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Abstract

Background: Elucidating the complex cell dynamics (divisions, movement, morphological changes, etc.) underlying
embryonic development and adult tissue regeneration requires an efficient means to track cells with high fidelity in space
and time. To satisfy this criterion, we developed a transgenic zebrafish line, called PhOTO, that allows photoconvertible
optical tracking of nuclear and membrane dynamics in vivo.

Methodology: PhOTO zebrafish ubiquitously express targeted blue fluorescent protein (FP) Cerulean and photoconvertible
FP Dendra2 fusions, allowing for instantaneous, precise targeting and tracking of any number of cells using Dendra2
photoconversion while simultaneously monitoring global cell behavior and morphology. Expression persists through
adulthood, making the PhOTO zebrafish an excellent tool for studying tissue regeneration: after tail fin amputation and
photoconversion of a ,100mm stripe along the cut area, marked differences seen in how cells contribute to the new tissue
give detailed insight into the dynamic process of regeneration. Photoconverted cells that contributed to the regenerate
were separated into three distinct populations corresponding to the extent of cell division 7 days after amputation, and a
subset of cells that divided the least were organized into an evenly spaced, linear orientation along the length of the newly
regenerating fin.

Conclusions/Significance: PhOTO zebrafish have wide applicability for lineage tracing at the systems-level in the early
embryo as well as in the adult, making them ideal candidate tools for future research in development, traumatic injury and
regeneration, cancer progression, and stem cell behavior.
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Introduction

Extensive migratory events, morphological changes, and cell

divisions coordinated by cell signaling drive complex vertebrate

patterning events during embryonic development [1] as well as

during epimorphic tissue regeneration [2]. Lineage tracing – the

process of tracking a cell and its progeny in space and time as it

moves from an early to a specified state – provides an overall

picture of the coordinated events required to set up or repair a

proper body plan. Two major considerations are required for this

tracking strategy: first, a precise, indelible mark must be placed

within cells of interest at an early stage of development or

regeneration; and second, after sufficient time, the final location of

labeled cells and their progeny must be scored accurately [3].

Thus, techniques capable of monitoring long-term behavior (i.e.

movements as well as morphology) in precise cell locations are key

to tease out the timing and cellular events controlling general cell

fate decisions in vivo.

Most techniques for lineage tracing can be split into two general

categories, (1) sparse/partial and (2) global cell labeling and

tracking. Sparse cell labeling methodologies include traditional

lineage tracing analyses involving early stage dye injection (e.g.

fluorescein, etc.), followed by fixed sample analysis or live cell

tracking after sufficient developmental time [3]. More recent

sparse labeling modalities take advantage of genetically encoded

means for generating random transgenic mosaics expressing cell-

targeted fluorescent proteins (FPs) – for example, using random

gene insertion events [4,5], drug induced recombination [6,7] or

heat shock promoters [8]. Other partial cell labeling techniques

revolve around tissue specific promoter driven FP expression to

isolate only cells in a particular tissue of interest [9,10,11,12,13].

The second variety, global cell labeling, is most often achieved by

ubiquitous nuclear FP expression driven by constitutive promoter

sequences [14,15].

These two techniques have opposing benefits and disadvantages

that limit their effectiveness as lineage tracing tools. Sparse/partial

methods simplify the tracking problem by focusing solely on cells

of interest, though the data lacks context with other cell types in a

given tissue environment. In contrast, global methods supply cell

behavior data in context to every cell in the organism at the

expense of requiring sophisticated volumetric imaging and

algorithms for cell segmentation and tracking. An attractive
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lineage tracing tool should combine the strengths of both and

should be directly applicable for studies of early development as

well as adult tissue regeneration.

Here, we report a set of transgenic zebrafish lines that we

named PhOTO (photoconvertible optical tracking of…), which

meets the challenges of long-term lineage tracing in both early

development as well as adult epimorphic tissue regeneration.

These lines combine the benefits of global and sparse imaging

approaches for lineage analysis. Whole organism imaging and

tracking is enhanced by the multicompartment (nuclear and

membrane) expression of spectrally distinct FPs from a single

coding sequence, providing better accuracy for segmentation and

tracking of cells in vivo. Additionally, with the aid of optically

induced photoconversion, long-lasting sparse cell labeling is easily

achieved, allowing high signal-to-noise tracking of a subset of cells

in space and time at any point during the lifetime of the zebrafish.

