xk

i~1

B ið Þ{ Bh i½ �, then segmen-

ted into windows of various sizes Dn; and

(2) in each segmentation the integrated data is locally fit to a poly-
nomial yDn(k) (originally, and typically, linear) and the mean-
squared residual F(Dn) (‘‘fluctuations’’) is found:

F Dnð Þ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

k~1

y kð Þ{yDn kð Þ½ �2
vuut , ð1Þ

where N is the total number of data points. Note that F2(Dn) can be
viewed as the average of the summed squares of the residual found in

the windows. The n-th order polynomial regressor in the DFA family
is typically denoted as DFAn, with unlabeled DFA often referring to
DFA1.

This procedure tests for self-similarity (fractal properties) as it
performs a measure (the dispersion of the residual of integrated
fluctuations about a regressor) at different resolutions (window
sizes). If power law scaling is present then a double logarithmic
(‘‘log-log’’) plot of F(Dn) versus Dn, often termed the fluctuation
plot, is expected to be linear F Dnð Þ~C Dnð Þa[ ln F Dnð Þð Þ~
a ln Dnð Þz ln Cð Þ, with C being a constant) and a scaling exponent
a can be estimated from a least-squares fit. This scaling exponent a is
a measure of correlation in the noise and is simply an estimate of the
Hurst exponent H.

The standard view, following the original reasoning3, is that by
removing local polynomials nonstationaries can be ‘‘detrended’’.

Measuring diffusion: fluctuation analysis. In DFA a heuristic
measure of an integrated walk is made: for a given segment size
(time window), the dispersion of the walk around a regressor is
measured. As walks are characterized by the effective diffusion
rate, which DFA attempts to estimate in an ad hoc manner, a
related and conceptually grounded measure is the rate an ensemble
of realized walks disperses. Measuring the diffusional spreading of a
stochastic process as a function of (scaling) time frames leads to
an approach that is similar to DFA methodology. The standard
diffusion scheme is a natural starting point, and is also known as
FA12.

FA is simple to set up: the ergodic theorem13 connects a single
trajectory and the statistics of an ensemble of independently realized
trajectories. By segmenting the data into windows of Dn steps, an
ensemble of walks can be created and the scaling of the differences
between start and end points (e.g. walk distances) characterize the
walk. The square root of the second order structure function14 S2 can
be used to determine the diffused distance. The square root of the
second order structure function reduces to the Mean Square Distance
(MSD), a standard measure used to inspect single particle traject-
ories:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 Dnð Þ

p
~MSD Dnð Þ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yizDn{yDn½ �2
� �q

, ð2Þ

where the angular brackets denote averaging, yi is the i-th position on
the walk created by cumulatively summing a realization of a noise
process, and Dn determines the time separation. As regression is not
required, and as only end points of a window are inspected, FA is
computationally light, relative to DFA. This is not a significant
advantage for most data sets encountered in practice (i.e. small),
but becomes notable for simulation data or large experimental data
sets. A double logarithmic plot of the diffused distance relative to the
elapsed time (Dn?ts, where Dn is the window size and ts is the sam-
pling period) will be linear if power law scaling occurs.

It is clear that FA should work well for stationary signals and that it
will not protect against nonstationaries.

Fractional brownian noise. Fractional Brownian noise (fBn), also
known as fractional Gaussian noise, is a generalization of random
Gaussian noise to include correlation4. The correlation is described by
the Hurst exponent H, which is in the range 0 , H , 1, with H 5 0.5
corresponding to no correlation. Anticorrelation exists for H , 0.5
and correlation for H . 0.5. Due to the ability to generate fBn series
with well-defined properties15,16, this process has become a useful and
popular operational model. While approximate methods, such as the
spectral method16, are fast they introduce error undercutting the
ability of fBn to act as a test case. Exact fBn is used here in order
to create noise with well-defined correlation15.

