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Abstract: Finger vein patterns have recently been recognized as an effective biometric 
identifier. In this paper, we propose a finger vein recognition method based on a 
personalized best bit map (PBBM). Our method is rooted in a local binary pattern based 
method and then inclined to use the best bits only for matching. We first present the 
concept of PBBM and the generating algorithm. Then we propose the finger vein 
recognition framework, which consists of preprocessing, feature extraction, and matching. 
Finally, we design extensive experiments to evaluate the effectiveness of our proposal. 
Experimental results show that PBBM achieves not only better performance, but also high 
robustness and reliability. In addition, PBBM can be used as a general framework for 
binary pattern based recognition. 

Keywords: finger vein recognition; personalized best bit map; local binary pattern; 
Hamming distance; general framework 

 

1. Introduction 

Biometric recognition, or simply biometrics, refers to the use of distinctive anatomical and 
behavioral characteristics or identifiers (e.g., fingerprints, faces, iris, voices, and hand geometries) for 
automatically recognizing an individual [1,2]. Since it is difficult to misplace, forge or share biometric 
identifiers, biometric recognition is more reliable than traditional token-based methods (e.g., keys or 
ID cards) and knowledge-based methods (e.g., passwords or PINs). Besides, biometric recognition also 
promises better security, higher efficiency, and better user experience in many cases. Due to these 
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advantages, biometric recognition systems have been extensively deployed and employed in a large 
number of government agencies (e.g., border crossing, national ID cards, e-passports, etc.) and daily 
applications (e.g., computer network logons, mobile phones, Web access, smartcards, etc.). 

Hand-based biometrics normally include fingerprint recognition, finger knuckle print recognition, 
and palm print recognition, among which fingerprint recognition is the most mature method and has 
been used in many fields for years [2]. However, fingerprint based biometric system are vulnerable to 
forgery because fingerprints are easily exposed to others. What is even worse is that a finger’s surface 
conditions (such as sweat and dryness) can significantly deteriorate the acquisition of clear fingerprint 
patterns, resulting in a dramatically degraded performance [3]. Finger knuckle print [4] and palm 
print [5] based biometric systems are easy to replicate since the features are external to human bodies. 

To overcome the limitations of the current hand-based biometric systems, finger vein recognition 
was proposed and has been well studied recently [6]. In [7], the authors prove that each finger has a 
unique vein pattern that can be used for personal verification. The finger vein recognition has some 
advantages over other hand-based biometric authentication techniques [8,9]: (1) non-contact: finger 
vein patterns are not influenced by surface conditions. Non-invasive and contactless data capture 
ensures both convenience and cleanliness for the users, and it is more acceptable for the users; (2) live 
body identification: finger vein patterns can only be identified on a live body; (3) high security: finger 
vein patterns are internal features that are difficult to forge; (4) small device size: as compared to palm 
vein based verification devices [10], most finger vein recognition devices are smaller in size. 

Like other traits, finger vein recognition includes four main steps, including image capturing,  
pre-processing, feature extraction and matching. In order to better utilize the features from the 
segmented blood vessel network for recognition, [6] extracts the finger vein pattern from the unclear 
image with line tracking, which starts from various positions. In [11], the minutiae features include 
bifurcation points and ending points are extracted from these vein patterns. These feature points are 
used for geometric representation of the vein patterns’ shape. A modified Hausdorff distance algorithm 
is provided to evaluate the identification ability among all possible relative positions of the vein 
patterns’ shape. In [12] the authors propose a mean curvature method, which regards the vein image as 
a geometric shape and finds the valley-like structures with negative mean curvatures; an equal error 
rate of 0.25% is reported with test images from 125 fingers. In [13] the patterns of finger veins are 
extracted by combining two segmentation methods, including Morphological Operation and Maximum 
Curvature Points in Image Profiles. [14] introduces a wide line detector for feature extraction, which 
can obtain precise width information for the veins and increases the information of the extracted 
features from low quality images. Due to the optical blurring and skin scattering problems, the finger 
vein images are not always clear and can show irregular shadings [15]. To deal with this problem, 
many finger vein image enhancement methods are proposed [16–20]. A detailed description of these 
approaches is beyond the scope of this paper. However, a summary of these approaches with the 
typical references is provided in Table 1. 
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Table 1. Methods for personal authentication using finger vein recognition. 

