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Abstract

Excessive production of monoclonal light chains due to multiple myeloma can induce aggregation-related disorders, such
as light chain amyloidosis (AL) and light chain deposition diseases (LCDD). In this work, we produce a non-amyloidogenic
IgE l light chain dimer from human mammalian cells U266, which originated from a patient suffering from multiple
myeloma, and we investigate the effect of several physicochemical parameters on the in vitro stability of this protein. The
dimer is stable in physiological conditions and aggregation is observed only when strong denaturating conditions are
applied (acidic pH with salt at large concentration or heating at melting temperature Tm at pH 7.4). The produced
aggregates are spherical, amorphous oligomers. Despite the larger b-sheet content of such oligomers with respect to the
native state, they do not bind Congo Red or ThT. The impossibility to obtain fibrils from the light chain dimer suggests that
the occurrence of amyloidosis in patients requires the presence of the light chain fragment in the monomer form, while
dimer can form only amorphous oligomers or amorphous deposits. No aggregation is observed after denaturant addition at
pH 7.4 or at pH 2.0 with low salt concentration, indicating that not a generic unfolding but specific conformational changes
are necessary to trigger aggregation. A specific anion effect in increasing the aggregation rate at pH 2.0 is observed
according to the following order: SO4

2&Cl2.H2PO4
2, confirming the peculiar role of sulfate in promoting protein

aggregation. It is found that, at least for the investigated case, the mechanism of the sulfate effect is related to protein
secondary structure changes induced by anion binding.
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Introduction

The aggregation stability of the immunoglobulin light chain

fragments is involved in several disorders related to the abnormal

proliferation of bone marrow monoclonal plasma B cells and the

subsequent excessive production of monoclonal light chains. 10–15%

of the patients affected by multiple myeloma and with large light chain

serum concentration are subsequently affected by the aggregation-

related diseases [1], such as light chain amyloidosis (AL) [2], light

chain deposition diseases (LCDD) [3], and cast nephropathy [4].

Light chain amyloidosis (AL) is the most common form of sporadic

systemic amyloidosis [5,6], characterized by deposition of insoluble

amyloid fibrils in organs such as kidney, heart and liver, which leads to

organ failure; it can act also on peripheral nerve, gastrointestinal track

and lungs [7]. In opposition to the fibrillar structures encountered in

AL, in LCDD the aggregates are amorphous and granular. The

basement membrane of kidney is the main target organ, although also

heart and liver may be affected [8]. Typically, only one of the two

forms of disease occurs in patients [9].

A great challenge in understanding the cause and mechanism of

aggregation is given by the extremely large number of the possible

mutated variant sequences involved. In fact, each patient produces

antibodies which have undergone antigen-driven selection.

Therefore, the heterogeneity of possible diseases and related

protein aggregates are due both to fragment primary sequence and

to environmental factors. Several works show that the k and l
types of light chain dominate in LCDD and AL, respectively [10].

Despite such tentative of classification based on clinical analysis

[11,12], the factors determining whether or not some variants are

pathological or lead to fibrillar aggregates or amorphous deposits

are far from being understood.

In addition to protein structure, protein amount affects

propensity to deposit: circulating disulfide-bound light chain

dimers can interfere with normal clearance and metabolism,

increasing their serum level [11]. Therefore, it is important to

clarify the stability of the dimers and the relationship between

dimer/monomer equilibrium and aggregation mechanism [13].

In this work, we investigate the effect of several physicochemical

parameters on the in vitro aggregation propensity of a l light chain

IgE dimer. This protein was obtained from a human myeloma cell

line U266, coming from a patient suffering from multiple myeloma

in which neither amyloids nor amorphous deposits were detected
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[14]. The production of protein in a reasonable amount and in a

reproducible way is often a challenge in protein aggregation

studies. Commonly, light chain variants are produced recombi-

nantly from bacteria [15] or extracted from urine [16]. Despite the

larger effort demanded compared to the commonly employed

bacteria systems, the production from eukaryotic cells allows

avoiding re-folding steps commonly present in the production

from bacteria. Moreover, in the case of glycosilated light chain

variants the use of eukaryotic cells allows the production of

proteins with a glycosylation pattern close to the physiological one.

Although the production of light chain fragment and complete

immunoglobulin by U266 cells has been already studied [17,18],

to our knowledge this is the first aggregation study on proteins

obtained by such cell line.

We applied several biophysical techniques to investigate protein

secondary structure stability and aggregation behavior. Protein

secondary structure was characterized by spectroscopic techniques

such as circular dichroism (CD), intrinsic tryptophan fluorescence

and 8-anilino-1-naphthalenesulfonic acid (ANS) binding, while the

aggregation was monitored by dynamic light scattering (DLS),

thioflavin T (ThT) assay, size exclusion chromatography (SEC)

and asymmetrical field flow fractionation (FFF). Aggregates

morphology was investigated by Congo Red binding, thin film

attenuated total reflectance fourier transform infrared spectrosco-

py (ATR-FTIR) and atomic force microscopy (AFM). The study

shows the relationship between secondary structure and aggrega-

tion for the investigated l light chain dimer and underlines the

importance of environmental factors, particularly the kind and

concentration of salt, on protein stability.

Moreover, we have successfully determined the original full-

length sequence of the monoclonal light chain produced by the

human U266 cell clone. This observation will enable us to make

comparative analysis with other studies describing the features of

immunoglobulin light chains with a known sequence.