Comparison of DFA and FA on fBn. Visual inspection of DFA and
FA fluctuation plots for realizations of fBn shows that, in contrast to
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the dictated linearity, DFA displays significant curvature on log-log
plots for short time windows while FA is linear; see Figure 1 for the
H 5 0.3 case. The spurious curvature has long been known, being
noted already in the original reference3. Observed curvature ap-
pears mild, however, fluctuation plots are graphically weak due to
the logarithmic transformation with nonlinearity of the transformed
variables and scatter often appearing mild even when significant.
Despite the apparent mild curvature, as in the top row of Figure 1,
looking at the local slope of the fluctuation plot, middle row of
Figure 1, reveals that the estimate there is biased up to approxi-
mately twice the set value (dashed line in the figure). Use of the
local slope provides a more powerful visual tool, with the advant-
age of providing a direct estimate of the Hurst exponent; however,
the local slope, being a numerical derivative, may be numerically
unstable for short data sets making inspection of a normalized
fluctuation plot (scaled by a nominal power law fit) more suitable
in such cases (bottom row of Figure 1). Normalization by a nominal
power law fit effectively rotates the fluctuation plot, reducing the
range taken by fluctuations allowing inspection on a finer scale
and thereby increasing visual power. While common practice is to
focus on the raw fluctuation plot, use of local slope or normalization
suppresses less information.

Due to the initial bias, removal of the short time window region is
necessary to obtain ‘‘reasonable’’ fits, with ad hoc thresholds selected
in practice. The evolution of this practice indicates both the preval-
ence and seriousness of the bias, it will be seen below that the bias is

due to inadvertently induced finite-size effects and will always be
present.

Fundamental issue: estimating from small samples. As the number
of data points used to estimate dispersion decreases, one is effectively
sampling from an artificially ‘‘light tailed’’ distribution as the tails are
unlikely to be sampled, resulting in a bias towards systematic
underestimation of the true dispersion (see Figure 2).

For DFA, the magnitude of this effect diminishes with increasing
time window (and hence sample) size and the result is the spurious
curvature seen in DFA curves (for example, as in Figure 1). In apply-
ing FA, the curvature due to insufficient samples to accurately gauge
the dispersion is induced on the opposite end of the fluctuation plot,
as is seen in Figure 1. Here data truly is lacking as there are fewer far
separated points. The curvature induced in DFA at small window
size is due to too few samples within a window. Combining estimates
over all widows does not rectify the problem – averaging poor and
systematically biased estimates can provide little improvement. The
lack of curvature displayed by DFA at large window size is induced by
measuring over the entire time interval, artificially increasing the
number of samples available.

As the problem arises due to the fundamental framework of DFA,
which uses a partitioning and measuring scheme which induces
substantial finite-size effects, there is no clear route to eliminating
the curvature. For example, while there are empirical means that
attempt to correct for the observed spurious curvature in DFA9, such
an approach relies on creating a set of surrogate data to characterize
the average curvature allowing normalization. The proposed correc-
tion9 also requires selection of a control parameter and retains visibly
mild curvature (largely reduced, and concave up rather than concave

Figure 1 | Fluctuation plots. DFA (left column), and FA (right column)

characterize a signal by integrating a fluctuating signal and analyzing the

resulting integrated walk. The top row shows the fluctuation plots

(diffused distance) for fBn with H 5 0.3; significant curvature for small

time windows can be seen for DFA. Unfortunately, this regime provides the

most statistics. The local slope (middle row) corresponds to the estimated

Hurst exponent; the black line indicates the specified value and the dashed

line 2X this value. In the bottom row, the fluctuation plot is scaled by the

nominal power law fit resulting in a normalized fluctuation plot. The

superimposed grey lines are values averaged over 50 trials.

Figure 2 | Source of fluctuation plot curvature. The range (top panel) and

standard deviation (bottom panel) for uncorrelated (H 5 0.5) unit

Gaussian noise display rapid decay with significant underestimation of the

dispersion as the sample size becomes small and falls towards zero. This

sample size dependent bias induces curvature in fluctuation plots. Note

that the curvature is more pronounced in the range and does not saturate;

this is reflected in the empirically noted improvement of DFA (which uses

the standard deviation) over R/S Analysis (range).
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down) discernable by eye (e.g. sizeable) in the (partially) corrected
fluctuation plots investigated.

For FA the removal of a mean (or trend) is under the practitioners
complete control, thus in principle the mean can be found and
removed in a well-defined manner. Further, the empirical sample
mean is a fairly efficient estimate of the true mean, even for correlated
data17. However, it should be emphasized that for short time series
the estimated mean can poorly represent the limiting value (despite
being a better and a more efficient estimate than the dispersion,
significant error can arise; for example for n 5 1000 and H 5 0.8
it is not unusual to find a mean with magnitude greater than 0.3 for
fBn of unit variance and a true mean of zero). Without additional
information to estimate the true mean, bias will almost surely be
introduced and extra care is required. This is a fundamental dif-
ficulty: with few samples one cannot ensure good estimates.