Results

Establishing the PhOTO-N and PhOTO-M transgenic lines
In order to best address the requirements for long-term imaging

of complex vertebrate development and regeneration, we

constructed the PhOTO vector (Figure 1A), which allows for

constitutive b-actin2 [16] driven expression of two FPs – green-to-

red photoconvertible Dendra2 [17] and the blue FP Cerulean [18]

– targeted to either (1) the nucleus of the cell by means of an H2B

fusion or (2) the membrane (‘‘memb’’) via a palmitoylation and

myristoylation fatty acid substrate sequence included at the N-

terminus of the protein [19]. Self-cleavage of a highly efficient

Thosea asigna virus (TaV) 2A sequence between the two FPs at the

ribosome separates the two proteins to their respective target

locations within the cell at a 1:1 stoichiometric ratio [20]. Two

stable transgenic lines (Tg(bactin2:memb-Cerulean-2A-H2B-Den-

dra2)pw1 and Tg(bactin2:memb-Dendra2-2A-H2B-Cerulean)pw2) were

established after Tol2 mediated [21] genome integration.

PhOTO-N zebrafish constitutively express H2B-Dendra2 to label

all nuclei and memb-Cerulean to label all membranes, and the

complementary PhOTO-M zebrafish line expresses H2B-Cerule-

an and memb-Dendra2. Efficient cleavage and proper FP

localization were verified by western blot (Figure S1) and

confocal microscopy (Figure 1B). Founders were established for

each line (7 for PhOTO-N; 5 for PhOTO-M), and only offspring

with ubiquitous, bright FP expression in all cells were considered

for this analysis.

PhOTO-N enables precise nuclear tracking during early
development

Since nuclear tracking has become standard practice for

developmental lineage tracing [14,15], we illustrated the simplicity

of targeting down to the level of a single cell during the dynamic

period of gastrulation in the PhOTO-N line (Figure S2 and

Videos S1, S2). Our approach only requires semi-automated

image analysis (see methods), and we segmented and tracked the

photoconverted H2B-Dendra2 nuclei in time through ,6 hours of

development. Simultaneous collection of memb-Cerulean and

unconverted nuclear H2B-Dendra2 fluorescence data from all

Figure 1. Description of PhOTO Vector and PhOTO Transgenics. (A) Depicted is a schematic of the general PhOTO vector. The major
components of the vector, including the promoter, the TaV 2A sequence, the Tol2 transposable elements, and the protein locations are indicated on
the outside of the plasmid circle. Each vector was designed such that each of the components (e.g. the promoter, the FPs, etc.) may be easily
switched out for alternate protein fusions, etc. using the listed restriction enzymes (inside the circle) and an appropriate subcloning procedure. Note
that the sizes of the blocked regions indicating coding sequences are not to scale. (B) Representative heterozygous PhOTO-N expression in an 18–
19 hour post fertilization F1 transgenic zebrafish embryo. The top left panel of (B) depicts memb-Cerulean (blue); the top right panel depicts
unconverted H2B-Dendra2 (green); the bottom left panel depicts photoconverted H2B-Dendra2 (red) in 4 somites, the tip of the tail, a subset of cells
in the eye, and a subset of cells atop the yolk; and the bottom right panel depicts a merged image of all three colors. Scale bar is 100mm.
doi:10.1371/journal.pone.0032888.g001

PhOTO Zebrafish for Development and Regeneration
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surrounding cells gives context to the behavior of the photo-

converted nuclei.

PhOTO-M highlights the dynamics of cell membranes
and nuclei during early development

To extend lineage tracing beyond the level of nuclei alone, we

utilized the PhOTO-M line to capture a condensed, high-

resolution view of cell dynamics at the membrane level

(Figure 2 and Videos S3, S4). Although gross membrane

morphological changes (e.g. total cell volume changes) in all cells

are visible in the unconverted memb-Dendra2 channel, small-scale

membrane dynamics of cells within the embryo can be

appreciated only in a sparsely labeled environment such as in

the segmented (see methods) photoconverted memb-Dendra2

channel, where short membrane extensions can be seen to reach

out as the cells crawl across the surface of the embryo. We also

used the photoconverted membranes as visible boundaries to

segment the H2B-Cerulean labeled nuclei within these cells,

allowing us to distinguish cell division events (arrowheads in

Figure 2C) and cell migration into the field of view (arrow in

Figure 2C) with high precision. Photoconverted membranes are

still visible above background greater than 20 hours after

photoconversion in different cell types (Figure 3), ensuring the

documentation of membrane behavior throughout early embryo-

genesis as well as during major tissue specification events later in

development.