Results

Protein characterization
Many domains (both single variable and complete constant-

variable domains) have been found to form dimers in physiological

and stable conditions [16]. Particularly, amyloidogenic light chains

are commonly found to be in equilibrium between the dimer and

the monomeric form in patients’ urine [16]. After the production

and purification step, the protein has been characterized in terms

of monomer-dimer equilibrium at physiological and low pH. The

SEC chromatograms reported in Figure 1A show a single,

symmetric peak under both conditions. According to the column

calibration curve, the elution volume of such a peak corresponds to

a molecular weight of 42 kDa, indicating the presence of a dimer

consisting of both variable and constant domain [1]. The linearity

between the elution volume and the natural logarithm of the

molecular weight applies well only for globular proteins and non-

spherical macromolecules can deviate from such relationship [19].

Therefore, to get a more accurate evaluation of the molecular

weight, mass spectroscopy (MS) analysis was performed. The

results in Figure 1B and 1C show one single peak with molecular

weight equal to 45.7 kDa for both conditions, in agreement with

SEC analysis. It is worth noting that the results of SEC and MS

are inconsistent with the western Blot and SDS-PAGE analysis

(data not shown), which revealed two bands, at around 50 kDa

and 25 kDa. This may arise from the denaturating conditions used

in the electrophoresis analysis, which can induce breakage of the

dimer disulphide-bond. Indeed, when SDS-Page was performed in

the presence of a reducing agent, only the 25 kDa monomer band

was detected. We can conclude that the produced light chains are

composed of both constant and variable part and associate into

dimers through covalent disulphide bonds, which can be broken

under reducing conditions.

The nucleotide sequence of U266 derived IgE l light chain has

been characterized as described in Text S1. Figure S1 reports the

U266 derived IgE l light chain nucleotide sequence, whereas

Figure S2 shows the alignment of the amino acid sequence with

the germline donor IGVL2-8.

In addition, the pI of the protein was measured equal to 8.5–9.0

by isoelectric focusing (data not shown), in agreement with the

theoretical pI (8.25), calculated using a dedicated tool available on

the Expasy proteomic server website (www.expasy.org).

Effect of environmental factors on structure stability and
aggregation behavior

The effect of pH, denaturant and temperature on the structure

stability of the light chain was investigated by spectroscopic

techniques.

In Figure 2A the far-UV CD spectra of the protein at pH 7.4

and pH 2.0 are reported. The spectrum at pH 7.4 shows a

minimum at 220 nm characteristic of the Greek key b-barrel

folding of the immunoglobulin fragment [20,21]. The b-sheet

structure content increases as the pH value decreases from 7.4 to

2.0 and the minimum shifts from 220 to 218 nm.

The unfolded protein fraction as a function of guanidinium

hydrochloride (GuHCl) has been evaluated by intrinsic tryptophan

fluorescence, while the temperature stability of the light chain was

investigated by CD temperature-step measurements (see Materials

and Methods for details). The GuHCl concentration required to

unfold half of the protein (Fu = 0.5) is equal to about 1.5 M

(Figure 2B), while the melting temperature (Tm) at physiological

pH was estimated equal to 55uC (Figure 2C).

After characterizing the structural stability of the protein, the

aggregation propensity of the light chain in several conditions was

assessed by DLS. A summary of all the experimental runs is

reported in Table 1, while the corresponding DLS data are shown

in Figure S3. For the condition at low pH, the effect of biologically

relevant salts, i.e. sodium chloride (NaCl), sodium phosphate

(NaH2PO4) and sodium sulphate (Na2SO4), was considered.

In physiological conditions, i.e., 25 mM PBS with 0.15 M NaCl

at pH 7.4 and 37uC (run 1 in Table 1), the protein solutions were

stable for over five months. Also in 20 mM HCl solution at pH 2.0

with or without 0.15 M NaCl or 0.15 M NaH2PO4 no

aggregation could be detected after several days of incubation

(run 2, 3 and 5 in Table 1).

The situation changed when the concentrations of NaCl and

NaH2PO4 were increased to 0.45 M and 0.49 M, respectively (run

4 and 6 in Table 1) or when Na2SO4 was added (runs 7 to 9 in

Table 1). The stability behavior for the different salts and different

salt concentrations, followed by DLS, is shown in Figure 3. In

Figure 3A, the results obtained using different salts but at the same

constant concentration of 0.15 M are compared, while in

Figure 3B salts are compared at similar ionic strength I, being I

defined as I~ 1
2

Pn

i~1

ciz
2
i , where ci is the concentration of ionic

species and zi the corresponding valence (I is equal to 0.45 M for a

0.45 M NaCl and 0.49 M NaH2PO4 solution, and equal to

0.35 M for a 0.15 M Na2SO4 solution). In all cases where

instability occurred, the scattered intensity increased almost

linearly from the beginning of the incubation, without the lag

phase typically encountered in amyloidogenic systems [22],

indicating that the aggregate formation started immediately after

incubation without a nucleation process. NaH2PO4 followed a

Aggregation Behavior of a l Light Chain Dimer
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behavior similar to NaCl, i.e., aggregation was observed only at

sufficiently large concentration values, but aggregation was slower

with NaH2PO4 than with NaCl. Instead, Na2SO4 showed a

peculiar effect in accelerating the aggregation at low pH, which

occurred even at low salt concentration (64 mM, corresponding to

an ionic strength of 0.15 M).

