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Abstract
The inter-relationships between our diets and the structure and operations of our gut microbial
communities are poorly understood. A model community of ten sequenced human gut bacteria
was introduced into gnotobiotic mice, and changes in species abundance and microbial gene
expression were measured in response to randomized perturbations of four defined ingredients in
the host diet. From the responses, we developed a statistical model that predicted over 60% of the
variation in species abundance evoked by diet perturbations, and were able to identify which
factors in the diet best-explained changes seen for each community member. The approach is
generally applicable as shown by a follow-up study involving diets containing various mixtures of
pureed human baby foods.

Owing to its many roles in human health (1–3), there is great interest in deciphering the
principles that govern the operations of an individual’s gut microbiota. Current estimates
indicate that each of us harbors several hundred bacterial species in our intestine (4, 5) and
different diets lead to large and rapid changes in the composition of the microbiota (6, 7).
Given the dynamic interrelationship between diet, the configuration of the microbiota, and
the partitioning of nutrients in food to the host, inferring the rules that govern the
microbiota’s responses to dietary ingredients represents a challenge (8).

Gnotobiotic mice colonized with simple, defined collections of sequenced representatives of
the various phylotypes present in the human gut microbiota provide a simplified in vivo
model system where metabolic niches, host-microbe, and microbe-microbe interactions can
be examined using a variety of techniques (9–12). These studies have focused on small
communities exposed to a few perturbations. We used gnotobiotic mice harboring a 10-
member community of sequenced human gut bacteria to model the response of a microbiota
to changes in host diet. We aimed to predict the absolute abundance of each species in this
microbiota based on knowledge of the composition of the host diet. Furthermore, we wanted
to gain insights into the niche preferences of members of the microbiota, and to discover
how much of the response of the community was a reflection of their phenotypic plasticity.

The ten bacterial species were introduced into germ-free mice to create a model community
with representatives of the four most prominent bacterial phyla in the healthy human gut
microbiota (13; Fig. S1A). Their genomes encode major metabolic functions that have been
identified in anaerobic food webs, including the ability to break down complex dietary
polysaccharides not accessible to the host (Bacteroides thetaiotaomicron, Bacteroides
ovatus and Bacteroides caccae), consume oligosaccharides and simple sugars (Eubacterium
rectale, Marvinbryantia formatexigens, Collinsella aerofaciens, Escherichia coli), and
ferment amino acids (Clostridium symbiosum, E. coli). We also included two species
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capable of removing the end products of fermentation: a H2-consuming, sulfate-reducing
bacterium (Desulfovibrio piger) and a H2-consuming acetogen (Blautia hydrogenotrophica).

To perturb this community, we used a series of refined diets where each ingredient
represented the sole source of a given macronutrient (casein=protein, corn oil=fat,
cornstarch=polysaccharide, and sucrose =simple sugar) and where the concentrations of
these four ingredients were systematically varied (Fig. S1B,C and Table S1). Each
individually caged male C57Bl/6J mouse was fed a randomly selected diet with diet
switches occurring every two-weeks (n=13 animals; Fig. S1D shows the variation of diet
presentation between animals). Shotgun sequencing of total fecal DNA allowed us to
determine the absolute abundance of each community member, based on assignment of
reads to the various species’ genomes, in samples obtained from each mouse on days 1, 2, 4,
7, and 14 of a given diet period (13).

To predict the abundance of each species in the model human gut microbiome given only
knowledge of the concentration of each of the four perturbed diet ingredients, we used a
linear model,

where yi is the absolute abundance of species i, Xcasein, Xstarch, Xsucrose, and Xoil are the
amounts (in g/kg of mouse diet) of casein, corn starch, sucrose, and corn oil respectively in a
given host diet, β0 is the estimated parameter for the intercept, and βcasein, βstarch, βsucrose,
and βoil are the estimated parameters for each of the perturbed diet components. Since each
mouse underwent a sequence of three diet permutations presented in different order, and
each of the diet periods covered all of the 11 possible diets (Fig. S1D), we were able to use
two of these three diet intervals to fit the model for the equation (13 mice × 2 diets per
mouse = 26 samples per bacterial species) and then measured our ability to predict the
abundance of each bacterial species for the 13 samples in the remaining (third) diet (13).
Averaging this cross-validation from all three subsets, the model explained over 61% of the
variance in the abundance of the community members (abundance weighted mean R2 =
0.61; see Table S2 for species-specific R2).