PhOTO-N enables identification of cell contributions to
zebrafish epimorphic tail fin regeneration

Since distinct, constitutive FP expression continues throughout

the lifetime of PhOTO zebrafish, these lines can be extended to

approaching problems such as live imaging of epimorphic tissue

regeneration. Building upon previous studies of heart [10,11] and

tail fin [12] regeneration, we used the PhOTO-N line to probe cell

contributions to the regenerating tail fin (Figure 4A). We

amputated the caudal portion of an adult (,7 months old)

PhOTO-N zebrafish tail fin (Figure S3), photoconverted all

nuclei within an ,100mm stripe along the amputation plane (see

methods) (Figure S4), and allowed the fin to regenerate for

7 days. Ubiquitous memb-Cerulean and unconverted H2B-

Figure 2. Monitoring Dynamic Membrane Movements and Tracking Nuclei in a PhOTO-M Zebrafish During Gastrulation. Animal pole
view maximum intensity projection (MIP) images of the first 21mm (in depth) of an ,5 hour time-lapse of a heterozygote F1 PhOTO-M zebrafish from
late gastrulation (.80% epiboly) until early segmentation. (A) Merged MIP of the first frame of the time-lapse, showing unconverted (green) memb-
Dendra2, segmented photoconverted (red) memb-Dendra2, and H2B-Cerulean (blue) labeled nuclei as well as segmented H2B-Cerulean nuclei (multi-
colored surfaces in the photoconverted cells). (B) Merged MIP image of the final frame of the time-lapse. (C) Zoomed MIP images of segmented,
photoconverted, and migrating memb-Dendra2 intensity data (red) and segmented H2B-Cerulean nuclei (multi-colored surfaces) at 8 different time-
points. Note that H2B-Cerulean was segmented using the surrounding membranes as a guide in three dimensions. Cells are migrating in front of the
developing head and move apart laterally. Arrowheads depict a cell division event and the arrow depicts a cell moving into the field of view from
below. Note that a few overlying enveloping layer (EVL) cells were photoconverted in addition to the tracked cells, but since these remained
stationary throughout the time-lapse, they were neglected when performing semi-automated membrane segmentation of the data. Scale bars are
50mm.
doi:10.1371/journal.pone.0032888.g002
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Dendra2 expression was re-established in the regenerating tissue

(Figure 4C, D), indicating little, if any, down-regulation of the b-

actin2 promoter driving FP expression. Using the photoconverted

nuclei (Figure 4E), we obtained localization and intensity data

that act as a readout for the extent of cell migration and division,

respectively. We observed a large subset of cells with bright

photoconverted nuclei that sit just rostral to the amputation plane

(Figure 4F), presumably maintaining structural integrity of the fin

during regeneration. Signal from these bright photoconverted

nuclei does not colocalize with unconverted H2B-Dendra2

(Figure 4F9), indicating that these cells did not divide, since the

H2B protein has a long half-life [22] in non-dividing cells.

Within the regenerated portion of the tail fin, we segmented all

of the photoconverted H2B-Dendra2 nuclei that remained above

background using an automated script (see methods) and

discovered three distinct intensity populations (Figure 5). Cells

with no red signal over background – presumably from the

contribution of unconverted cells more rostral to the amputation

plane [12] – and those with slight increases over background made

up the majority of cells throughout the newly regenerating region,

indicating that most of the cells in the new territory result from

extensive proliferation as the fin structure is re-established. As

expected, a subset of bright cells were located at the distal edge of

the tail fin, consistent with previous studies [23] (Figure 4H).

However, we also see bright cells in the middle of the regenerate

(Figure 4G) that continue to stay visible for over 14 days (data not

shown). The lack of colocalized unconverted H2B-Dendra2

(green) signal with the brightest photoconverted (red) nuclei

(Figure 4G9, H9) suggests that these particular photoconverted

cells managed to populate the regenerate without dividing at all.

Notably, a subset of these cells was aligned and evenly spaced

along the growth axis of the regenerating tissue (Figure 4I and

arrowheads in Figure 4E).

Discussion

The PhOTO lines enable non-invasive, non-random mosaic

labeling of the membranes or nuclei of any subset of cells at any

time during development by use of the photoconvertible property

of Dendra2, combining the strengths of global and sparse/partial

lineage tracing techniques and enabling selective lineage tracing

during adult regeneration. The photoconversion is immediate and

nontoxic, circumventing experimental shortcomings seen with

heat shock or drug inducible promoters for mosaic labeling, which

require significant incubation time before expression and have

possible cytotoxic effects during temperature or drug treatment.

An additional feature is that the multi-compartment labeling in the

PhOTO lines eliminates the need for exogenous counterstains.

PhOTO zebrafish and recent lineage tracing methods
Current analyses of early tissue specification are often facilitated

by the use of tissue specific promoters driving FP expression [24].