To investigate such peculiar effect, the initial light chain

secondary structure in the presence of the sulfate and the chloride

anion was characterized by CD spectroscopy and ANS binding, a

method probing the solvent accessibility of hydrophobic patches.

As shown in Figure 4A, with respect to the case in the absence of

salt, in the presence of NaCl the minimum in the far-UV CD

spectrum is decreased, indicating an increase of b-sheet structure;

moreover, the minimum shifts from 218 to 217 nm. Such

structural rearrangement is accompanied by a burying of

hydrophobic patches, as indicated by the decrease of the

maximum ANS fluorescence (Figure 4B) as a consequence of the

reduced binding of the hydrophobic dye. In the presence of the

sulfate anions, the light chain structure changes significantly: the

far-UV CD spectrum shows a minimum at 204.6 nm, corre-

sponding to a disordered structure (Figure 4A). In such a more

open, disordered structure, with respect to the b-sheet, the

hydrophobic patches expose more in the solvent. Indeed, the

ANS binding in this case is larger than that in the presence of the

chloride anion, as indicated by the increase in maximum ANS

fluorescence (Figure 4B). It is likely that such significant structural

change forms an intermediate more prone to aggregate. On the

other hand, by increasing the salt concentration (by adding

0.45 M NaCl, 0.49 M NaH2PO4 and 0.5 M Na2SO4), the

maximum ANS fluorescence decreases (Figure 4B), indicating less

Figure 1. Protein characterization. (A) SEC chromatogram of 1 g/L light chain solution in 25 mM PBS buffer at pH 7.4 (_) and in 20 mM HCl at
pH 2.0 (–). Insertion: calibration curve obtained with bovine serum albumin (60 kDa), chymotrypsinogen A (25 kDa) and lysozyme (14.5 kDa); (B) and
(C) Mass spectroscopy analysis in 25 mM PBS buffer at pH 7.4 (B) and in 20 mM HCl at pH 2.0 (C).
doi:10.1371/journal.pone.0033372.g001
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hydrophobic conformations. This is likely due to the additional

effects induced at high salt concentration, which will be discussed

in the Discussion section. Moreover, it is worth noticing that at

0.5 M Na2SO4 the fast aggregation rate affects the ANS

measurements.

Since at low pH the protein is positively charged (pI = 8.5–9),

only anions are expected to affect intra and intermolecular

interactions. To verify the absence of the cation effect on

aggregation, an additional experiment in 20 mM HCl at pH 2.0

with 0.45 M KCl was performed (run 11 in Table 1). The result is

compared with that with 0.45 NaCl in Figure 4C, confirming the

absence of the cation effect for the investigated salts.

After considering aggregation at low pH, we have also

investigated temperature- and denaturant-induced aggregation at

physiological pH. Incubation at the melting temperature

Tm = 55uC (run 11 in Table 1) caused aggregate formation after

few hours. Instead, incubation in 25 mM PBS at pH = 7.4 with

GuHCl in the concentration range from 1.3 to 1.5 M (run 12 and

13 in Table 1) could not induce any aggregation in the presence of

either 0.15 M NaCl or 0.15 M Na2SO4. This result suggests that a

generic partial protein unfolding is insufficient to promote

aggregation, but specific unfolded configurations are necessary to

induce aggregation.

Aggregation pathway and aggregate morphology
The aggregation pathway was investigated by several techniques

taking as a reference condition run 8 in Table 1 (20 mM HCl

buffer at pH 2.0 with 0.15 M Na2SO4, 37uC). In Figure 5A the

time evolution of the hydrodynamic radius (,Rh.) followed on-

line by DLS is shown. As mentioned above, the aggregation

induced by the sulfate addition occurs without lag-phase. The

dimer conversion was measured by taking samples at different

times during the aggregation and analyzing them off-line by SEC

and FFF. The results obtained by the two techniques were

consistent, showing a significant decrease of the dimer peak in the

chromatograms over time (data not shown). From the value of the

area under the peak, the amount of the residual massive dimer

Figure 2. Light chain structural changes induced by pH,
denaturant addition and temperature. (A) CD spectra for the
0.3 g/L light chain solution in 25 mM PBS at pH 7.4 (_) and in 20 mM
HCl at pH 2.0 (–); (B) Fraction of unfolded protein as a function of
guanidinium hydrochloride (GuHCl) concentration evaluated by intrin-
sic tryptophan fluorescence measurements (see Materials and Meth-
ods). The continuous line represents the interpolation of experimental
data according to Eq. 1; (C) Fraction of unfolded protein as a function of
temperature evaluated by CD measurements (see Materials and
Methods). The continuous line corresponds to the interpolation of
experimental data according to Eq.1.
doi:10.1371/journal.pone.0033372.g002

Table 1. Summary of all investigated conditions. Protein
concentration is 1 g/L in all cases.