References Method Database 
fingers × samples per each Performance 

[6] line-tracking 339 × 2 images EER: 0.145% 
[8] manifold learning 164 × 70 images EER: 0.8% 
[9] Radon transform 50 × 10 images GAR: 99.2%. 
[11] Minutiae points 50 × 10 images EER: 0.761% 
[12] mean curvature 125 × 9 images EER : 0.25% 
[13] Maximum Curvature Points 7 × 14 images GAR: 95% 
[14] wide line detector 10,140 × 5 images EER: 0.87% 
[15] minutia points 816 × 10 images EER: 1.91% 

[20] curvelets and local interconnection 
structure 400 × 8 images EER: 0.128% 

[21] Local moment, Topological,Vein-shape 162 × 10 images GAR: 99% 
[22] 2-D Gabor filters 300 × 5 images GAR: 99.31%. 

In order to further boost the performance of finger vein recognition, multi-biometric systems are 
provided. The example in [21] exploits finger vein features in local moments, topological structure and 
statistics, respectively, and a fusion scheme is adopted for decision making, obtaining a higher 
recognition rate of 99% while the FAR is only 0.0086%. The authors in [22] first use a 2-D Gabor 
filter to filter the original finger vein images, and then extract the phase and direction texture features for 
combination in a feature level fusion. Finally a modified Hamming distance measure is used for 
matching. A recognition method based on the score-level fusion of finger veins, fingerprints, and finger 
geometry features is proposed in [23]. The fusion at the feature extraction level for fingerprints and 
finger vein biometrics is studied in [24]. The authors also use a dynamic weighting matching algorithm 
based on quality evaluation of interest features. A multimodal biometric approach fusing finger vein 
patterns with finger-dorsa textures is introduced in [25], where the binary vein patterns and normalized 
dorsal textures are fused into one feature image, and a block-based texture feature is proposed for 
personal authentication. 

Most finger vein recognition methods utilize features from the segmented blood vessel network [26]. 
However, segmentation errors may occur during the feature extraction process due to the low quality 
of finger vein images. Improperly segmented networks may degrade the recognition accuracy 
significantly. To solve this problem, binary pattern based methods are proposed [26,27], whereby the 
captured finger vein images are enhanced by modified Gaussian high-pass filter and then LBP,  
LDP [27] or LLBP [26] are applied to extract the binary codes from the enhanced images. The 
similarity between the extracted and enrolled binary codes is measured by Hamming distance. In [26], 
experimental results on the images from 204 fingers indicated that the equal error rate (3.729%) for the 
LLBP is significantly lower than that of the LBP and LDP approaches. 

When we evaluated LBP based finger vein recognition, we noticed two interesting phenomena:  
(1) generally speaking, there are many samples captured from the same finger and LBP binary codes 
(abbreviated in LBPCodes) extracted from these samples, respectively. Comparing each bit location of 
the LBPCode series, we find most of them are consistent, i.e., the bit values are all 1’s or 0’s. Only a 
few bits are inconsistent, where some LBPCode series take the value of 1’s, and the others value 0’s.  
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(2) Furthermore, the consistent bits of one finger vein are different from the others in terms of location 
and bit value. These phenomena motivated us to use these consistent bits for personalized matching. 
Inspired by [28,29], we propose a finger vein recognition method based on a personalized best bit map 
(PBBM). Extensive experiments show that PBBM can significantly improve recognition performance 
as well as robustness. 