Nonlinear structure and (in)ability to detrend. There is a
detrimental aspect to the DFA algorithmic core regression scheme:
it ensures that incorrect scaling will be obtained in the presence of
smooth, nonlinear structure within a time series.

Perhaps the simplest nonstationary is a trend with a noise process
additively riding on the (changing) background. Consider the case
where the trend is dominant, and further consider smooth trends
which are nonlinear under integration. The integrated process assoc-
iated with such a time series will be a smooth nonlinear function,
with a small amount of scatter around the global trend. Locally a
nonlinear function behaves like its derivative, and as one partitions
with finer (smaller) windows a linear approximation improves in
quality. The same is true of n-th order polynomials (as leveraged
by Taylor approximations). Thus one might expect DFA to
‘‘detrend’’ in the limit of small window size, albeit with the limit
being cutoff by the minimum achievable window size which will
restrict achievable accuracy. However, the fidelity of the approxi-
mation will depend on the partition in an unclear manner: the differ-
ing partitions will have residuals which depend on the specific
partition size, the functional form of the trend, and the polynomial
order selected for fitting. As a result of changing fidelity, curvature
will be induced in the fluctuation plot. In principle, one can account
for this changing fidelity. However, in practice, it is a hard inverse
problem. Characterizing the changing fidelity of the DFA fitting is ill
posed, without knowledge of the specific nonlinear function, while if
one does have such knowledge then explicit detrending is available.
Additionally, it is precisely in the limit of small window sizes that
spurious curvature is induced by DFA due to finite size effects, thus
compounding the problem: removing spurious curvature due to the
interaction between DFA and a nonlinear trend seems intractable.
This general argument rationalizes the empirical findings indicating
that DFA fails to detrend for periodic, power law, and even linear
(quadradic under integration) trends8,9 – all being specific examples
of nonlinear smooth functions.

It should be emphasized that smooth nonlinear trends make up a
huge class of possible trends, this class embodying many trends one
would like to remove in practice (any nontrivial slowly varying non-
stationarity falls under this class). Smooth nonlinear trends are also
those best capturable by polynomial approximation, so it is not clear
that trends of other classes would be more effectively dealt with by
DFA; for example, removing pollution of a signal by spikes or other
noise processes, dealing with data sets with deletions, or the like,
would seem even more difficult to perform due to even less con-
straints on the mixture and difficulty for polynomials to follow sharp
movements, an impression supported by empirical study10. Despite
widespread statements attesting to DFA’s ability to detrend, we are
unaware of any nontrivial trend type specifically studied and found
to be effectively detrended by DFA, nor does it appear that DFA can
be readily modified to enable detrending of nontrivial trends (how-
ever, see Ref.18 for an alternative view).

On the limits of H. The observation that FA can only find H in the
region (0,1), while DFA can find values for H . 1, is often thought to
provide evidence that DFA is superior and is considered to be a
serious drawback of FA. It should be emphasized that for a
stationary univariate noise process, H is in the domain (0,1). This
constraint is related to the celebrated identity19 linking the Hurst
exponent to the fractal dimension for self-affine objects: H 1 D 5

d 1 1, with H being the Hurst exponent, the fractal dimension D in
domain [d, d11), and d is the dimension the mathematical object is
embedded in (d 5 2 for standard univariate time series). That FA
returns a value in (0,1) is consistent with FA working correctly,
provided that the input signal is stationary. As DFA is claimed to
‘‘detrend’’ the signal, leading to a stationary aspect which is then
characterized by the estimated H value, an estimate of an H
outside the domain (0,1) is direct evidence that the purported
detrending was not successful. Rather than providing evidence that
DFA is superior to FA due to detrending of nonstationaries, the
observed bounds on FA estimates of H and estimates made by
DFA with H . 1 provides powerful evidence of the opposite.

DFA of DNA sequences. DFA was originally created specifically to
address the question of power law scaling in DNA sequences3, where
patches of nucleotide rich regions (nonstationaries) exist making the
discrimination between long range correlated noise and the effects of
nonstationaries an important question (both can lead to similar
heavy-tailed spectra following a nominal 1/f b scaling).

