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Every year more than 13 million deaths worldwide are due to en-
vironmental pollutants, and approximately 24% of diseases are
caused by environmental exposures that might be averted through
preventive measures. Rapidly growing evidence has linked environ-
mental pollutants with epigenetic variations, including changes in
DNA methylation, histone modifications and microRNAs.

Environ-
mental
chemicals
and
epigenetic
changes

All of these mechanisms are likely to play important roles in disease
aetiology, and their modifications due to environmental pollutants
might provide further understanding of disease aetiology, as well as
biomarkers reflecting exposures to environmental pollutants and/or
predicting the risk of future disease. We summarize the findings on
epigenetic alterations related to environmental chemical exposures,
and propose mechanisms of action by means of which the expos-
ures may cause such epigenetic changes. We discuss opportunities,
challenges and future directions for future epidemiology research in
environmental epigenomics. Future investigations are needed to
solve methodological and practical challenges, including uncertain-
ties about stability over time of epigenomic changes induced by the
environment, tissue specificity of epigenetic alterations, validation
of laboratory methods, and adaptation of bioinformatic and biostat-
istical methods to high-throughput epigenomics. In addition, there
are numerous reports of epigenetic modifications arising following
exposure to environmental toxicants, but most have not been dir-
ectly linked to disease endpoints. To complete our discussion, we
also briefly summarize the diseases that have been linked to envir-
onmental chemicals-related epigenetic changes.

Keywords Environmental chemicals, epigenetics, disease susceptibility

Background
More than 13 million deaths every year are due to
environmental pollutants, and as much as 24% of dis-
eases are estimated to be caused by environmental ex-
posures that can be averted.1 In a screening promoted
by the United States Center for Disease Control

and Prevention, 148 different environmental chem-
icals were found in the blood and urine from the
US population, indicating the extent of our exposure
to environmental chemicals.2 Growing evidence
suggests that environmental pollutants may cause
diseases via epigenetic mechanism-regulated gene
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expression changes.3,4 Dynamic chromatin remodelling
is required for the initial steps in gene transcription,
which can be achieved by altering the accessibility of
gene promoters and regulatory regions.5 Epigenetic
factors, including DNA methylation, histone modifica-
tions and microRNAs (miRNAs) (Figure 1), partici-
pate in these regulatory processes, thus controlling
gene expressions.6,7 Changes in these epigenetic fac-
tors have been shown to be induced by exposure to
various environmental pollutants, and some of them
were linked with different diseases.8–10 In this review,
we summarize the findings linking environmental
chemical exposures with epigenetic alterations, pro-
vide some evidence linking such epigenetic changes
with diseases (Table 1), and discuss the challenges and
opportunities of environmental epigenomics in epide-
miologic studies.

Epigenetic factors
DNA methylation
DNA methylation, a naturally occurring modification
that involves the addition of a methyl group to the 50

position of the cytosine ring, is the most commonly
studied and best understood epigenetic mechanism.11

In the human genome, it predominantly occurs at
cytosine–guanine dinucleotide (CpG) sites, and
serves to regulate gene expression and maintain
genome stability.12

Environmental studies have shown distinct DNA
methylation abnormalities. One commonly reported
alteration is an overall genome-wide reduction in
DNA methylation content (global hypomethylation)
that may lead to reactivation of transposable elements
and alter the transcription of otherwise silenced

Figure 1 Transcriptional regulation at the epigenetic level. Epigenetic mechanisms, including DNA methylation, histone
modifications and miRNAs, regulate chromatin compaction and gene expression. DNA methylation at CpG sites usually
suppresses gene expression. Histones are globular proteins that undergo posttranslational modifications, such as Ac,
methylation and phosphorylation, thus influencing chromatin structure and gene expression. Active genes are usually
characterized by low DNA methylation and highly acetylated chromatin configuration that allow access to transcription
factors. miRNAs are a set of small, non-protein-coding RNAs that negatively regulate expression of target genes at the
posttranscriptional level by binding to 30-untranslated regions of target mRNAs
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adjacent genes.13,14 Global hypomethylation is asso-
ciated with genomic instability and an increased num-
ber of mutational events.15–18 There are approximately
1.4 million Alu repetitive elements (sequences con-
taining a recognition site for the restriction enzyme
AluI)19 and a half a million long interspersed nucleo-
tide (LINE-1) elements in the human genome that are
normally heavily methylated.20 More than one-third
of DNA methylation occurs in repetitive elements.20