The rest of this paper is organized as follows: Section 2 presents the principles of LBP-based finger 
vein recognition. Section 3 introduces the generation of the PBBM. Section 4 describes the framework 
of finger vein recognition based on a PBBM. Section 5 presents extensive experiments and discusses 
the robustness of the PBBM approach. Finally, Section 6 concludes this paper. 

2. LBP Based Finger-Vein Recognition 

Local Binary Pattern (LBP) is a type of feature extraction method. In [30,31] an LBP operator as a 
nonparametric 3 × 3 kernel for texture classification was proposed. In [27] a LBP-based finger vein 
recognition method was proposed. An LBP can be defined as an ordered set of binary values 
determined by comparing the gray values of a center pixel and its neighboring pixels, as shown in 
Figure 1 The binary values can be expressed in decimal form as shown in Equation (1) [27]: 

LBP(xc, yc) = ∑ s(in െ icn=7
n=0 )2n (1)

where ic and in in Equation (1) denote the gray value of the center pixel (xc,yc) and its eight 
neighboring pixels, respectively. The function s(x) is defined as [27]: 

s(x) = ቄ1 if x ≥ 0
0 if x < 0 (2)

Through Equations (1) and (2), the LBP operator extracts a finger vein binary code of M × N × 8 
bits, M × N is the size of the image. In Figure 1, the binary sequence on the 3 × 3 block is defined 
clockwise from the top-left as 00000101. 

Figure 1. Example of an LBP operator. 

 

Denoting the LBP feature of image in the database by LBPCodeA and the LBP feature of input 
image by LBPCodeB, the hamming distance (HD) is generally adopted to measure dissimilarities 
between two binary patterns, which are represented as follows: HD ൌ ԡLBPCodeA ٔ LBPCodeBԡCode Length  (3)

In Equation (3), ٔ is a Boolean exclusive-OR operator between two binary patterns. 
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3. Personalized Best Bit Map 

Generally speaking, many samples can be captured from an individual, and we can get 
corresponding LBPCodes through extracting LBP features from each sample. When investigating 
these LBPCodes of samples from the same finger vein, a possibly valuable phenomenon attracted our 
attention: the values of the bits in same location of LBPCodes have different traits. The values of some 
bits are consistent, either 1’s or 0’s; the values of some bits have majority of 1’s or 0’s; the values of 
some bits interlace 1’s and 0’s. Figure 2 gives an example of Binary Codes of six samples from a 
certain individual. Apparently, bit0, bit2, bit3, bit5, bit6 are very consistent, the values of bit1 are 
mostly 1’s, the values of bit7 are mainly 0’s, and bit4 has interlaced 1’s and 0’s values. 

Figure 2. Examples of binary code. 

 

In an ideal situation, if many samples are captured from the same individual, the values of each bit 
in same location of LBPCodes should be all identical without considering the interference factors such 
as displacement and rotation. If a bit has different value, we can consider it a noisy bit, which may 
have a negative effect on recognition performance. 

These investigations provide a valuable clue to improve finger vein recognition performance. We 
can acquire these consistent bits through samples from same individual, record their values and 
locations in LBPCode. By doing this, when verifying a test sample, we just compare the values of bits 
at the same location as consistent bits. This may result in better performance in recognition and time 
consumption than comparing all bits. 

Suppose that individual A has m samples denoted by Img1, Img2….Imgm, the corresponding Binary 
Codes extracted by the LBP operator are denoted by LBPCode1, LBPCode2…LBPCodem, the length 
of Binary Code is n, the value of a certain bit i is 1’s for m1 times, and 0’s for m0 times (m1 + m0 = m), 
so the stability of the bit is measured as: 

si = 
|ଵି|ଵା  (4)

0  1      1    1     1   0    1     0 

0    1      1    1    0    0     1      0 

0    1      1    1    1    0     1     0 

0    0    1    1    1    0     1     0 

0    1      1    1    0    0     1      1 

0    1      1     1     0     0      1     1 

bit #

Binary Code of Sample 1

Binary Code of Sample 2

0      1      2       3      4      5       6      7 

Binary Code of Sample 3

Binary Code of Sample 4

Binary Code of Sample 5

Binary Code of Sample 6
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Definition 1: If the si value of a certain bit is equal to 1, this bit is called Best Bit.  
Definition 2: All Best Bits of a certain individual make up his Best Bit Map (abbreviated as BBM). 