In many situations, tissue specific transgenic lines expressing FP

reporters exist and represent attractive tools to quickly identify a

region of interest to focus on for lineage analysis. To target

subpopulations of tissue specific promoter driven sequences, clever

methodologies have been devised, including combining tissue

specific FP expression with clonal mosaic analysis [5] or with

mutant analysis [25]. As a complementary approach, when tissue

specificity and instantaneous targeting of subpopulations of cells

Figure 3. PhOTO-M Photoconversion Persists in Multiple Cell Types. Zebrafish were photoconverted in a ,100mm circular region of interest
near the animal pole during gastrulation and were imaged the following day to visualize cell membranes at high resolution in different cell
compartments. Even after multiple rounds of division, photoconverted membranes are still clearly visible above background. (A) Photoconverted
membranes are clearly visible in the epithelium a day after photoconversion. Maximum intensity projections of a ventrally mounted zebrafish
(anterior top) embryo 1 day post fertilization. Left to Right: Unconverted memb-Dendra2 (green), H2B-Cerulean (blue), photoconverted memb-
Dendra2 (red) and a merged image of the three channels. (B) Photoconverted membranes are visible and are separated by unconverted membranes
in the eye a day after photoconversion. Single focal plane images of the developing eye in a ventrally mounted zebrafish (anterior top) embryo 1 day
post fertilization. Left to Right: Unconverted memb-Dendra2 (green), H2B-Cerulean (blue), photoconverted memb-Dendra2 (red) and a merged image
of the three channels. (C) Photoconverted membranes are visible in the developing forebrain a day after photoconversion. Single focal plane images
of the developing forebrain in a ventrally mounted zebrafish (anterior top) embryo 1 day post fertilization. The star indicates an individual
photoconverted cell in mitosis during prometaphase. Left to Right: Unconverted memb-Dendra2 (green), H2B-Cerulean (blue), photoconverted
memb-Dendra2 (red) and a merged image of the three channels. Scale Bar in (A) is ,150mm. Scale Bar in (B) and (C) is ,30mm.
doi:10.1371/journal.pone.0032888.g003
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within labeled tissues for lineage analysis is desired, either PhOTO

transgenic line may be incrossed with the tissue specific line of

interest. The sole constraint for applying this PhOTO incross

method for lineage analysis is that the expressed FP from the tissue

specific transgenic should not have significant spectral overlap with

the photoconverted Dendra2 channel.

Additionally, a useful non-transgenic labeling approach for

zebrafish lineage tracing has been described recently, the so-called

SNAP-Tag [26]. Like the PhOTO lines, SNAP-Tags can be

targeted to different cell compartments (e.g. nuclei and mem-

branes) and may be designed for photouncaging experiments. It is

unclear, however, how long injected SNAP-Tag fluorescent

conjugates will remain visible within the zebrafish, which may

preclude lineage tracing past early developmental time windows.

Thus, SNAP-Tags and PhOTO zebrafish are both valuable tools

for early developmental lineage tracing, while the PhOTO

Figure 4. Photoconverted Cell Organization After Epimorphic
Tail Fin Regeneration in a Living Adult PhOTO-N Zebrafish. (A)
Overview of fin regeneration protocol. (i) An adult zebrafish is
anesthetized and (ii) the tail is amputated using a razor blade (dotted
line refers to amputation plane). (iii) Photoconversion is achieved by
fluorescent illumination along the amputation plane. (iv) In addition to
the H2B-Dendra2 (green) and memb-Cerulean (blue) signal, there is
now a line of photoconverted H2B-Dendra2 nuclei (red). (B-I) Lateral
view (anterior left, ventral down) MIP images of the regenerating tail fin
of a live, anesthetized adult zebrafish 7 days post amputation. The
dotted yellow line indicates the approximate amputation plane. (B)
Bright field channel. Bright signal to the left of the dotted line arises
from tissue birefringence. The terminal end of this signal indicates the
amputation plane. (C) Memb-Cerulean (blue) and (D) unconverted H2B-
Dendra2 (green) channels indicate that expression is still consistent as
the tail fin regenerates. (E) Many of cells with fluorescence above
background appear both before and after the plane of amputation in
the photoconverted H2B-Dendra2 (red) channel. Cells in the central
region of the tail show the least expression, suggesting extensive cell
division contributing to regeneration in this area. However, certain cells
to the right of the amputation plane are bright, aligned, and evenly
spaced (arrowheads). (F-H) Zoomed boxed regions from (D) and (E) of

photoconverted H2B-Dendra2 (red) alone. (F9-H9) Merged unconverted
H2B-Dendra2 (green) and photoconverted H2B-Dendra2 (red) within
the zoomed boxed regions from (D), (E). (F, F9) Many photoconverted
cells in the ventral and dorsal portions of the amputated fin stayed
behind the amputation plane during the regeneration process. (G, G9)
Surprisingly, a subset of brightly photoconverted cells were found in
the central portion in addition to (H, H9) other bright cells at the distal
edge of the regenerate. (I) Zoomed binary image of a subset of the
segmented nuclei from the photoconverted H2B-Dendra2 channel in
panel (E). Among the scattered cells with photoconverted signal over
background (gray), certain cells (red) seem aligned and evenly spaced
along the anterior-posterior axis of the tail fin within the regenerating
region. Scale bar for (B-E) is 300mm. Scale bar for (F-H) is ,10mm. Scale
bar for (I) is ,100mm.
doi:10.1371/journal.pone.0032888.g004

