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Abstract
Co-evolution of mammals and their gut microbiota has profoundly effected their radiation into
myriad habitats. We used shotgun sequencing of microbial community DNA and targeted
sequencing of bacterial 16S rRNA genes to understand how microbial communities adapt to
extremes of diets, sampling fecal DNAs from 33 mammalian species and 18 humans who kept
detailed diet records. We found that microbiota adaptation to diet is reproducible across different
mammalian lineages. Functional repertoires of microbiome genes, such as those encoding
carbohydrate-active enzymes and proteases, can be predicted from bacterial species assemblages.
These results illustrate the value of characterizing vertebrate gut microbiomes to fully understand
host evolutionary histories at a supra-organismal level.

Comparative culture-independent metagenomic studies of the microbial species assemblages
that comprise mammalian gut microbiota, and the functions that these communities encode
in their aggregate genomes (microbiomes) can provide a complementary perspective to
comparative studies of host genomes. A previous bacterial 16S rRNA-based study of 59
mammalian species revealed that their fecal microbiota clustered according to diet rather
than host phylogeny (1). This finding raises several questions. What is the functional
evolution of the gut microbiome in relation to diet? Is the process unique to each
mammalian lineage? To what extent does microbial phylogeny predict function within
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microbial communities? Could analysis of inter-specific differences among mammals create
a pipeline for deciphering intra-specific differences among humans in response to varied
diets or other factors? Therefore, we have extended our 16S rRNA studies to a broader
sampling of microbial genes in total fecal community DNA prepared from herbivores,
omnivores, and carnivores.

We generated shotgun pyrosequencing datasets from 33 mammalian species, along with
newly collected bacterial 16S rRNA data. These adult animals represent 10 Orders, and
varied digestive physiologies (hindgut-fermenters, foregut-fermenters, simple-gut). In some
cases free-living and captive representatives of a given species were sampled (Table 1,
Table S1). Methods for classifying diets, as well as collecting and processing fecal samples
for metagenomic analyses have been described (1). Multiplex pyrosequencing of amplicons
generated from the V2 region of bacterial 16S rRNA genes yielded 149,675 high-quality,
de-noised reads (average 3,838±1,080/sample; Table S2) (2). After chimera removal, 8,541
operational taxonomic units (OTUs) were identified in the combined dataset (an OTU was
defined as reads sharing ≥97% nucleotide sequence identity). Shotgun sequencing of the
same fecal DNA preparations produced 2,163,286 reads (mean 55,469±28,724 (S.D.)/
sample; 261+83 nt/read) (Table S3)(2). Shotgun reads were functionally annotated using
KEGG [KEGG Orthology (KO) groups and Enzyme Commission (E.C.) numbers], CAZy
(carbohydrate-active enzymes) and MEROPS (peptidase) databases (3–5). When shotgun
reads were assigned to phylogenetic bins using the program MEGAN (6), the results
revealed that fecal microbiomes were dominated by members of Bacteria, had low levels of
Eukarya (0.15–5.35% of identifiable reads), and archaeons were variably represented (0–
1.77% of assignable reads with none detected in any carnivore microbiome). Seventeen
samples had reads assigned to known viruses (Table S4)(2).

Procrustes analysis (least-squares orthogonal mapping) was used to test whether the
functional properties of a microbiome can be predicted from the bacterial species that
comprise it (2). Procrustes analysis attempts to stretch and rotate the points in one matrix,
such as points obtained by Principal Coordinates Analysis (PCoA), to be as close as possible
to points in the other matrix, thus preserving the relative distances between points within
each matrix (7,8) (Fig. 1A). We first took the 16S rRNA dataset and used the UniFrac metric
to compare the overlap between each pair of communities in terms of their evolutionary
distance (9). The similarity in functional profiles was then determined using the Bray-Curtis
distance metric applied to KO groups, E.C.s, CAZYmes, or peptidases. Principal coordinates
reduction was performed separately on the 16S rRNA and annotated shotgun (microbiome)
datasets, and the point clouds were aligned using Procrustes. For each comparison, the
goodness of fit, or M2 value, of the transformed datasets was measured over the first three
dimensions. The statistical significance of the goodness of the fit was measured by a Monte
Carlo label permutation approach (2).