Each Best Bit consists of two components: location and value, where the location means in which 
LBPCode the Best Bit is located, and the value is assigned as 0’s or 1’s. Because the BBM is different 
from individual to individual, we call the BBM for each individual the Personalized Best Bit Map 
(abbreviated as PBBM). 

The samples may have some misalignment during the capture process. In order to generate an ideal 
BBM, the alignment should be considered. Take generating the BBM of two samples as an example. 
One sample is a reference, and the other sample is aligned through moving toward up, down, left and 
right direction. Firstly we extract the subsets of the two LBPCodes according to the overlapped region, 
respectively. Then we investigate the similarity of these two subsets. Finally we use the subsets which 
have maximum similarity to generate the BBM of the two samples according to definition 1 and 2. The 
pseudo-code of generating BBM of two samples is summarized in Algorithm 1. 

Algorithm 1. GetBBM_twosamples. 

INPUT: LBPCode1 of Img1, LBPCode2 of Img2, (moving) step, (moving) times. 
OUTPUT: BBM of two samples Img1 and Img2. 
Algorithm: 
Direct matching, compute the similarity using LBPCode1and LBPCode2, denoted as S0. 
//taking Img1as base, align through moving Img2 toward up direction. 

for n=1 to times do 
move Img2 up n*step pixels. 

extract the subsets of LBPCode1 and LBPCode2 according overlapped region. 
Compute the similarity using these two subsets, denoted as Sup(n). 

endfor 
//taking Img1as base, align through moving Img2 toward down direction. 

for n=1 to times do 
move Img2 down n*step pixels. 

extract the subsets of LBPCode1 and LBPCode2 according overlapped region. 
Compute the similarity using these two subsets, denoted as Sdown(n). 

endfor 
//taking Img1as base, align through moving Img2 toward left direction. 

for n=1 to times do 
move Img2 left n*step pixels. 

extract the subsets of LBPCode1 and LBPCode2 according overlapped region. 
Compute the similarity using these two subsets, denoted as Sleft(n). 

endfor 
//taking Img1as base, align through moving Img2 toward right direction. 

for n=1 to times do 
move Img2 right n*step pixels. 

extract the subsets of LBPCode1 and LBPCode2 according overlapped region. 
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Compute the similarity using these two subsets, denoted as Sright(n). 
endfor 

S=Max(S0,Sup(1)…Sup(times), Sdown(1)…Sdown(times), Sleft(1)…Sleft(times), 
Sright(1)…Sright(times)) 
Get the subsets of LBPCode1and LBPCode2 corresponding to S. 
Take the subsets as the new LBPCodes. 
generate the BBM of new LBPCodes using definition 1 and 2. 

By means of Algorithm 1, the main idea of generating the PBBM of a certain individual with many 
samples is described as follows. First we use algorithm 1 to get the BBM for each pair of samples. 
Then we take these BBMs as new LBPCodes. Finally use these new LBPCodes to get the PBBM 
according to definition 1 and 2. The pseudo-code of getting the PBBM of a certain individual is 
summarized in Algorithm 2. 

Algorithm 2. GetPBBM. 

INPUT: LBPCode1…..LBPCodem extracted from m samples captured by a certain individual. 
OUTPUT: PBBM of the certain individual. 
Algorithm: 
For n=1 to C୫ଶ  do 

sampling two samples with non- ；replacement  
get BBM(n) by invoking GetBBM_twosamples. 

endfor 
take these BBMs as new LBPCodes. 
use these new LBPCodes to generate PBBM according to Definition 1 and 2. 