Because of their high representation throughout the
genome, LINE-1 and Alu have been used as global
surrogate markers for estimating the genomic DNA
methylation level in cancer tissues,20–22 although
recent data show lack of correlation with global
methylation in normal tissues, such as peripheral
blood.23 Other types of abnormalities that can be
induced by environmental pollutants are hyper- or
hypo-methylation of specific genes or regions, poten-
tially associated with aberrant gene transcription.24–27

DNA methylation alterations that directly affect
gene expression often occur in the CpG sites located
in the promoter regions of the genes. Recent evidence
has shown that differentially methylated sites in vari-
ous cancer tissues are enriched in sequences, termed
‘CpG island shores’, up to 2 kb distant from the tran-
scription start site.28 However, to date, gene-specific
DNA methylation alterations induced by environmen-
tal exposures have been mostly investigated in gene
promoter regions. CpG island shores are clearly
worthy of further investigation in relation to environ-
mental exposures, but whether they hold such im-
portance in a non-cancer setting remains to be
determined.

Histone modifications
In humans, protection and packaging of the genetic
material are largely performed by histone proteins,
which also offer a mechanism for regulating DNA
transcription, replication and repair.29 Histones
are nuclear globular proteins that can be covalently
modified by acetylation (Ac), methylation, phosphor-
ylation, glycosylation, sumoylation, ubiquitination
and adenosine diphosphate (ADP) ribosylation,30,31

thus influencing chromatin structure and gene ex-
pression.32,33 The most common histone modifications
that have been shown to be modified by environmen-
tal chemicals are Ac and methylation of lysine resi-
dues in the amino terminal of histone 3 (H3) and H4.
Histone Ac, with only a single acetyl group added to
each amino acid residue usually, increases gene tran-
scriptional activity;34–37 whereas histone methylation
(Me), found as mono (Me), di-methyl (Me2), and
tri-methyl (Me3) group states38 can inhibit or in-
crease gene expression depending on the amino acid
position that is modified.39–41

miRNAs
miRNAs are short single-stranded RNAs of appro-
ximately 20–24 nucleotides in length that are

transcribed from DNA but not translated into pro-
teins. miRNAs negatively regulate expression of
target genes at the post-transcriptional level by bind-
ing to 30-untranslated regions of target mRNAs.42

Each mature miRNA is partially complementary to
multiple target mRNAs and directs the RNA-induced
silencing complex (RISC) to identify the target
mRNAs for inactivation.43 miRNAs are initially tran-
scribed as longer primary transcripts (pri-miRNAs)
and processed first by the RNase enzyme complex,
and then by Dicer, leading to incorporation of a single
strand into the RISC. miRNAs guide RISC to interact
with mRNAs and determine post-transcriptional re-
pression. miRNAs are involved in the regulation of
gene expression through the targeting of mRNAs
during cell proliferation, apoptosis, control of stem
cell self renewal, differentiation, metabolism, develop-
ment and tumour metastasis.44,45 Compared with other
mechanisms involved in gene expression, miRNAs act
directly before protein synthesis and may be more dir-
ectly involved in fine-tuning of gene expression or
quantitative regulation.46,47 Moreover, miRNAs also
play key roles in modifying chromatin structure and
participating in the maintenance of genome stability.48

miRNAs can regulate various physiological and patho-
logical processes, such as cell growth, differentiation,
proliferation, apoptosis and metabolism.42,49 More than
10 000 miRNAs have been reported in animals, plants
and viruses by using computational and experimental
methods in miRNA-related public databases. The aber-
rant expression of miRNAs has been linked to various
human diseases, including Alzheimer’s disease, cardiac
hypertrophy, altered heart repolarization, lymphomas,
leukaemias, and cancer at several sites.50–66