Diffusion analysis, termed FA, was introduced and used to test for
power law scaling in DNA sequences12, and it was reported that
power law scaling occurs with a random walk (H 5 0.50 6 0.01)
characterizing exon sequences and correlated power law scaling
characterizing intron sequences (H 5 0.61 6 0.03). A clear distinc-
tion between intron and exon sequences was reported and the fluc-
tuation plots shown displayed excellent linearity on the log-log plot.
The findings, however, were called into question when several groups
working with the same tools and data20,21 were unable to reproduce
either the depicted linearity underlying the validity of a single para-
meter (H) characterizing the sequences, nor the clear separation
between the sequence types. In addition it was pointed out that the
findings were consistent with patches of biased walk regions existing
in exons and unbiased walks in intron regions22,23 and the implicit
stationary assumption made12 was questioned. It was shown23 that
curvature rather than linearity empirically depicts fluctuation plots
for exon sequences and a model based on the known mosaic (patch)
structure in such sequences was constructed, which demonstrated
that such curvature is expected. In response the authors12 created
DFA3 and the data were reanalyzed, with the clear separation
between exons and introns, as well as the H values initially reported
(H , 0.5 and H , 0.6, for exons and introns, respectively), being
reported as upheld; and with strong linearity displayed in fluctuation
plots of sequences investigated by DFA. An exon sequence was
shown to display power law scaling with H , 0.5 when inspected
with DFA, while strong (concave up) curvature was shown in the
fluctuation plot for FA (see Figure 5 in the original DFA work3, and
Figure 3 here, where the l-DNA sequence is shown).

Given the now well-known and ubiquitously observed spurious
curvature induced by DFA, which, as seen here, arises from severe
finite-size effects, it is worth reconsidering the findings. In particular,
some curvature is visible for the DFA fluctuation plot of exon
sequences, as well as for intron sequences in the raw fluctuation plot3.
Importantly, as it is known that DFA induces downward (spurious)
curvature on fluctuation plots and as the FA fluctuation plot of the
sequence is concave up, the linearization obtained may be not due to
(only) detrending, but instead be (at least in part) an artifact.

The Karlin & Brendel model23 can provide some insight. Briefly:
for DNA sequences, investigation of patch effects is facilitated by
a first approximation model, which makes use of an Analysis of
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Variance (ANOVA) style approach. The resulting Karlin & Brendel
model estimates intra-patch fluctuation variance to be of order Dn
and inter-patch fluctuation variance of order (Dn)2. As such a qual-
itative upward curvature is expected. However, for l-DNA it turns
out that quantitative predictions can be made by the Karlin & Brendel
approach, and we find good agreement between the model and the
FA results (see Figure 3).

Recasting the Karlin & Brendel model into linear form facilitates

visual inspection and gives
F2

Dnð Þ~czd Dnð Þ, where F is the mea-

sured fluctuations, (Dn) is the window size, and c and d are model
parameters. In a footnote, they explicitly consider the simple case of
two patch types and derive analytical expressions for the model
parameters (see their footnote 22, which addresses this special case23;
c~2 p1zp2ð Þ{ p2

1zp2
2

� �� �
and d5(p12p2)2, where p1 and p2 are the

probability of positive steps in patches of type 1 and 2). Inspection of
the empirically estimated bias suggests l-DNA can be so approxi-
mated, with biases of 0.456, 0.536, and 0.457 found for the respective
patches. Taking the patches to be of types described by biases of 0.46
and 0.54 describes the fluctuation data of l-DNA quite well, con-
sidering the sensitivity in estimating d due to squaring a difference
(we find that, for example, using biases of 0.456 and 0.54 gives better
results (not shown here), with the small error in slope corrected; we
initially used those values in preliminary investigations, optimization
could very well improve upon the results). Short-range structure
appears in the data, which is not captured by the model, and which
can be attributed to the short-range correlation of sequence elements
observed here (likely the codon ‘‘on-off-off’’ repeat structure24).

Despite being an approximate first pass model, the Karlin &
Brendel model appears to capture the main behavior of the observed
DNA sequence, demonstrating that theoretical treatments can make

meaningful contact with FA results. While inspection of the Karlin
& Brendel model supports usage of FA, for example estimating
sequence c and d parameters may enable meaningful characteriza-
tion and classification of sequences, it cannot speak to DFA’s ability
to detrend in this patchy case (piecewise constant bias patches). It
may well be true that DFA can detrend patchy sequences, however
some care is required in generalizing. Large offsets cannot be so
captured (as sudden large jumps cannot be captured by low order
polynomials using standard regression), and the DFA induced curv-
ature complicates interpretation (is apparent linearity mainly due to
successful detrending, indicating underlying power law scaling, or
significantly spurious, with apparent linearity arising from inter-
action between true upward curvature and induced downward
curvature?).