Although the cross-validation provided evidence that the response of this microbiota was
predictable from knowledge of these diet ingredients, a more conclusive validation of the
model would be its ability to make predictions for new diets. Therefore, we designed six
additional diets with new combinations of the four refined ingredients. Using a design
similar to the first experiment, eight different 10-week-old gnotobiotic male C57Bl/6J mice
harboring the 10-member community were each given a randomized sequence of diets
selected from the six new diets (shaded diets L-Q in Fig. S1B), or one of the previous diets
(Fig. S1E). Fitting the model parameters with the data from the first experiment, we were
able to explain 61% of the variance in the abundance of the community members on the new
diets, showing virtually equivalent results to the cross validation procedure (see Table S2).

These results indicate that the linear model explains the majority of the variation in
abundance of each organism using only a knowledge of the species in the community and
the concentrations of casein, cornstarch, sucrose, and corn oil in the diet, without having to
explicitly consider the effects of microbe-microbe or microbe-host interactions, or diet-
order. As described in SOM, we also tested several other models including adding
interactions between the variables, quadratic terms, and interactions with quadratic terms.
After correcting for the number of parameters in the model using Akaike information
criterion, the linear model was still the best performing.
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To further dissect the community response to these diet perturbations, we need to infer
which set of diet ingredients is associated with the abundance of each community member.
Feature selection algorithms assume that the response variable (in this case, the abundance
of each organism) is potentially affected by only a fraction of the variables in the model, and
use statistical methods to choose the subset of variables that most informatively predict the
abundance of each species. Using stepwise regression as a feature selection procedure with
the equation above, all species in our 10-member community had the diet variable Xcasein
significantly associated with their abundance (Table S3).

E. coli and C. symbiosum were the only bacteria with more than one variable significantly
associated with their abundance (casein and sucrose for E. coli and casein and starch for C.
symbiosum). Further exploring this finding, we found casein highly correlated with the yield
of total DNA per fecal pellet across all diets (Fig. 1A and Fig. 2). A component of casein,
presumably amino acids and/or nitrogen, limits the biomass of the community: this resource
limitation was observed even for combinations of three additional refined protein and two
additional fat sources (soy, lactalbumin, egg-white solids, olive oil and lard; n=9 different
diets given to another group of 9 C57Bl/6J male mice; Fig. S2; Table S4). However, the
observed changes in species abundance are not a simple consequence of a constant relative
abundance of each community member that is scaled upwards as casein is increased: three
community members, E. rectale, D. piger, and M. formatexigens, decreased in absolute
abundance by 1.4–2.4 -fold from the low casein to high casein diets even though total
community biomass tripled (Fig. 1B,S3; Table S5). Similar changes in species abundance
and total community DNA levels were observed when casein concentrations were altered in
gnotobiotic mice harboring a 9-member or an 8-member subset of the original community
(minus B. hydrogenotrophica or minus D. piger and B. hydrogenotrophica) (Table S6).

Microbial RNA-Seq was used on fecal RNA samples, prepared from mice on each diet
(mean=2.1±0.7 replicates per diet; Table S7) (13), to determine if perturbations in diet
ingredients correlated with underlying changes in mRNA expression by community
members. Each of the 36 RNA-Seq datasets was composed of 36 nt-long reads (3.20±1.35 ×
106 mRNA reads/sample). Transcript abundances were normalized for each of the 10
species to reads per million per kilobase (RPKM) (14). After correcting for multiple-
hypotheses, we found no statistically significant changes in gene expression within a given
bacterial species as a function of any of the diet perturbations (13). While community
members do not appear to significantly alter their gene expression, they do respond by
increasing or decreasing their absolute abundances (Fig 2), thereby adjusting the total
available transcript pool in the microbiota for processing dietary components. For example,
as casein levels are increased across the diets, B. caccae increases its contribution to the
gene pool/community transcriptome; so the number of transcripts per unit of casein remains
roughly constant.