Run Buffer pH Salt T Aggregation

1 25 mM PBS 7.4 0.15 M NaCl 37uC no

2 20 mM HCl 2.0 - 37uC no

3 20 mM HCl 2.0 0.15 M NaCl 37uC no

4 20 mM HCl 2.0 0.45 M NaCl 37uC yes

5 20 mM HCl 2.0 0.15 M NaH2PO4 37uC no

6 20 mM HCl 2.0 0.49 M NaH2PO4 37uC yes

7 20 mM HCl 2.0 0.064 M Na2SO4 37uC yes

8 20 mM HCl 2.0 0.15 M Na2SO4 37uC yes

9 20 mM HCl 2.0 0.5 M Na2SO4 37uC yes

10 20 mM HCl 2.0 0.45 M KCl 37uC yes

11 25 mM PBS 7.4 - 55uC yes

12 25 mM PBS 7.4 0.15 M NaCl + 1.3 to
1.5 M GnHCl

37uC no

13 25 mM PBS 7.4 0.15 M Na2SO4 + 1.5 M
GnHCl

37uC no

14 25 mM PBS 7.4 0.15 M Na2SO4 + seeds 37uC no

doi:10.1371/journal.pone.0033372.t001
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fraction has been evaluated and shown in Figure 5B. It is seen that

the dimer conversion is almost completed already after 6 hours

while aggregation is still on-going (Figure 5A). This implies that

aggregation does not occur via dimer addition only but also among

larger aggregates. However, larger aggregates could not be

detected with neither of the two techniques mentioned above,

probably because of interactions with the stationary phases of the

two instruments.

The change of secondary structure during aggregation was

followed by spectroscopic techniques (intrinsic tryptophan, CD

and ThT fluorescence). The intrinsic tryptophan spectra showed

an increase in the maximum fluorescence value over time

(Figure 5C), indicating that, as a consequence of structural

rearrangements, the tryptophan residues exposed during denatur-

ation at low pH become less solvent-exposed during the

aggregation. The change in the protein secondary structure along

the aggregation is confirmed by CD spectroscopy, as shown in

Figure 5D. The far-UV CD spectra show a progressive significant

shift from a random-coil structure to a more ordered b-sheet

structure, with the minimum shifted from 205 to 216 nm.

Despite the formation of more ordered b-sheet structure during

aggregation, the aggregates showed low ThT signal increment

Figure 3. Light scattering intensities measured on-line by in situ
DLS. (A) 1 g/L light chain solution in 20 mM HCl buffer at pH 2.0
without salt (n), with 0.15 M NaCl (–), NaH2PO4 (...), Na2SO4 (_) (runs 3,
4, 6 and 9 in Table 1); (B) The same as (A) but salts are compared at
similar ionic strength (see text): 0.45 M NaCl (–), 0.49 M NaH2PO4 (...),
0.15 M Na2SO4 (_) (runs 4, 6 and 8 in Table 1); (C) The same as (A) but for
a solution in 20 mM HCl buffer at pH 2.0, with 0.45 M NaCl (_) and KCl
(...) (runs 4 and 10 in Table 1).
doi:10.1371/journal.pone.0033372.g003

Figure 4. Light chain structural changes induced by salt
addition monitored by CD (A) and ANS binding (B). Experiments
were performed at 20uC for a 0.3 g/L protein solution in 25 mM PBS at
pH 7.4 (...) and in 20 mM HCl buffer at pH 2.0 without salt (n), with
0.15 M NaCl (–),0.15 M Na2SO4 (_), 0.45 M NaCl (#), 0.49 M NaH2PO4

(%) and 0.5 M Na2SO4 (6).
doi:10.1371/journal.pone.0033372.g004
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with the respect to the starting value, indicating lower ThT

binding (see Figure S4). The increase in solution turbidity was

significant already after one day incubation. However, while the

increase of the light scattering intensity was large, the increase of

ThT absolute fluorescence values was small even after three weeks

of incubation. After such period, aggregates were analyzed also

with Congo Red test, the most common and efficient test applied

to detect the presence of fibrils of light chain [23]. The result of the

test was negative, confirming the absence of fibrillar structure (see

Figure S5).

The aggregate morphology was further studied by AFM

microscopy and hydrated thin film ATR-FTIR. In Figure 6 the

pictures of samples taken after one month incubation in the

conditions of runs 4, 6, 8 and 11 in Table 1 are shown. It can be

seen that only spherical aggregates are visible for all the

investigated conditions.

FTIR spectra of native state dimer and protein aggregates are

reported in Figure 7, where the spectrum of the native dimer

shows a maximum at 1641 cm21, characteristic of the b-sheet

structure of the immunoglobulin fragment and corresponding to

the minimum at 220 nm in CD spectrum in Figure 2A. The

spectrum shows also a significant presence of disordered, a-helix

and turns/loops structure, corresponding to the area between

1647 and 1695 cm21, in analogy to other spectra of variable

domain reported in literature [24,25,26]. In the aggregate spectra

the percentage of the area between wavenumbers 1615 and

1640 cm21 with respect to the total area increases and the

maximum shifts to 1635.4 cm21. Such changes indicate rear-

rangement of the secondary structure inside the aggregates and,

particularly, an increase of the b-sheet structure content with

respect to the native state, in agreement with the intrinsic

tryptophan fluorescence and the CD data shown in Figure 5C

and 5D, respectively. Nevertheless, the disordered, a-helix and

turns/loops structures are still significantly present, and the

absence of the predominance of the b-sheet structure confirms

again the non-amyloidogenic nature of the formed aggregates.

The shift of the maximum is less pronounced in the case of

NaH2PO4, due to the slower aggregation kinetics.