Discussion
It appears that the only nonstationary that DFA can arguably address
is (possibly piecewise) constant offsets, however, due to spurious
curvature resulting from the severe finite-size effects introduced,
some problems in interpretation remain.

A seemingly puzzling aspect should be clearly pointed out: empir-
ical tests can find that DFA performs perfectly adequately and even
superior to many other alternative (albeit typically heuristic) mea-
sures5, which appears to conflict with the general arguments laid out
here. Note, however, that such tests involve (ad hoc) selection of a
threshold, with only windows above considered. It is precisely in this
limit of large windows where (1) DFA does not suffer serious finite-
size effects yet (2) its polynomial fit and detrend scheme can not be
expected to ‘‘detrend’’ in this limit: thresholded estimates supplied
are therefore suitable for stationary signals (which provide the
known cases DFA is tested against), given sufficient data. In other
words, it is empirically found that DFA asymptotically provides good
results for stationary time series, however it appears that DFA cannot
provide protection against nonstationaries (but rather aggravates
their effects, for nonlinear trends) while its partitioning scheme
ensures DFA imparts serious bias for short data sets.

In addition to the spurious curvature introduced, the fact that
DFA can estimate H . 1 reveals that, in such cases, detrending is
not actually performed. Despite the seemingly negative conclusion
that DFA is fundamentally flawed, and cannot provide meaningful
detrending, there is significant good news. In contrast to the mystery
surrounding the action and interpretation of DFA, use of FA or
spectral methods is straightforward and interpretable (with strong
theory and good – robust, fast – computational implementations). In
practice, DFA is highly nonrefutable with no detrended signal to
inspect. Explicit detrending reintroduces refutability to analysis,
allowing for visual inspection to assess sensibility, sensitivity on a
proposed detrend to be estimated, and quantitative probes to be
applied. Explicit detrending enables data characteristics to guide
detrending choices. For example, if sudden discrete jumps between
levels are expected, wavelet thresholding is quite reasonable25.

Finally, it should be noted that while FA offers a (more) compel-
ling means of analysis there remain well-known issues – least-square
fits of logarithmically transformed data are inherently problematic26,
while the (often highly) limited data available further reduces con-
fidence and recommends, for example, making use of surrogate
data27 to strengthen conclusions and probe finite sample size effects.

Methods
Figure 1 details: 50 sets of 20,000 data point realizations were created using the (exact)
Davies-Harte algorithm15.

Figure 2 details: from 10,000 realizations the average range and standard deviation
were found.

Figure 3 details: a symbolic walk was generated for l-DNA (Genbank: LAMCG),
with steps of 11 for pyrimidines and -1 for purines. Weighted (number of windows)
least-squares was performed for linear fitting. Breakpoints were roughly estimated, by
eye, to be at positions 22,550 and 37,980; in each of these patches the bias was
estimated.

Figure 3 | Fluctuation plots for l-DNA. Following Ref.12 the FA (dots)

and DFA (squares) fluctuation plots are shown, normalized here by (Dn)0.5

(top panel). Note the concave up curvature of the FA results, and the

approximately flat DFA results. Karlin & Brendel model predictions (here

recast into linear form,
F2

Dnð Þ~czd Dnð Þ) for l-DNA (middle, lower

panels) are close to the observed FA measured fluctuations (dots). A linear

fit (grey line) indicates the Karlin & Brendal model is suitable; for two

patch types an analytic prediction of fluctuations (grey squares) captures

the observed l-DNA fluctuations (black dots) surprisingly well, where the

patch biases required for prediction are empirically estimated from the

sequence. Some short-range structure, visible when inspecting the residual

between the model and the data (bottom panel), is not accounted for by the

two-type patch model, and is attributable to a notable short-range

correlation in the DNA sequence, where base-pairs which are separated by

two others are (positively) correlated.
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In all cases adjacent, rather than sliding, windows were used in calculating FA, as a
result the finite size error induced scatter is not artificially smoothed away in the
figures.
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