4. The Proposed Method 

Based on the mentioned algorithms 1 and 2, we propose a finger vein recognition method based on 
PBBM. It mainly involves two stages: a training stage and a recognition stage. The training stage aims 
to generate the PBBM for each individual, which includes preprocessing, feature extraction, invoking 
Get_PBBM algorithm and finally generating the PBBM. In the recognition stage, we first preprocess 
the test sample, and then extract the LBPCode, and next compute the similarity between the LBPCode 
and the PBBM of a certain individual, finally obtaining a recognition result with a given threshold. The 
framework of the proposed method is demonstrated in Figure 3. 
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Figure 3. Framework of the proposed method. 

 

4.1. Preprocessing 

The preprocessing operation mainly refers to image gray processing, ROI extraction, size 
normalization and gray normalization. 

Image gray processing: the original image (an example is shown in Figure 4(a)) captured by the 
device in this paper is a 24-bit color image with a size of 320 × 240. In order to reduce the 
computational complexity, we transform the original image to an 8-bit gray image based on the  
gray-scale equation Y = R × 0.299 + G × 0.588 + B × 0.114, where R, G, and B denote the value of red, 
green, and blue primaries. 

ROI extraction: As the background of finger vein region might include noise, we employ an  
edge-detection method to segment the finger vein region from the gray-scale image. A Sobel operator 

with a 3×3 mask െ1 0 1െ2 0 2െ1 0 1൩ is used for detecting the edges of fingers. The width of the finger region 

can be obtained based on the maximum and minimum abscissa values of the finger profile, and the 
height of the finger region is similarly detected. A rectangle region can be captured based on the width 
and height. This rectangle region is called ROI (as shown in Figure 4(b)).  

Size normalization: The size of the ROI is different from image to image due to personal factors 
such as different finger size and changing location. Therefore it is necessary to normalize the ROI region 
to the same size before feature extraction. We use the bilinear interpolation for size normalization in this 
paper, and the size of the normalized ROI is set to be 96 × 64 (as show in Figure 4(c)). 

Gray normalization: In order to extract efficient features, gray normalization is used to obtain a 
uniform gray distribution (as shown in Figure 4(d)). In this paper, we use: 

p(i, j) = 
12
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−
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where ),(' jip is the gray value of pixel (i, j) of original image, G1 is the minimum gray value of original 
image, and G2 is the maximum gray value of original image. 

Figure 4. Examples of preprocessing. 

 
 
 
 
 
 

 
 
 
 
 
 

 

(a) (b) (c) (d) 

4.2. Matching 

The proposed method measures similarities between the extracted LBPCode and the PBBM of a 
certain individual. The matching score is estimated as follows: 

Matching Score=1-
ԡPBBMٔLBPCodeԡ

Length of PBBM
 (6)

In Equation (6), ٔ is a Boolean exclusive-OR operator between two binary patterns; the length of 
PBBM is the numbers of the Best Bit of a certain individual. Note that not every bit of LBPCode, 
but only the bits which have the same location as in the PBBM are operated on by the Boolean  
exclusive-OR operator. 

5. Experimental Results 

5.1. The Experimental Database 

The experiments were conducted using our finger vein database which is collected from 106 
individuals (including 86 males and 20 females, Asian race) index fingers of right hand, where each 
index finger contributes 14 finger vein images. Each individual participated in two sessions, separated 
by two weeks (14 days). In each session, seven samples were collected from right hand of each 
individual. The age of the participants was between 19 and 60 years and their occupations included 
university students, professors, and workers at our school. The capture device was manufactured by the 
Joint Lab for Intelligent Computing and Intelligent System of Wuhan University, China. The capture 
device mainly consists of a near-infrared light source, lens, light filter, and image capture equipment. 
Vein patterns cannot be observed using normal, visible rays of light since they are beneath the skin’s 
surface. However, vein patterns can be viewed through an image sensor which is sensitive to  
near-infrared light (wavelengths between 700 and 1,000 nanometers), because near-infrared light 
passes through human body tissues and is blocked by pigments such as hemoglobin or melanin. To 
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obtain a stable finger-vein pattern, our light source uses a near-infrared light source with wavelength of 
890 µm, the image capture part uses a near-infrared CCD camera with a wavelength of 900 µm. A 
groove in the shell of the device is used to guide the finger orientation, and the capture device is 
illustrated in Figure 5.  