The agreement between phylogenetic and functional measurements was remarkable for all
mammals, regardless of their diet, host lineage or gut physiology. Fig. 1B–E shows how the
goodness-of-fit was robust to different functional databases. The analysis was also robust to
taxon- or phylogenetic-based species classification, weighted or unweighted metrics, and
whether one or more member of each mammalian species was considered (Fig. S1). For
both bacterial 16S rRNA and whole community gene datasets, the PCoA plots separated
carnivores and omnivores from herbivores, emphasizing the importance of diet in
differentiating gut microbial communities (p<0.05, 2). Our previous study using full-length
16S rRNA sequences revealed that the fecal microbiota of conspecifics were significantly
more similar than the communities of different host species (1). The V2 16S rRNA data
generated in this study confirmed this result using both weighted and unweighted UniFrac
distances (p<0.05 by 1,000 Monte Carlo permutations (2).
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The Procrustes results prompted us to use a nearest-neighbor model to test whether the
functional configuration of a microbiome could be predicted from its 16S rRNA sequences.
Remarkably, using a fecal sample’s nearest neighbor, as defined by unweighted or weighted
UniFrac, to predict the sample’s functional profile generated a significantly better prediction
than a random neighbor; this was true for KOs, E.C.s, CAZymes, and peptidases (p <0.0001,
106 Monte Carlo permutations) (2).

The concordance of diet and microbiome structure and function raises the question of
whether it is caused primarily by co-evolution between mammals and their gut microbiota/
microbiome, or by the many parallel dietary shifts that have occurred over the course of
mammalian evolution (10). We tested which of these hypotheses, which have traditionally
been viewed as competing but need not be mutually exclusive, were supported by looking
for congruence between mammalian phylogeny and subsets of bacterial species, KOs,
CAZymes, peptidases, or other enzymatic activities. Briefly, the mammalian phylogenetic
tree defines sets of organisms that are monophyletic, i.e. groups containing all and only the
descendants of a common ancestor. We reasoned that if bacterial taxa or functions
originated rarely, then these taxa or functions should be vertically transmitted during
mammalian speciation. Therefore, there should be more cases in which a given taxon or
function occurred in all members of a monophyletic mammalian group than chance would
predict. Using this analytic approach (2), we found that the overall distribution of microbial
species and microbiome functions in the gut do not mirror mammalian phylogeny. 198
different named bacterial genera were detected in our dataset – of these, only three were
significantly associated with the mammalian phylogenetic tree more than would be expected
by chance (Prevotella, Barnesiella, and Bacteroides). No CAZymes or peptidases and only
18 of the 3,866 KOs tested were associated with host phylogeny. We repeated the analysis
using a more relaxed constraint that a taxon or function occurs in a given monophyletic
group more frequently than expected by chance rather than requiring strict presence/absence
agreement (2). The relaxed definition gave similar results; only three additional genera and a
total of 90 KOs were detected as having a significant association with the mammalian tree.
We concluded that bacterial taxa and functions are evolutionarily labile and do not explain
the concordance between bacterial communities and microbiome functions.

Bipartite network analysis provided an additional tool for exploring the interrelationship
between host diet, host lineage, gut physiology, and shared and unique bacteria taxa (1).
Mammalian hosts and bacterial OTUs were used as nodes in a bipartite graph, with edges
connecting OTU nodes to the hosts in which they are found (2). Using 1,900 V2 16S rRNA
sequences from each mammalian host, the network shows clear separation of fecal
communities by host diet (Fig. 2A), mirroring our earlier results based on smaller numbers
of full-length 16S rRNA sequences (1).

We reasoned that the bipartite graph approach could also be used to connect mammalian
samples to individual microbial gene functions from shotgun reads. The power of the
bipartite graph approach is to represent both genes and mammalian species explicitly as
nodes, thus visualizing which genes connect with which species. The clear separation by diet
disappears when we consider gene functions (Fig. 2B, Fig. S2), suggesting that rather than a
diet- or physiology-specific set of genes, the relationship among mammalian gut
microbiomes is that they share a large core repertoire of functions. We confirmed this result
by plotting the frequency of shared taxa in the 39 mammalian fecal samples, and also
species- and genus-level OTU bins (2). All of the curves demonstrate an essentially
exponential decay as successive samples are added, with no OTUs found in more than 30
samples (Fig. 2C). However, the plot of KO frequency flattens out, with 35 KOs found in all
samples. This effect cannot be due to differences in the number of OTUs relative to KOs:
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there are more OTUs than KOs, and fewer assigned species or assigned genera, yet all the
taxonomic curves show the same rapid decay, unlike the KOs.