Figure 5. Histogram Readout for the Extent of Cell Division
After 7 Days of Regeneration. Intensity data from individual nuclei
within the regenerated region (posterior to the amputation plane) of
the tail fin in the photoconverted H2B-Dendra2 channel (Figure 4E)
was segmented. The average intensity of each segmented nucleus was
recorded and this data was plotted as a histogram. The data was fit to a
sum of 3 Gaussian curves, suggesting at least three distinct levels of
fluorescence in the photoconverted cells above background. These
three levels are indicative of the extent of divisions undergone during
the re-establishment of the tail fin: the population with the highest
average intensity underwent the fewest divisions, while the other two
populations divided more often during the 7 day regeneration period.
doi:10.1371/journal.pone.0032888.g005
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zebrafish also has the advantage of lineage tracing during any

stage in the lifetime of the zebrafish.

Implications of PhOTO zebrafish for large-scale, systems-
level analyses of cell behavior

Considerable efforts have been made to segment and track

dense cell populations during development using nuclear labeling

[14,15,27], though density and spacing of segmentable features as

well as time resolution between frames increase uncertainty of

these cell tracking experiments [28]. Regional reduction in

segmentation and tracking complexity, which is possible with the

PhOTO lines, can decrease computational effort required for

large-scale embryo reconstruction, especially when selecting out

areas of high cell density and mobility, as in the shield of early

developing embryos. Since both the membrane and nuclear

compartments are labeled, segmentation errors that occur when

nuclei are in close proximity with each other can be avoided [29].

Finally, data taken within separate photoconverted regions from

different embryos – especially in the case of the PhOTO-M line

where small scale membrane dynamics are visible in photocon-

verted subsets – can ultimately be superimposed to get a sum-of-

parts view of cellular dynamics during particular stages of

development or regeneration, effectively eliminating uncertainty

from any given region in a whole-embryo context.

Additionally, technological advances in imaging may be applied

to improve resolution in both time and space for cell tracking (e.g.

a recent lateral line lineage tracing study [30]). As mentioned, the

PhOTO zebrafish have the advantage of targeted regional

specificity when a specific transgenic line is unavailable, and they

may also be used in conjunction with sophisticated imaging

modalities – such as with modified selective plane illumination

microscopy techniques [31,32] – to enhance cell tracking.

Revealing the extent of cell division using PhOTO-N
zebrafish

Segmentable signal from a subset of photoconverted nuclei in

the PhOTO-N line persists for at least 14 days, which makes the

line an optimal tool for tracking of cells during organ formation as

well as major regenerative processes in multiple tissue types (e.g.

tail fin [12], heart [10,11] and maxillary barbel [33]). Thus, any

cell and its progeny can be traced from its origin before

amputation to newly established regions within the regenerate,

giving insight into the contributions of individual cells when

repopulating a damaged area. For instance, having non-dividing

cells within the regenerating region of the tail fin may suggest that

cells important for guidance during the tissue regeneration process

are maintained at some frequency throughout the re-established

region and not solely at the leading edge. This observation seems

even more plausible when considering the alignment of cells in the

regenerating tissue. Such an organization seems reminiscent of the

evenly spaced arrangement of cells during posterior lateral line

development, where the establishment and maintenance of certain

signaling cues – some of which are integral to fin regeneration [34]

– guide cell migration and deposition [35]. It will be interesting to

explore whether similar spatially restricted signaling contributes to

the establishment of the regenerating fin.

PhOTO zebrafish – further applications
The complexity of cell behaviors during other cell process may

be ultimately unraveled due to the high signal-to-noise ratio of

photoconverted fluorescence in the context of global labeling when

using the PhOTO lines. Recall that three distinct cell populations

could be distinguished in the regenerate, and, surprisingly, the

PhOTO-N zebrafish proved to be especially suited to identify cells

that did not divide during the regeneration period. As a potential

extension, slowly dividing stem cells and possibly cancer stem cells

may be selected from the general population of cells in a similar

manner in the adult PhOTO zebrafish; photoconversion of a

region of interest within a tissue followed by a several day recovery

period should allow the identification and subsequent time-lapse

imaging of cells within the photoconverted tissue that have divided

the least.

With the combination of targeted cell tracking and global cell

monitoring, the effects of therapeutics on cell behavior may also be

monitored in real time. For example, since cancer stem cells have

been suggested to resist traditional chemotherapies [36], photo-

conversion of a zebrafish tumor followed by chemotherapeutic

treatment may enable time-lapse visualization of tumor regrowth

from a subset of tumor cells unaffected by the treatment. Similarly,

tracking cells of interest after any drug treatment that results in cell

behavior changes at the single cell level (e.g. loss-of-function

studies using retinoic acid [37] or morpholino oligonucleo-

tides [38] for manipulating zebrafish regeneration) is also possible

using the PhOTO zebrafish lines.