Figure 5. The data capture device. 

 

The original spatial resolution of the data is 320 × 240, After ROI extraction and Size 
Normalization, the size of the region used for feature extraction is reduced to 96 × 64. Samples 
collected from the same finger belong to the same class. Therefore, there are 106 classes, where each 
class contains 14 samples in our database. Some typical finger vein images are shown in Figure 6.  

Figure 6. Sample finger vein images. 
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5.2. The Experimental Settings 

All the experiments are implemented in MATLAB, and conducted on a PC with 2.4G CPU and 2G 
memory. Considering the misalignment between images from the same individual is not obvious, we 
set moving step as 1 pixel, and moving times as 4. In this paper, three experiments are designed to 
multilaterally evaluate the proposed method: (a) Experiment 1 evaluates performance of the proposed 
method in verification mode and identification mode respectively, and compares with the LBP-based 
method. (b) Experiment 2 evaluates the effect on recognition performance when using different 
number of samples to generate the PBBM. (c) Experiment 3 evaluates the robustness of the PBBM. 

5.3. Experiment 1 

First the average processing times were measured, as shown in Table 2. The average preprocessing 
time per image was 53 ms; the average feature extraction (LBPCode) time per image was 0.9 ms; the 
average PBBM training time for 4 samples was 423 ms, and the average matching time between the 
PBBM and the LBPCode was 16 ms. Although the average training time is somewhat time-consuming, 
the training process can be done off-line. In a word, from Table 2, we can see that the proposed 
method can be used in real-time. 

Table 2. The average processing times. 

Preprocessing  Feature extraction Training PBBM Matching  
53 ms 0.9 ms 423 ms 16 ms 

We performed two types of experiments on the established database: verification mode and 
identification mode. In the verification mode, the class of the input finger vein (test sample) is known, 
and each test sample is matched with the PBBMs of every class. A successful matching is called 
intraclass matching or genuine, if the test sample and PBBM are from the same class. Otherwise, the 
unsuccessful matching is called interclass matching or imposter. In the experiments, we use the first  
four samples of each class in the database to generate the PBBM and use the other 10 as test samples. 
Consequently, there are 1,060 (106 × 10) intraclass matchings and 111,300 (106 × 10 × 105) interclass 
matchings in total. In this paper, the performance of a system is evaluated by the EER (equal error 
rate), the FRR (false rejection rate) at zero FAR (false acceptance rate) and the FAR at zero FRR. The 
EER is the error rate when the FRR equals the FAR and therefore suited for measuring the overall 
performance of biometrics systems because the FRR and FAR are treated equally. On the other hand, 
the FRR at-zero-FAR is suited for high security systems, as in those systems, false acceptance errors 
are much more critical than false rejection errors. On the contrary, the FAR at zero FRR shows the 
acceptance rate of impostors when none genuine rejected is desired.  

We compare the proposed method with the LBP-based method in [27], Genuine and imposter 
matching score distributions of these two methods are shown in Figures 7 and 8, respectively. From 
Figure 7, we can see that the genuine and imposter match scores by LBP are overlapped between 0.6 
and 0.8. Otherwise, the genuine matching scores by PBBM are mainly between 0.85 and 1.00, and the 
imposter matching scores are mainly between 0.55 and 0.80.  
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The ROC curves are shown in Figure 9. The ERR, FRR at-zero-FAR and FAR at-zero-FRR values 
are listed in Table 3. From Figure 9 and Table 3, we can see that the proposed method achieves a much 
lower EER than the LBP-based method. This indicates that the PBBM is beyond suitable features 
which truly reflect the characteristics of a certain individual. Besides, it can remove the noisy bits. 
Because the PBBMs of every individual are different from each other, the PBBM can better illustrate 
the differences between the individuals.  