This result does not imply that there are no differences among the functional configurations
of microbiomes of host species having different diets. Rather, it suggests that the differences
between microbiomes likely stem from differing abundances of shared functions, such as
enzymes that break down chemical substrates in host diet. We identified 495 E.C.s with
significantly different proportional abundance in the 7 carnivorous and 21 herbivorous
mammalian microbiomes using the program Shotgun FunctionalizeR (adjusted p<0.001
after multiple hypothesis correction, Table S5) (11). Many of the enzymes distinguishing
carnivorous and herbivorous fecal microbiomes are involved in amino acid metabolism.
Enzymes enriched in samples from herbivores mapped to biosynthetic reactions for 12
amino acids, while no enzymes for amino acid biosynthesis were enriched in sampled
carnivores (Table S6). In contrast, nine amino acid degradation pathways contained enzymes
enriched in carnivores, while the only degradative enzymes enriched in herbivores were for
the breakdown of branched-chain amino acids (Val, Leu, Ile). Glutamate metabolism is
particularly illustrative of these trends. Both the ATP-dependent and ATP-independent
pathways for glutamate biosynthesis are significantly enriched in herbivore microbiomes,
while the catabolic reactions to break down glutamate and glutamine are enriched in
carnivores (Fig. 3A). These results suggest carnivorous microbiomes have specialized to
degrade proteins as an energy source, while herbivorous communities have specialized to
synthesize amino acid building blocks.

The distinctiveness of carnivorous and herbivorous microbiomes was also revealed at a
central anaplerotic node (Fig 3B). When gluconeogenesis is required, oxaloacetate (OAA)
can be converted to phosphoenolpyruvate (PEP) and pyruvate. When TCA cycle
intermediates are withdrawn for biosynthesis, they are replenished by converting PEP and
pyruvate directly to OAA (12). All of the genes encoding enzymes catalyzing OAA
production from pyruvate or PEP are significantly increased in the carnivore microbiomes,
while the reverse reactions are catalyzed by enzymes whose representation is increased in
herbivore microbiomes.

Our studies comparing mammalian species revealed a relationship between host diet and gut
microbial community structure and function. We next asked if similar trends could be
detected using diet variation within a single free-living host species, namely humans.
Quantitative studies of diet in most human populations are complicated by the known
inaccuracy of self-reported data (13), so we turned to a group of adults known to keep
meticulous records about their daily food composition and consumption. The selected cohort
consisted of 18 lean members of the Calorie Restriction Society who typically measure and
record all components of their diets on a daily basis with computer software to insure
optimal nutrition despite reduced energy intake (14,15). We collected their dietary records
for a four-day period (conservatively encompassing at least one complete intestinal transit
time) prior to obtaining a single fecal sample, and analyzed macro- and micro-nutrient
consumption using a validated protocol (2,17). An average of 3,642±3,826 bacterial V2 16S
rRNA reads and 54,295 ±28,086 shotgun reads were obtained per sample (Tables S7–S10).

Procrustes analysis revealed a significant association between the bacterial phylogenetic
structure of their fecal communities (16S rRNA) and the functions encoded in their
microbiomes (p<0.05 for KOs, E.C.s, and CAZymes (glycoside hydrolases); not significant
for peptidases [p=0.061]; Fig. S3). These results suggest that the processes that drive
functional differentiation of microbiomes within an individual host species may be
fundamentally similar to those that drive their differentiation across mammalian evolution.
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Documentation of the weight of each ingredient in each meal consumed by these individuals
(Table S7) allowed us to perform a follow-up analysis examining the impact on fecal
bacterial community configuration of three dietary components (total protein, carbohydrate,
and insoluble fiber intake). We chose these diet categories because protein intake is
markedly different between carnivores and herbivores, and because an extensive literature
exists about the impact of ingested polysaccharides and fiber on the gut microbiota (17).
Linear regression of the three dietary categories against the position of each individual’s
microbiome along Principal Coordinate 1 of the PCoA plots revealed that total protein
intake was significantly associated with KO data (adjusted R2 value=0.307, adjusted p-
value=0.030)(2). In contrast, insoluble dietary fiber was significantly associated with
bacterial OTU content (Bray-Curtis metric; adjusted R2 value=0.371; adjusted p-
value=0.013) (Table S11). These results confirm that within a single free-living species,
both the structure and function of the gut microbiome are significantly associated with
dietary intake.