Materials and Methods

PhOTO Constructs
The DNA constructs were generated based on a zebrafish

expression vector containing a minimal b-actin2 promoter [16],

flanking Tol2 transposable elements [21], and a polyadenylation

sequence. The TaV 2A sequence was generated using polymerase

chain reaction primer extension and further subcloned with PacI and

SnaBI restriction sites. A glycine-serine-glycine spacer, which has

been demonstrated to ensure high cleavage efficiency of the 2A [39],

was inserted immediately upstream of the 2A sequence. Restriction

sites were subcloned into the original zebrafish expression vector to

facilitate easy modification of any element. The bicistronic template

vector was generated using this vector by first incorporating a TaV

2A sequence between the promoter and polyA sequences by

subcloning. The FP Dendra2 [17] or Cerulean [18] was localized

to the membrane using two repeats of a myristoylated and

palmitoylated N-terminal MGCIKSKRKDNLNDDE signal se-

quence from Lyn kinase [19]. For nuclear localization, the C-

terminus of the H2B protein was fused with either Dendra2 or

Cerulean as previously described [40]. The fused Dendra2 and

Cerulean constructs were subcloned with restriction sites for

insertion into the PhOTO vector (sites shown in Figure 1A).

Zebrafish Husbandry
Zebrafish were raised, hatched, injected, and maintained in a

house colony as previously described [41].

Zebrafish Transgenics
To establish transgenic zebrafish lines (Tg(bactin2:memb-Cerulean-

2A-H2B-Dendra2)pw1 and Tg(bactin2:memb-Dendra2-2A-H2B-Ceru-

lean)pw2), WT zebrafish were first injected with either 20ng

PhOTO-N or PhOTO-M plasmid DNA and 80ng Tol2

transposase mRNA at the zygote stage. Translated Tol2

transposase proteins recognize Tol2 elements flanking the coding

region of the construct during the early developmental phases of

the zebrafish, and the coding region may be inserted randomly

into a cell’s genome by one of these transposase proteins [21].

Injected fish were raised at 28uC until 7 days post fertilization,

when they were screened for fluorescence. Healthy-looking,

brightly expressing mosaic embryos/larvae from the injected

population were selected and raised to adulthood. Fish that

PhOTO Zebrafish for Development and Regeneration
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survived to adulthood were crossed to WT adults, and the

resulting embryos were screened for fluorescence. Founders

positive for germline transmission and for strong, ubiquitous

expression were crossed with WT zebrafish to continue to

propagate the line. Embryos from these founder crosses were also

used for imaging.

Western Blotting
Screened larval zebrafish from each PhOTO line as well as WT

control fish were collected and homogenized in ice-cold lysis buffer

(150mM NaCl, 10mM Tris-HCl at ,pH 7.55, 1mM EDTA, 1%

Triton X-100) with a protease inhibitor (Complete Protease

Inhibitor Cocktail Tablets, Roche). Extracts from ,2 fish per lane

underwent SDS-PAGE (5% stacking gel/12% running gel)

electrophoresis using a Mini-Protean Gel Doc (BioRad). The

resulting bands were transferred to a PVDF membrane (Im-

mobilon P, Millipore) after wet electroblotting (transfer buffer: 25

mMTris, 192mM glycine, 20% Methanol, 0.1% SDS, pH 8.1–8.5)

using the Mini-Protean Gel Doc (BioRad). Rabbit anti-Dendra2

polyclonal antibodies (1:5000, Evrogen) and mouse anti-a-Tubulin

monoclonal antibodies (1:10000, Sigma Aldrich, loading control)

were used to probe the western blots. Horseradish peroxidase

linked goat anti-rabbit was used as a secondary antibody (1:10000,

Jackson ImmunoResearch Laboratories, Inc.). Western blots were

visualized using an ECL Plus chemiluminescence kit (GE

Healthcare).

Imaging and Dendra2 Photoconversion
After crossing founder PhOTO zebrafish with WT adults,

embryos were raised in egg water [41] at 28uC until they were

ready to be imaged. Prior to imaging, embryos were screened for

fluorescence using an Olympus MVX10 fluorescence microscope.