The ability of the obtained aggregates to seed aggregation was

investigated by adding fragments of aggregates obtained in 20 mM

HCl buffer at pH 2.0 with 0.5 M Na2SO4 to a 1 g/L light chain

solution. The aggregates were broken by sonication as reported by

Kim et al. [27] using two different sonication times of 0.5 and

5 minutes. The seeds were added at a concentration of 0.1 and

Figure 5. Aggregation kinetics of light chain solution in 20 mM HCl at pH 2.0, T = 376C, with 0.15 M Na2SO4 (run 8 in Table 1). Time
evolutions of (A) the average hydrodynamic radius ,Rh., measured on-line by in situ DLS; (B) residual massive dimer fraction (m) evaluated by SEC
(&) and FFF (#); (C) Intrinsic tryptophan spectra; (D) CD spectra. Experiments were performed at a protein concentration of 1 g/L for (A) and (B) and
0.3 g/L for (C) and (D).
doi:10.1371/journal.pone.0033372.g005
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0.2 g/L to a solution at physiological pH with Na2SO4 (runs 14 in

Table 1): no aggregation was observed after several months. The

results indicate that amorphous aggregates alone are unable to

induce aggregation under the conditions where the peculiar,

partially unfolded, configuration necessary to trigger aggregation is

absent.

Discussion

In many studies related to protein aggregation it has been

shown that the secondary structure thermodynamic stability and in

vitro fibril formation propensity are strongly related

[13,27,28,29,30]. Temperature, pH and denaturants, such as

urea and guanidinium hydrochloride, at suitable concentrations

may promote protein conformation changes, particularly total or

partial protein unfolding, leading to aggregation [20,31,32,33].

The aggregation mechanism and kinetics as well as the

morphology of the final products have been shown to depend

on the specific unfolded intermediate structure [34,35,36,37]. For

instance, Khurana et al. [29] studied the aggregation of a

recombinant non-amyloidogenic light chain variant (stable in

physiological conditions) induced by pH, and found that

amorphous aggregates were obtained at pH between 3 and 4,

while at pH 2 fibrillar structures were formed. In another study

[9], the morphology of the aggregates obtained in vitro by a single

variant was significantly affected by the chemical composition of

biologically relevant lipid-derived aldehydes added into the system.

Also in this case, aggregation occurred via protein secondary

structure changes. These examples clearly underlined the

important role played by the protein secondary structure in the

delicate balance between electrostatic and hydrophobic interac-

tions responsible for the protein stability [38].

Another physical factor significantly affecting the stability

behavior of the light chain is the protein native oligomeric state,

i.e., monomer, dimer, and their equilibrium state. In the case of an

amyloidogenic variant a single amino acid mutation located at the

dimer interface could cause a significant difference in the dimer

stability, shifting the equilibrium versus the monomer and

Figure 6. Aggregates morphology. AFM pictures of light chain aggregates obtained after one month incubation in 20 mM HCl at pH 2.0 with
0.45 M NaCl (A), with 0.15 M Na2SO4 (B) or with 0.49 M NaH2PO4 (C) and after two hours incubation in 25 mM PBS at pH 7.4, T = 55uC (D) (runs 4, 8, 6
and 11 in Table 1).
doi:10.1371/journal.pone.0033372.g006
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promoting aggregation [39]. This finding is supported by the fact

that fibril formation kinetics was accelerated when monomer-

dimer equilibrium was shifted versus monomer by decreasing the

total protein concentration or by denaturant addition [13,20,40].

In the proposed aggregation schemes, fibrillation proceeded only

via monomer addition, while dimers were responsible for the off-

pathway amorphous oligomers observed together with amyloid

fibrils.

The results shown in this work indicate that the light chain

dimer is very stable in physiological conditions and dimer

denaturation is a necessary but not sufficient condition to induce

aggregation. This follows from our observation that protein

denaturation either by shifting the pH from 7.4 to 2 or by adding

GuHCl at physiological pH was not resulting in any instability.

Instead, aggregation was observed at low pH when salt was added

at large concentrations or at physiological pH when the solution

was heated to the protein Tm. The results indicate that a specific

configuration change is necessary to induce aggregation in

globular proteins.

From a kinetic point of view, we observed that when

aggregation occurs it starts immediately after incubation without

any induction period, as indicated by DLS data (Figures 3 and

5A). The aggregation is accompanied by structural rearrange-

ments which decrease the solvent exposure of tryptophan residues

(Figure 5C) and increase the protein b-sheet content (CD data in

Figure 5D). Such increase in the b-sheet content in the aggregates

compared to the native state is confirmed by FTIR analysis

(Figure 7). Despite such increase, the aggregates retain a large

amount of random coil, a-helix and loops structures and do not

bind ThT or Congo Red dye as amyloid fibrils do. AFM confirms

the absence of fibrils and shows the presence of amorphous

spherical aggregates (Figure 6). Moreover, the addition of such

amorphous aggregates in native proteins is unable to induce

aggregation in physiological conditions, most probably because

they cannot induce the necessary conformational change in the

native fold protein. At least for the reference reaction (run 9 of

Table 1) in FFF and SEC chromatograms, the decrease in the

dimer peak was not accompanied by the increase in the monomer

peak, indicating that aggregation was not occurring via monomer

formation. The lack of monomer formation and the absence of

fibrils suggest that the monomer is the only repetitive unit present

in the pathway to amyloid fibrils, while dimers are responsible for

amorphous aggregates.

Considering the experimental evidences previously discussed,

we proposed the reaction scheme shown in Figure 8: under

suitable conditions the native dimer is partially denatured into a

reactive species D*, which may be in equilibrium with the native

dimer D. D* has suitable conformational characteristics to

aggregate further irreversibly into larger amorphous aggregates.

Of particular interest is the fact that one of the few conditions

where aggregation was observed is the addition of salt at low pH.