Taken together with our prior work (1), these results teach us that even fecal samples from
mammals living in zoos and human samples from a single self-selected population can
provide insights into the factors driving the evolution of the gut microbiome. They also
compel us, at a time when complete genomes are to be sequenced for 10,000 vertebrates
(18), to take the next step and perform systematic studies that rigorously test specific
mechanisms that drive the co-evolution of hosts and their (gut) microbial symbionts. These
studies should be guided by experts who can choose taxa that radiated at different points in
their evolutionary history, with parallel shifts in their diet, morphology, biogeography, or
other key factors known or hypothesized to influence evolution. The results should help
address questions such as what functional features in host intestinal environments (e.g., the
biochemical characteristics of mucosal surfaces) are related to the representation of specific
bacterial taxa and microbiome functions, and how readily microbial populations have been
acquired and re-acquired during the course of vertebrate evolution. Additionally, our
findings emphasize the need to sample humans across the globe with a variety of extreme
diets and lifestyles, including relatively ancestral hunter-gatherer lifestyles, in order to
provide new insights into the limits of variation within a host species and the possibility that
our microbes, in coevolving with our bodies and our cultures, have help shaped our
physiological differences and environmental adaptations.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Procrustes analysis shows that mammalian bacterial lineages and metagenomic gene
content give similar clustering patterns
(A) Cartoon illustrating Procrustes analysis. The Procrustes transformation of the blue and
red data types (i) results in a good fit, while the transformation of the green and red data (ii)
yields a worse fit with large distances separating data from samples B and C. (B–E)
Procrustes analysis of 16S rRNA sequences (weighted UniFrac) against KEGG Orthology
(KO) groups, CAZymes (glycoside hydrolases), peptidases, and E.C.s. Every sphere
represents a single mammalian fecal community and is colored by host diet. The black end
of each line connects to the 16S data for the sample, while the orange end is connected to the
functional annotation data. The fit of each Procrustes transformation over the first three
dimensions, is reported as the M2 value.
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Figure 2. Mammalian gut bacterial communities share a functional core
(A–B) Bipartite network diagrams of evenly sampled bacterial 16S rRNA-derived OTUs (A)
or KOs (B). Edges connecting mammalian nodes (circles) to species-level OTUs or KOs
found in that sample are colored by host diet. Sample labels are removed from the KO
diagram for legibility (high-resolution image of removed labels presented in Fig. S2). (C)
Mammalian gut communities share a core suite of KOs. Using evenly subsampled OTU or
KO datasets, the distribution of counts is plotted as a function of the number of mammalian
host microbiomes where the KO or phylotype was detected. The results demonstrate
exponential decay for the 16S rRNA data, with no OTU or bacterial species found in all
samples, although a “core” set of KOs is detectable in all fecal communities sampled.
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Figure 3. Differences in metabolic features encoded in fecal microbiomes among herbivores
versus carnivores
(A) Carnivorous and herbivorous microbiomes indicate opposing directionality for amino
acid metabolism. Colored arrows denote enzyme functions significantly (p<0.001) enriched
in the fecal microbiomes of herbivores (green) or carnivores (red). (B) Carnivorous and
herbivorous microbiomes suggest opposing directionality at the central PEP-Pyruvate-
Oxaloacetate node. Coloring scheme as in panel A. Abbreviations: 2-OG, alpha-
ketoglutarate; GABA, γ–aminobutyrate; DH, Dehydrogenase; OAA, Oxaloacetate; Dx,
Decarboxylase; Ck, Carboxykinase; Cx, Carboxykinase; PEP, Phosphoenolpyruvate; Pyr,
Pyruvate; SSA, Succinate-Semialdehyde.
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