Positive embryos were embedded in 1% low melting point agarose

(Invitrogen) in 30% Danieau’s solution [42] within Lab-Tek 2-well

imaging chambers with #1 coverslip bottoms (Nalge Nunc

International). Embryos past 16 hours post fertilization were

anesthetized using 0.015%–0.03% Tricaine methanesulfonate

(Finquel/MS-222, Argent Labs) and were maintained in anesthet-

ic at the same concentration when embedded in the 1% agarose/

30% Danieau’s solution for imaging. We obtained live images in

space and time using a 20x/0.8NA Plan-Apochromat air objective

(Zeiss) using a Zeiss LSM 710 confocal microscope. Embryos were

maintained at a temperature between 28uC and 32uC during time-

lapse experiments. The tiled image in Figure 1 was taken with a

Leica True Confocal Scanner SP5 Spectral High-Speed Confocal

System with AOBS (Acoustical Optical Beam Splitter) (Leica

Microsystems Inc., Deerfield, IL) using a 20x/0.7NA objective

(Leica). Photoconversion was achieved by prolonged (.30sec)

illumination of a region of interest within the zebrafish sample with

a scanned 405nm laser on the Leica confocal microscope. Images

and time-lapse data from embryos were processed and cell

segmentation and tracking was performed in a semi-automated

manner using the spot tracking tool (for PhOTO-N nuclei) and the

surface segmentation tool (PhOTO-N membranes and PhOTO-

M membranes and nuclei) within Imaris software (Bitplane AG).

Adult zebrafish (,7 months old) were anesthetized as

mentioned above and tail fins were amputated using a razor

blade. Note that only zebrafish with short caudal fins were

considered for this analysis. Fast photoconversion within an hour

of amputation was achieved using a 405nm excitation filter cube in

the path of an X-cite mercury source (Zeiss) on a Zeiss 510

inverted confocal microscope. Photoconversion was confined using

an iris in the path of the fluorescent light, and the stage was moved

so that the confined conversion area was scanned along the plane

of amputation [43]. Images in Figures S3 and S4 were taken

with an Olympus MVX10 fluorescence microscope. After

imaging, the fish was immediately revived using a method

reported previously [44] and was then put back on the fish

husbandry system (Aquaneering). For confocal imaging of the tail

after 7 days, the tail was restrained under anesthesia using 2% low

melting point agarose (Invitrogen) in 30% Danieau’s solution. To

keep the fish alive during imaging, either system water or 30%

Danieau’s solution containing 0.03% Tricaine methanesulfonate

was flowed across the gills of the anesthetized fish, and gill motion

was monitored constantly. Confocal images were taken using the

same Zeiss LSM 710 confocal microscope. All images and videos

were processed and compiled using Adobe Photoshop CS3 (Adobe

Systems).

PhOTO-N Nuclei Segmentation and Cell Division Analysis
After 7 Days of Regeneration

Photoconverted H2B-Dendra2 MIP data from Figure 4E was

first processed in Photoshop CS3 (Adobe Systems) to isolate the

regenerated tail fin portion from the tail fin region rostral to the

amputation plane using the magnetic lasso tool. Using a custom

Matlab (Mathworks) script, nuclei were segmented that had

intensity above background, and the segmented mean intensity

data from each nucleus was fit to a sum of three Gaussians in a

manner similar to one described previously [45] to generate

Figure 5. Note that the segmented data was converted to a binary

image and modified in Photoshop CS3 (i.e. changing color of the

binary nuclei from white to red and gray) in order to generate

Figure 4I.

Supporting Information

Figure S1 Efficient TaV2A-Mediated Protein Cleavage
in the PhOTO Zebrafish Lines. Western blot analysis of each

PhOTO line: lane (1) WT (2) PhOTO-M (3) PhOTO-N. The

membrane was probed for Dendra2 as well as a-Tubulin (loading

control, upper blot). No Dendra2 was seen in the WT (lane 1), and

each PhOTO lane had the Dendra2 protein at approximately the

molecular weight expected from the particular fusion protein.

Note that for lane 2, two bands are present, reflecting the post-

translational palmitoylation/myristoylation additions. Efficient

protein cleavage as a result of the TaV 2A sequence was confirmed

by the lack of an uncleaved product within the two PhOTO lanes.

(absence of a band above 50kDa in the lower blot).

(TIF)

Figure S2 Nuclear Photoconversion and Segmentation
in a PhOTO-N Zebrafish During Gastrulation. Animal

pole view maximum intensity projection (MIP) images of the first

10.5mm (in depth from the animal pole) of an ,6 hour time-lapse

of a heterozygote F1 PhOTO-N zebrafish from late gastrulation

(.80% epiboly) until early segmentation. (A) Merged MIP of the

first frame of the time-lapse, showing memb-Cerulean (blue) and

both unconverted (green) and segmented photoconverted (red)

H2B-Dendra2. (B) Merged MIP image of the final time frame of

the time-lapse. (C) Zoomed in MIP areas at four different time-

points of the merged fluorescence images as a reference for the

photoconverted images seen in panels (D) and (E). (D) Intensity

images from segmented photoconverted nuclei (red) for the same 4

timepoints as the merged image in panel (C). (E) Segmented nuclei

from the intensity images from panel (D). Two enveloping layer

(EVL) cells are photoconverted (the orange and red spheres) as

well as an epiblast cell (the white sphere). Each cell undergoes a

single cell division during the course of the time-lapse. Note that

the epiblast cells move beneath the field of view in the last frame,
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due to the development of the head during early segmentation.