Since RNA-Seq provides accurate estimates of absolute transcript levels (15), we used
transcript abundance information as a proxy to predict the major metabolic niches occupied
by each community member. For species positively correlated with casein, we found high
expression of mRNAs predicted to be involved in pathways using amino acids as substrates
for nitrogen, as energy and/or as carbon sources. By contrast, the three species that
negatively correlated with dietary casein concentration showed no clear evidence of high
levels of expression of genes involved in catabolism of amino acids (13). The changes in
abundance of the negatively correlated species (e.g., E. rectale) can be explained by
competition with another member of the community that increases with casein(see Fig. S4;
13,16).
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The power of the refined diets we used lies in the capacity to precisely control individual
diet variables and to aid data interpretation from more complex diets. To test if the modeling
framework we used generalizes to diets containing food more typically consumed in human
diets, we created 48 meals consisting of random combinations and concentrations of four
ingredients selected from a set of eight pureed human baby foods (apples, peaches, peas,
sweet potatoes, beef, chicken, oats, and rice; Table S8). The meals were administered for
periods of 7d to the same eight gnotobiotic mice that we used for the follow-up refined diet
experiments described above and in Fig. S1E (13). Each mouse received a sequence of 6
baby food diets. The order of presentation of the baby food diets was varied between
animals (see Table S8 and 13). We measured the absolute abundance of each bacterial
community member on days 1, 5, 6, and 7 for each diet. Using the linear modeling approach
described above (13), we were able to explain over half of the variation in species
abundance using only knowledge of the concentrations of the pureed foods present in each
meal (R2=0.62). We used stepwise regression to identify the type of pureed food(s) present
in a given mixed meal that was most significantly associated with changes in each bacterial
species (Table S9; Fig. 3).

Defining the interrelationship between diet and the structure and operations of the human
gut microbiome is key to advancing our understanding of the nutritional value of food, for
creating new guidelines for feeding humans at various stages of their lifespan, for improving
global human health, and for developing new ways to manipulate the properties of the
microbiota to prevent or treat various diseases. The experiments and model described above
highlight the extent to which host diet can explain the configuration of the microbiota, both
for refined diets where all of the perturbed diet components are digestible by the host, and
for human diets whose ingredients are only partially known. These models can now be
tested using larger defined gut microbial communities representing those of humans living
in different cultural settings, and with more complex diets, including various combinations
of food ingredients that they consume.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Total community abundance (biomass) and the abundance of each community member can
best be explained by changes in casein. (A) The total DNA yield per fecal pellet increased as
the amount of casein in the host diet increased (shown are mean± S.E.M. for each tested
concentration of casein). (B) Changes in species abundance as a function of changes in the
concentration of casein in the host diet were also apparent for all 10 species; 7 species were
positively correlated with casein concentration (e.g., B. caccae) while the remaining three
species were negatively correlated with casein concentration (e.g. E. rectale). Data points
from the first and second set of mice given the refined diets (see Fig. S1D,E for explanation)
are shown in purple and green, respectively, while the mean and standard error for all diets
at a given concentration of casein are shown in red and tan, respectively.
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Fig. 2.
Mean community member abundance for each diet. The height of each bar indicates the total
DNA yield/biomass for a given diet. Casein concentrations (g/kg) for each diet are displayed
in gray above each bar. See Fig. S1 and Table S1 for a description of diets A–Q.
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Fig. 3.
Example of community member responses to complex human foods. Changes in species
abundance as a function of diet ingredients were apparent for all 10 species (Table S9). B.
ovatus increased in absolute abundance with increased concentration of oats in the diet
(upper panel), while most of the ten bacterial species (including E. rectale and C.
aerofaciens; middle and lower panels) responded to multiple ingredients. The mean and
standard error for all diets are plotted (no error bars are shown when replicate points are not
available). The colored z-axis mesh grid on the 3D plots is a triangle-based linear
interpolation of the data with color changes corresponding to the values in the color bar on
the right.
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