Salt-induced aggregation at low pH has been observed also for a

complete monoclonal immunoglobulin IgG2: at pH 3 with NaCl

in the concentration range 0.1–0.5 M, partial unfolding of the

antibodies followed by reversible aggregation to oligomers was

observed [41]. The effect of the salt on the stability of the light

chain dimer and of the intact immunoglobulin can be explained by

a combination of several factors. First of all, salt ions at low salt

concentration screen the repulsive electrostatic interactions

between proteins, as described by the DLVO (Derjaguin-

Landau-Vervey-Overbeek) theory, which quantifies the mean-

field interaction potential between two approaching particles

considering only Van der Waals and non-specific electrostatic

interactions [42]. Second, at the high concentrations considered in

this work (0.15–0.45 M), additional, anion binding effects must be

considered, which may change the protein surface chemistry and

therefore the protein secondary structure, inducing a conforma-

tion more prone to aggregate. Further, salt-protein preferential

exclusion may lead to salting-out effect, resulting in protein

precipitation [43]. Unlike unspecific salt screening effects, such

effects are strongly ion specific. In this work only anions have been

found to affect aggregation kinetics, while the investigated

monovalent cations (Na and K) do not have any effect. The

specific anion effect on several biological phenomena has been

widely reported in the literature and often compared to the so-

called Hofmeister series [44] based on anion capacity to affect

protein stability, protein precipitation and water structure. Despite

the large use of the Hofmeister series, its molecular origin is still

under debate [42]. When compared at the same concentration

and similar ionic strength, the order of the anions in accelerating in

vitro light chain aggregation found in this work is:

SO4
2.Cl2.H2PO4

2, somehow in disagreement with the

Hofmeister order: SO4
2.H2PO4

2.Cl2 [42].

The peculiar effect of the sulfate anion in promoting

aggregation has also an in vivo biologically relevance due to the

involvement of sulfonated glycosaminoglycans (GAGs) in amyloid

fibril formation of several proteins (ex. light-chain [21,45,46,47],

b2-microglobulin [48], transthyretin [49], human muscle acylpho-

sphatase [50], gelsolin [51]). Despite the large number of reported

evidences, a clear explanation of the mechanism by which GAGs

and sulfate anion promote aggregation is still lacking. In this work,

we show that not only fibrillation but also aggregation into

amorphous aggregates is accelerated by the sulfate anion. The

peculiar effect of the sulfate may be explained considering several

Figure 7. FTIR secondary structure analysis. Thin film ATR-FTIR
spectra of native light chain dimer (–) and of light chain aggregates
obtained after one month incubation in 20 mM HCl at pH 2.0 with
0.45 M NaCl (_), with 0.15 M Na2SO4 (...), or with 0.49 M NaH2PO4 ({:{)
(runs 4, 8, and 6 in Table 1).
doi:10.1371/journal.pone.0033372.g007

Figure 8. Scheme of aggregation mechanism. D* represents the
salt-induced or temperature-induced intermediate dimer prone to
aggregate.
doi:10.1371/journal.pone.0033372.g008
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properties of bivalent anions: 1) at a given concentration, the

screening of electrostatic repulsion of a bivalent anion is larger

with respect to monovalent anions; 2) a bivalent anion can act as a

bridge between two positively charged proteins favoring their

aggregation [52]; 3) according to the Hofmeister series, sulfate is

the most kosmotropic anion with the largest propensity to induce

salting-out effect without changing the native structure; 4) the

bivalency promotes a more effective anion binding, which may

significantly changes intramolecular interactions, stabilizing an

unfolded intermediate with respect to the native state. The

experimental results indicate that, at least for the dimer

investigated in this work, at low pH the last one of the above

effects is predominant: sulfate anion binding induces a disruption

of the b–sheet structure of the immunoglobulin variant into a

more disordered structure, which apparently exhibits larger

propensity to aggregate. It is worth noting that at physiological

pH the protein has a lower net positive charge and anion binding

is significantly reduced. Indeed, no aggregation was observed at

physiological pH, even in presence of Na2SO4 or GuHCl.

Concluding remarks
In this work, a non-amyloidogenic light chain dimer has been

expressed in human myeloma cell line U266 adapted to low serum

media, and its in vitro aggregation behavior has been investigated.

Moreover, the light chain sequence has been characterized in

order to allow comparative analysis with other studies describing

the features of amyloidogenic light chains with a known sequence.

It is found that the dimer is very stable in physiological

conditions and aggregation is observed only when specific

denaturing conditions are applied.

Aggregation starts immediately without any lag phase or

nucleation process and forms spherical, amorphous aggregates.

The impossibility to obtain fibrils in vitro from a light chain dimer

has a significant relevance also for the in vivo systems, suggesting

that the presence of light chain monomer is fundamental for the

formation of amyloid fibrils, while dimers are responsible for

oligomers or amorphous deposits.

It is found that at low pH the salt anion has a significant specific

effect on protein aggregation kinetics according to the following

order: SO4
2&Cl2.H2PO4

2. In particular, the sulfate anion

accelerates aggregation by inducing protein secondary structure

change.

Materials and Methods

Cell growth, protein purification and characterization
The IgE l light chain was produced from the human mammalian

cell line U266 obtained from a 53-years-old patient suffering from

multiple myeloma [14]. Cells were received from the institute

‘‘Mario Negri’’ (Milan, Italy) in RPMI-1640 medium (Sigma-

Aldrich, Steinheim, DE) with addition of 10% fetal bovine serum

(FBS) (PAN Biotech, München, DE) and 0.1% Penicillin-Strepto-

mycin Solution (Sigma-Aldrich, Steinheim, DE) to avoid bacterial

contaminations. The cells were adapted from the 10% FBS medium

to a 1% FBS medium to simplify the purification step.