Figure 7. Genuine and imposter matching score distributions by LBP. 

 
 

Figure 8. Genuine and imposter matching score distributions by PBBM. 
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Figure 9. ROC curves by different method. 

 

Table 3. verification performance by different methods. 

 EER FRR at-zero-FAR FAR at-zero-FRR 
LBP method 0.018 0.0497 0.7182 

Proposed method 0.0038 0.0199 0.0433 
 

To verify the robustness of the PBBM trained by samples acquired in different sessions, we 
randomly select four samples of each class in the database to generate PBBM and used the other 10 as 
test samples. We repeat this process ten times, and the statistical data of the verification performance 
(EER) is shown in Table 4. From Table 4, we can see that the PBBM is robust for training and testing 
samples acquired from different sessions. 

Table 4. the statistical data of EER by random sampling. 

Minimum Maximum Mean Variance 
0.0013 0.0066 0.0041 3.027 × 10−6 

The experiments of closed-set identification (identification is performed only for individuals who 
are present in the enrollment database) were also conducted. In the identification mode, we do not 
know the class of the input finger vein, but want to identify which class it belongs to. Like the 
verification mode, we use the first four samples of each class in the database to generate the PBBM 
and use the other ten as test samples. Therefore, there are 106 templates, and 1,060 (106 × 10) probes 
in total. The probes were matched with all the templates models. For each probe, the matching results 
were ordered according to the matching scores. Then, we can get the cumulative match curves as 
shown in Figure 10. The cumulative matching performance, rank-one recognition rate, and lowest rank 
of perfect recognition (i.e., the lowest rank when the recognition rate reaches 100%) are listed in Table 5. 
From the experimental results, we can see that the performance of the proposed method is much better 
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than that of the LBP-based methods. The rank-one recognition rate of the proposed method was 100%, 
indicating that all probes can be identified properly.  

Figure 10. Cumulative match curves by different methods. 

 

Table 5. Identification performance by different methods. 

 rank-one recognition rate lowest rank of perfect recognition 
LBP based method 99.25% 86 
Proposed method 100% 1 

5.4. Experiment 2 

As mentioned above, a certain number of samples are needed to generate the PBBM for each 
individual. This experiment evaluates the effect on recognition performance when using different 
numbers of samples to generate a PBBM. For the sake of justice, we measure by fixing the number of 
testing samples and adjusting the number of training samples to generate the corresponding PBBMs.  
We set the last six as testing samples of each class in the established database, so that the number of 
training samples is between 1 and 8. It should be pointed out that when taking only one as the training 
sample, we regard each bit of its LBPCode as the Best Bit. Therefore, the LBP-based method can be 
taken as a special case of the proposed method. 

The ROC curves of PBBMs trained by different samples are shown in Figure 11, The ERR, FRR  
at-zero-FAR and FAR at-zero-FRR values are listed in Table 6. From Figure 11 and Table 6, we can 
see that better performance is achieved with an increasing number of training samples. When the 
number of training samples reaches 4, the performance promotion is limited. It indicates that we can 
only use four training samples of each class to generate a competitive PBBM. 
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Figure 11. ROC curves by different number of training samples. 

 

Table 6. Verification of performance with different numbers of training samples. 
 EER FRR at-zero-FAR FAR at-zero-FRR 

1 training sample 0.0173 0.1038 0.6972 
2 training samples 0.0154 0.1258 0.7073 
3 training samples 0.0079 0.0865 0.2274 
4 training samples 0.0047 0.0189 0.0692 
5 training samples 0.0047 0.0183 0.0566 
6 training samples 0.0047 0.0259 0.0629 
7 training samples 0.0047 0.0124 0.0362 
8 training samples 0.0053 0.0133 0.02672 

We also conduct experiments on the identification mode. Figure 12 and Table 7 illustrate the 
expriment results. Apprently, when the number of training samples reaches 4, the rank-one recognition 
rate can achieve 100%. 