Scale bars are 50mm.

(TIF)

Figure S3 Amputation of Adult PhOTO-N Zebrafish
Before Photoconversion. (A) A digital camera photo of the

anesthetized PhOTO-N zebrafish after amputating a small portion

of the upper half of the tail fin. (B–E) A fluorescent stereomicro-

scope image of the amputated tail fin (anterior left, ventral down)

showing (B) bright field, (C) memb-Cerulean (blue), (D) uncon-

verted H2B-Dendra2 (green), and (E) background signal when

imaging with the same fluorescence emission filter as photo-

converted H2B-Dendra2 (red). Note that there is almost no

background fluorescent signal in (E), except for a small bit of

detritus in the water that is picked up in the red fluorescence

channel. Scale bar for (B–E) is ,300mm.

(TIF)

Figure S4 Amputated Adult PhOTO-N Zebrafish Tail
Fin After Photoconversion. A fluorescent stereomicroscope

image of the photoconverted amputated tail fin (anterior left,

ventral down) showing (A) bright field, (B) memb-Cerulean (blue),

(C) unconverted H2B-Dendra2 (green), (D) photoconverted H2B-

Dendra2 (red), and (E) a merged image of (C) and (D). Note that

almost all of the H2B-Dendra2 fluorescence has been photo-

converted in the ,50–100mm region along the amputation plane,

as is indicated by the lack of green signal in the photoconverted

stripe in (C). Scale bar is ,300mm.

(TIF)

Video S1 Time-Lapse Data for PhOTO-N Development
During Late Gastrulation. This video shows each frame of the

time-lapse summarized in Figure S2. (A) Memb-Cerulean inten-

sity data (blue), (B) unconverted H2B-Dendra2 intensity data

(green), (C) and segmented photoconverted H2B-Dendra2 intensity

data (red). Initially, 3 cells were photoconverted (2 EVL cells and

one epiblast). Both EVL cells divide between the first and second

time point, and the epiblast cell divides between 1 hour, 19minutes

and 2 hours. (D) Merged image of panels (A–C). Scale bar is 50mm.

(MOV)

Video S2 Segmented Time-Lapse of PhOTO-N Devel-
opment During Late Gastrulation. This video shows

segmented data for each frame of the time-lapse summarized in

Figure S2. The nuclei were segmented: the red and orange

spheres represent the EVL nuclei and the white spheres represent

the migrating epiblast nuclei. The membrane of the orange-

labeled EVL nucleus was segmented and is highlighted in all three

panels of the image in enhanced contrast blue. (A) Segmented and

photoconverted H2B-Dendra2 data (red) as well as the segmented

EVL membrane data (blue) with the bright field data (grayscale)

from the time-lapse video. The developing head and optic

primordia can be seen during the time-lapse. (B) Segmented and

photoconverted H2B-Dendra2 data as well as the enhanced

contrast segmented EVL membrane data along with the merged

animal pole images as seen in Video S1D. (C) Isolated zoomed

images of the segmented nuclei and membranes during the time-

lapse. Scale bars are 50mm.

(MOV)

Video S3 Time-Lapse Data for PhOTO-M Membrane
Dynamics Visualization During Late Gastrulation. This

video shows each frame of the time-lapse summarized in Figure 2
in the text. (A) H2B-Cerulean intensity data (blue), (B) unconvert-

ed memb-Dendra2 intensity data (green), (C) segmented photo-

converted memb-Dendra2 intensity data (red). Membranes are

dynamic throughout the time-lapse, starting as a tight cluster of

cells and eventually moving apart laterally and away from the

developing head toward the ventral side of the embryo as the time-

lapse progresses. (D) Merged image of panels (A–C), which also

includes segmented nuclear data (multi-colored surfaces) within

each of the photoconverted membranes. Scale bar is 50mm.

(MOV)

Video S4 Segmented Time-Lapse Data for PhOTO-M
Membrane Dynamics Visualization During Late Gas-
trulation. This video shows segmented data for each frame of the

time-lapse summarized in Figure 2 in the text. First, the

photoconverted membranes were segmented in 3D. Then, using

the segmented data, nuclei within the surrounding photoconverted

membranes were identified and represented as colored surfaces. The

nuclei were tracked starting with the final frame, moving backward

in time. (A) Segmented and photoconverted memb-Dendra2 (red) as

well as the segmented H2B-Cerulean channel (multi-colored

surfaces) along with the bright field (grayscale) from the time-lapse

video. Note that the developing head and optic primordia can be

seen during the time-lapse. (B) Segmented and photoconverted

memb-Dendra2 (red) as well as the segmented H2B-Cerulean (multi-

colored surfaces) along with the merged animal pole images as seen

in Video S3D. (C) Isolated zoomed images of the segmented nuclei

and membranes during the time-lapse. Scale bars are 50mm.

(MOV)
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