Environmental pollutants and
epigenetic alterations
Metals
Heavy metals are widespread environmental contam-
inants and have been associated with a number of
diseases, such as cancer, cardiovascular diseases,
neurological disorders and autoimmune diseases.67,68

In recent years, there has been an increasing appreci-
ation of the roles of molecular factors in the aetiology
of heavy metal-associated diseases.69–71 Several stu-
dies showed that metals act as catalysts in the oxida-
tive deterioration of biological macromolecules.72

Metal ions induce reactive oxygen species (ROS),
and thus lead to the generation of free radicals.72,73

ROS accumulation can affect epigenetic factors.74–79

Growing data have linked epigenetic alterations with
heavy metal exposure.

Arsenic
Evidence has been rapidly increasing that exposure
to arsenic (As) alters DNA methylation both globally
and in the promoter regions of certain genes.
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Upon entering the human body, inorganic As is
methylated for detoxification. This detoxification pro-
cess uses S-adenosyl methionine (SAM), which is
a universal methyl donor for methyltrans-
ferases including DNA methyltransferases (DNMTs)
that determine DNA methylation. Thus, it has been
shown that As exposure leads to SAM insufficiency
and decreases the activity of DNMTs due to the re-
duction of their substrate. In addition, As has also
been shown to decrease DNMT gene expression.80

These As-induced processes may all contribute to
global DNA hypomethylation. Arsenic exposure was
shown to induce global hypomethylation in a
dose-dependent manner in several in vitro studies.80–

83 Further, rats and mice exposed to As for several
weeks exhibited global hypomethylation in hepatic
DNA.84–87 Nonetheless, evidence in humans is still
limited and not completely consistent. In a
cross-sectional study of 64 subjects, As level in con-
taminated water was associated with global DNA
hypermethylation in blood mononuclear cells.88 A
global dose-dependent hypermethylation of blood
DNA was observed in Bangladeshi adults with chronic
As exposure.89

Arsenic exposure has also been associated with
gene-specific hyper- or hypo-methylation in both
experimental settings and human studies.85,90–101 As
exposure has been shown to induce dose-dependent
promoter hypermethylation of several tumour sup-
pressor genes, such as p15, p16, p53 and DAPK,
in vitro and in vivo.91,93,98,101,102 Furthermore,
As exposure-related up-regulation of ER-alpha, c-myc
and Ha-ras1 gene expression was linked to their pro-
moter hypomethylation in cell lines94,95 and animal
studies.84,85,97 Evidence in humans is rapidly growing.
Toenail As concentration was positively associated
with RASSF1A and PRSS3 promoter methylation
levels in bladder tumours.100 Promoter hyper-
methylation in these two genes was associated
with As-induced invasive lung tumours compared
with non-invasive tumours.100 Promoter
hypermethylation of DAPK was observed in human
uroepithelial cells exposed to As,90 as well as in
tumours from 13 of 17 patients living in
As-contaminated areas relative to 8 of 21 patients
living in As non-contaminated areas.99 Increased
DNA methylation of the p16 promoter was observed
in arseniasis patients when compared with people
with no history of As exposure.101

Arsenic exposure has also been shown to cause
alterations in histone modifications. The earliest evi-
dence on As-induced histone acetylation reductions
was in Drosophila.103 Trivalent As has recently been
linked to reduced H3 and H4 lysine 16 (H4K16)
acetylation in human bladder epithelial cells.104 On
the other hand, trivalent As exposure has also been
shown to increase histone acetylation, which was
shown to up-regulate genes related to apoptosis or
cell stress response.105,106 Ramirez et al. have reported

that As could cause global histone acetylation by
inhibiting the activity of histone deacetylases
(HDACs).107 Together, these studies provide evi-
dence that histone acetylation can be dysregulated
by As exposure. Early in 1983, As was also shown
to induce methylation changes in H3 and H4 in
Drosophila.103 Similar results on H3 were seen
in Drosophila Kc 111 cell several years later.108,109 In
recent years, in mammalian cells, arsenite (AsIII) ex-
posure has been associated with increased H3 lysine 9
dimethylation (H3K9me2) and H3 lysine 4 trimethy-
lation (H3K4me3), and decreased H3 lysine 27 tri-
methylation (H3K27me3).110,111 As was shown to
induce apoptosis by up-regulation of phosphorylated
H2AX112 and cause H3 phosphorylation, which may
play important roles in the up-regulation of the
oncogenes.106