Table 7. Identification performance by different number of training samples. 

 Rank-one 
recognition rate 

Lowest rank of perfect 
recognition rate 

1 training sample 99.06% 17 
2 training samples 99.06% 17 
3 training samples 99.72% 6 
4 training samples 100% 1 
5 training samples 100% 1 
6 training samples 100% 1 
7 training samples 100% 1 
8 training samples 100% 1 
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Figure 12. Cumulative match curves by different number of training samples. 

 

5.5. Experiment 3 

From experiments 1 and 2, we can see that the PBBM achieved promising results. The basis 
supporting our study is that the PBBM must be robust and stable. In this experiment, we will discuss 
the robustness of PBBM, mainly including whether and how the PBBM is convergent when the 
number of training samples increases. In this paper, we evaluate the robustness with the percentage of 
the number of bits of the PBBM relative to the number of bits of its original LBPcode. Table 8 shows 
the statistical data of the percentage by different number of train samples using Minimum, Maximum, 
Mean, and Variance values. The Mean value can evaluate the reliability of the PBBM, and the 
Variance value can evaluate the stability of the PBBM. The Mean value of the percentage is decreased 
when the number of training samples increases. As mentioned above, when the number of training 
samples reaches 4, the recognition performance is promising. The corresponding mean percentage is 
0.7986; this means that the number of Best Bits of each class is sufficient for matching, and the 
matching result is reliable. As a whole, the variance value of the percentage is very small, which 
indicates the good stability of the PBBM.  

The histogram of the percentage of 106 classes for four training samples is shown in Figure 13. 
From Figure 13, we can see that the majority of percentages are near 0.80. In a word, the robustness of 
the PBBM is very high, and the recognition results are credible. 

If the percentage of the number of bits of the PBBM relative to the number of bits of its original 
LBPcode is very low, it means that the samples of this individual have low image quality, e.g., there 
may be a large number of noisy bits in the corresponding LBPCode, so we can use the percentage or 
size of the PBBM to evaluate the image quality of samples. For example, we acquire four samples of a 
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certain individual during the enrollment process, and use these samples to generate his/her PBBM. If 
the size of its PBBM is too small, this individual can be rejected for enrolment. 

Table 8. Statistical data of the percentage by different number of training samples. 

 Minimum Maximum Mean Variance EER 
1 training sample 1.0000 1.0000 1.0000 0.0000 0.0173 
2 training samples 0.8158 1.0000 0.9021 0.0007 0.0154 
3 training samples 0.5820 0.9118 0.8395 0.0025 0.0079 
4 training samples 0.5078 0.9118 0.7986 0.0042 0.0047 
5 training samples 0.4729 0.8963 0.77 0.0052 0.0047 
6 training samples 0.4562 0.8963 0.7508 0.0056 0.0047 
7 training samples 0.4052 0.8912 0.7055 0.0061 0.0047 
8 training samples 0.3891 0.8133 0.678 0.0061 0.0053 

Figure 13. Histograms of the percentage by four training samples. 

 

6. Conclusions and Future Work 

This paper presents a novel finger vein recognition method base on a PBBM. The experimental 
results show the superior performance of our method in comparison with the LBP-based method. The 
advantages of PBBM can be summarized as follows: (1) PBBM effectively removes noisy bits.  
(2) PBBMs are different from individual to individual, thus PBBMs can be regarded as a kind of 
personalized feature that reflects the differences between each individuals remarkably. (3) The PBBM 
is highly robust and reliable.  

It should be pointed out that PBBM is a general framework for binary pattern based recognition. 
Besides LBP, we can use LDP, LLBP and other binary code to generate the corresponding PBBM, and 
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this will be the subject of our future work. In addition, our database has a limited number of 
individuals, so we plan to apply PBBM to large-scale real-world databases.  
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