The collected supernatant containing the desired product was

concentrated 10-fold using a SartoflowH Slice 200 Benchtop

Crossflow system with 10 kDa cut-off membrane (Sartorius

GmbH, Göttingen, DE). The concentrated cell culture superna-

tant was then prepared for cation exchange chromatography by

three-fold dilution with deionized water for decreasing the ionic

strength and by adjusting the pH to a value in the range 5.0–5.5

using glacial acetic acid (Carbo Erba Reagents, Rodano, Italy).

The solution was then filtered using the SartoflowH Slice 200

Benchtop Crossflow system with 200 nm cut-off membrane.

The clarified cell culture supernatant was then purified by

combining cation exchange chromatography with size exclusion

chromatography (SEC). In principle, pure protein can be obtained

using a SEC column alone. However, since the SEC technique can

operate only at a relatively low flow rate and only a limited amount

of material can be loaded, it has extremely low productivity.

Therefore, we have developed a cation-exchange process to purify

and simultaneously concentrate the IgE l light chain fragment. All

preparative chromatography steps were operated on AKTA

equipment (GE Healthcare, Uppsala, SE). The cation-exchange

step was carried out using Poros HS50 (Applied Biosystems,

Hercules, CA, USA), packed into a KronLab TAC 15/125G0-SR

column with 1.5 cm inner diameter and 7.6 cm length. The

chromatography method included a loading step at 10 mL/min

(340 cm/h) and a linear gradient elution step from 0–100% buffer B

in 10 min at 9 mL/min (305 cm/h). As mobile phases, 25 mM

acetate buffer (pH 5.0, buffer A) and 25 mM acetate buffer

containing 1 M NaCl (pH 5.0, buffer B) were used. The gradient

elution was fractionated and the purity of the fractions was

determined by analytical SEC on a HP Agilent Series 1100

equipped with a Superdex 75 10/300 GL column (GE Healthcare,

Uppsala, SE). The fractions with the largest content of l light chains

were pooled, concentrated and injected into a HiLoadTM 26/60

SuperdexTM 75 prep grade column (GE Healthcare, Uppsala, SE).

The fractions with the largest content of l light chain were washed

four times with 25 mM PBS (pH 7.4, 1 g/L NaN3) and

concentrated to reach a final concentration of 1 g/L and stored

in refrigeration. With this process, from 6 litres of supernatant we

can obtain 15 mg of l chain with a purity of 97%, where bovine

serum albumin is the main impurity. Three batch productions

indicated good reproducibility of the developed purification process.

The protein concentration was evaluated using a PierceH BCA

Protein Assay Kit (Thermo scientific, Rockford, IL, USA) and UV

absorbance at 280 nm.

The protein purity was assessed by SDS-PAGE with silver

staining and Western blot analysis. For the latter, the monoclonal

anti-human lambda light chain (bound and free) antibody

produced in mouse (Sigma-Aldrich, Steinheim, DE) and the

HRP-linked anti-alpha microglobulin antibody were used as

primary and secondary antibody, respectively.

To measure protein charge properties, a protein stock solution

sample was loaded into an IEF gel (pH 3–10) and run in a

PhastSystemTM instrument (GE Healthcare, Buckinghamshire, UK).

Mass Spectrometry (MS)
The mass spectrometric analysis was performed on Bruker’s

ESI-Qq-TOF (Bruker, Billerica, MA, USA). The protein samples

at pH 2.7 and 7.4 were ionized by a nano-spray source (Advion’s

NanoMate, Ithaca, NY, USA). The highly protonated mass

spectra were then deconvoluted by the MaxEnt aglorithm to

provide singly-charged molecular mass (MH+).

Circular dichroism (CD)
Circular dichroism (CD) spectra were measured using a Jasco-

815 CD spectrophotometer (Jasco, Easton, MD, USA). Far-UV

CD spectra of 0.3 g/L protein solutions were recorded from 260

to 190 nm with the temperature of the cell holder controlled at

20uC. A quartz cuvette with 0.1 cm path length was used. Spectra

obtained after buffer subtraction were corrected for protein

concentration and smoothed using the Savitsky-Golay function.

Protein thermal stability was evaluated by recording the spectra

at several temperatures and monitoring the change in mean
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residue ellipticity at 196 nm. The temperature was increased from

20uC to 80uC in 5uC steps. The solution was equilibrated at each

temperature for 10 min before measuring.

The fraction of unfolded conformation (Fu) was obtained

assuming a two-state folding mechanism according to Equation 1:

Fu~ hf {h
� �

= hf {hu

� �
ð1Þ

where hf and hu represent the mean residue ellipticity values

characteristic of folded and fully unfolded protein. From the

sigmoidal curve-fit to experimental data the melting temperature

(Tm) was evaluated.