Exposure of human lymphoblast cell line TK-6 to
arsenite exhibited global increases in miRNA expres-
sion.113 Arsenic trioxide (As2O3) has been used as a
pharmacological treatment in acute promyelocytic leu-
kaemia.114 Cao et al.115 demonstrated that numerous
miRNAs were up-regulated or down-regulated in T24
human bladder carcinoma cells exposed to As2O3. In
particular, miRNA-19a was substantially decreased,
resulting in cell growth arrest and apoptosis. The
As-related changes in miRNA expression were
shown to be reversible when the exposure was
removed.115

Nickel
Nickel has been proposed to increase chromatin con-
densation and trigger de novo DNA methylation of crit-
ical tumour suppressor or senescence genes.116 In
Chinese hamster G12 cells transfected with the
Escherichia coli guanine phosphoribosyl transferase
(gpt) gene, nickel was shown to induce hypermethy-
lation and inhibit the expression of the transfected gpt
gene.117 An animal study has further shown that
nickel induced DNA hypermethylation, altered hetero-
chromatin states and caused gene inactivation, even-
tually leading to malignant transformation.118

Govindarajan et al.119 have observed DNA hyper-
methylation of p16 in nickel-induced tumours of
wild-type C57BL/6 mice, as well as in mice heterozy-
gous for the tumour suppressor p53 gene injected with
nickel compound.

Nickel may cause diseases also via affecting histone
modifications. Evidence on nickel-induced histone
modifications includes increases of H3K9 dimethyla-
tion, loss of histone acetylation in H2A, H2B, H3 and
H4, and increases of the ubiquitination in H2A and
H2B.116,120–127 An increase in H3K9 dimethyla-
tion and a decrease in H3K4 methylation and histone
acetylation was found in the promoter of the gpt
transgene in G12 cells exposed to nickel.116,123,128 In
mouse PW cells and human cells treated with the
HDAC inhibitor trichostatin A, nickel showed a
lower capacity to induce malignant transformation.129
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This finding suggested that gene silencing mediated
by histone deacetylation may play a critical role in
nickel-induced cell transformation.129 In addition,
nickel has also been shown to induce a loss of histone
methylation in vivo and decreased activity of histone
H3K9 demethylase in vitro.123 Nickel also suppresses
histone H4 acetylation in vitro in both yeast and mam-
malian cells.130,131 Nickel can induce H3 phosphoryl-
ation, specifically in serine 10 (H3S10) via activation
of the c-jun N-terminal kinase/stress-activated protein
kinase pathway.132

Cadmium
Cadmium (Cd) has been shown to alter global DNA
methylation.133 Takiguchi et al.134 demonstrated that
Cd inhibits DNMTs and initially induces global DNA
hypomethylation in vitro (TRL1215 rat liver cells).
However, prolonged exposure was shown to lead to
DNA hypermethylation and enhanced DNMTs activity
in the same experiment.134 Cd can also decrease
DNA methylation in proto-oncogenes and promote
oncogenes expression that can result in cell
proliferation.133,134

Transcriptional and post-transcriptional gene regu-
lation is critical in responses to Cd exposure, in
which miRNAs may play an important role.135,136

Bollati et al.137 have recently demonstrated that
increased expression of miR-146a in peripheral blood
leucocytes from steel workers was related to inhal-
ation of Cd-rich air particles. miRNA-146a expres-
sion is regulated by the transcription factor
nuclear factor-kappa B, which represents an import-
ant causal link between inflammation and
carcinogenesis.138

Other metals
Mercury (Hg) is widely present in various envir-
onmental media and foods at levels that can ad-
versely affect humans and animals. Exposure to Hg
has been associated with brain tissue DNA hypo-
methylation in the polar bear.139 Arai et al.140 have
studied the effects of Hg on DNA methylation status
in mouse embryonic stem cells. After 48 or 96 h of
exposure to the chemical, they observed hypermethy-
lation of Rnd2 gene in Hg-treated mouse embryonic
stem cells.