Intrinsic Tryptophan Fluorescence (Trp) and 8-anilino-1-
naphthalenesulfonic acid (ANS) binding

Intrinsic Tryptophan Fluorescence (Trp) measurements were

performed on a Varian Cary Eclipse Fluorescence Spectropho-

tometer (Varian, Palo Alto, CA, USA). Intrinsic tryptophan

fluorescence analysis was performed exciting the sample at

295 nm and collecting emission spectra between 305 and

450 nm. The effect of denaturant on conformational stability

was investigated by incubating 0.8 g/L light-chain solutions in

25 mM PBS buffer at pH 7.4 with 0.15 M NaCl and with

guanidine hydrochloride (GuHCl) in the concentration range from

0 to 5 M at 25uC for 40 min. Changes in protein structure were

estimated by fluorescence intensity values assuming a two-state

folding mechanism according to Equation 1. From the sigmoidal

curve-fit to experimental data the midpoint of the unfolding

transition was evaluated (Cm).

8-anilino-1-naphthalenesulfonic acid (ANS) binding experi-

ments were performed using an EnSpire 2300 Multilabel Plate

Reader (Perkin Elmer, Boston, MA, USA). Emission spectra of

0.3 g/L light chain solution in several buffers with 25 mM ANS

were collected at 20uC between 420 and 600 nm using 380 nm as

excitation wavelength.

Dynamic Light Scattering (DLS)
A 10 g/L light chain stock solution was diluted to the desired

concentration (0.3–1 g/L) by the desired investigated buffer

solutions. DLS measurements were performed on-line using a

Zetasizer Nano (Malvern, Malvern Worsc, UK). All samples were

filtered with a 0.02 mm cut-off, Anotop 10 syringe filter (Whatman,

Kent, UK) immediately before the experiment.

Size Exclusion Chromatography (SEC)
The size exclusion chromatography (SEC) technique was

performed with a Superdex 75 10/300 GL, 10 mm6300 mm

size-exclusion column (GE Healthcare, Uppsala, SE) on a Agilent

1200 series HPLC unit (Santa Clara, CA, USA). Each sample was

eluted for 60 min at a constant flow rate of 0.5 mL/min using as

mobile phase a 100 mM Na2SO4, 25 mM Na2HPO4 solution at

pH 7.4, filtered with a 0.45 mm cut-off, Durapore membrane filter

(Millipore, Billerica, MA, USA). The UV absorbance peaks were

detected at 280 nm and 220 nm.

Field Flow Fractionation (FFF)
The asymmetrical Field Flow Fractionation (FFF) assay was

performed using a AF4 Eclipse 3+ (Wyatt, Dernbach, DE),

coupled with a 1200 Series isocratic pump from Agilent (Santa

Clara, CA, USA). A 275 mm LC channel for aqueous solvents was

used for Eclipse 3, with a trapezoidal spacer (350 mm thick,

26.5 cm long) and a Nadir reg. cellulose membrane with 1 kDa

cut-off at the bottom (Wyatt, Dernbach, DE). The detector flow

was set constant at 1 mL/min, and a step gradient of cross flow

from 5 mL/min to 0 mL/min was applied after 30 min. 20 mM

HCl buffer solution at pH 2.0 was used as mobile phase, after

filtration through a 0.1 mm cut-off, Durapore membrane filter

(Millipore, Billerica, MA, USA). 25 mL of sample were injected at

desired time interval.

Atomic Force Microscope (AFM)
10 mL of 30 fold diluted samples were spotted on a freshly

cleaved mica surface for 30 seconds before washing with Millipore

water to remove unattached material and gently drying under

nitrogen flux. Samples were imaged at room temperature by a

Nanoscope IIIa (Digital Instrument, USA) operating in tapping

mode. Scan rate of 0.8 Hz and antimony doped silicon cantilevers

with resonance frequency in the range 325–382 kHz and tip

radius of 8 nm (Veeco, Plainview, NY, USA) were used.

Fourier Transform Infrared Spectroscopy (FTIR)
Hydrated thin film attenuated total reflectance fourier trans-

form infrared spectroscopy (ATR-FTIR) spectra were acquired on

a Nicolet Nexus 870 FTIR ESP instrument equipped with a ATR

Nicolet Omni-Sampler device (Nicolet, Madison, WI, USA).

Aliquots of 10 mL were spotted on the crystal surface and let

drying under nitrogen flux. The spectra were collected in the

wavelength range from 1700 to 1600 cm21 at 1 cm21 resolution

and smoothed using the Savitsky-Golay function after buffer

subtraction.

Supporting Information

Text S1 Characterization of the IgE l light chain sequence in

U266 cells, aggregation stability of light chain under several

conditions followed by dynamic light scattering, and Thioflavin T

(ThT) and Congo Red binding assay.

(DOC)

Figure S1 U266 derived IgE l light chain nucleotide sequence.

Black: variable region; Gray: junction region; underscore: constant

region.

(TIF)

Figure S2 Deduced amino acid sequence of the IGLV2-8

derived U266 l light chain variable region. Amino acid changes

from the germline donor, IGVL2-8, are highlighted. FR:

framework region; CDR: complementarity determining region.

(TIF)

Figure S3 Time evolution of light scattering intensity for run 1

(6), run 7 (*), run 9 (D), run 11 (N), run 12 (e), run 13 (%) and run

14 (#) in Table 1.

(TIF)

Figure S4 Time evolution of ThT fluorescence values (¤) and

DLS intensity (#) under the conditions of Run 8 in Table 1. Insert

represents ThT values at longer incubation times.

(TIF)

Figure S5 Congo Red spectrum obtained by the difference

between the samples and the blank solution: light chain aggregates

after 10 h incubation under the conditions of Run 8 in Table 1 (–);

stable light chain solution at pH 7.4 (…); insulin fibrils (_).

(TIF)
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