Lead is among the most prevalent toxic environmen-
tal metals, and has substantial oxidative properties.
Long-term exposure to lead was shown to alter epi-
genetic marks. In the Normative Aging Study, LINE-1
methylation levels were examined in association with
patella and tibia lead levels, measured by K-X-Ray
fluorescence. Patella lead levels were associated with
reduced LINE-1 DNA methylation. The association be-
tween lead exposure and LINE-1 DNA methylation
may have implications for the mechanisms of action
of lead on health outcomes, and also suggests that
changes in DNA methylation may represent a bio-
marker of past lead exposure.141 In addition, Pilsner

et al.142 characterized genomic DNA methylation in
the lower brain stem region from 47 polar bears
hunted in central East Greenland between 1999 and
2001. They have reported an inverse association be-
tween cumulative lead measures and genomic DNA
methylation level.

Hexavalent chromium [Cr(VI)] is a mutagen and
carcinogen that has been linked to lung cancer and
other adverse health effects in occupational studies.
Kondo et al.143 found p16 and hMLH1 hypermethyla-
tion in lung cancer patients with past chromate
exposure.144 In vitro experiments on cells exposed
to binary mixtures of benzo[a]pyrene (B[a]P) and
chromium have shown that B[a]P activates Cyp1A1
transcriptional responses mediated by the aryl hydro-
carbon receptor (AhR), whereas chromium represses
B[a]P-inducible AhR-mediated gene expression145,146

by inducing cross-links of histone deacetylase 1–DNA
methyltransferase 1 (HDAC1–DNMT1) complexes to
the Cyp1A1 promoter chromatin and inhibit histone
marks, including phosphorylation of histone H3
Ser-10, trimethylation of H3 Lys-4 and various acetyl-
ation marks in histones H3 and H4. HDAC1 and
DNMT1 inhibitors or depletion of HDAC1 or DNMT1
with siRNAs blocked the chromium-induced tran-
scriptional repression by decreasing the interaction
of these proteins with the Cyp1A1 promoter and
allowing histone acetylation to proceed. By inhibiting
Cyp1A1 expression, chromium stimulate the forma-
tion of B[a]P DNA adducts. These findings may
link histone modifications to chromium-associated
developmental and carcinogenic outcomes.147

Chromate exposure of human lung A549 cells has
been shown to increase the global levels of di- and
tri-methylated histone H3 lysine 9 (H3K9) and lysine
4 (H3K4), but decrease tri-methylated histone H3
lysine 27 (H3K27) and di-methylated histone H3 ar-
ginine 2 (H3R2). Most interestingly, H3K9 dimethyla-
tion was enriched in the human MLH1 gene promoter
following chromate exposure, and this was correlated
with decreased MLH1 mRNA expression. Chromate
exposure increased the protein as well as mRNA
levels of G9a, a histone methyltransferase that specif-
ically methylates H3K9. This Cr(VI)-induced increase
in G9a may account for the global elevation of H3K9
dimethylation. Furthermore, supplementation with
ascorbate, the primary reductant of Cr(VI) and also
an essential cofactor for the histone demethylase ac-
tivity, partially reversed the H3K9 dimethylation
induced by chromate. These results suggest that
Cr(VI) may target histone methyltransferases and
demethylases, which in turn affect both global and
gene promoter-specific histone methylation, leading
to the silencing of specific tumour suppressor
genes.148

Recent investigations have demonstrated that alu-
minum exposure can alter the expression of a
number of miRNAs. miR-146a in human neural cells
was up-regulated after treatment with aluminium
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sulphate. Up-regulation of miR-146a corresponded to
the decreased expression of complement factor H, a
repressor of inflammation.149 In addition, a study on
aluminium-sulphate-treated human neural cells in
primary culture has shown increased expression of a
set of miRNAs, including miR-9, miR-125b and
miR-128.150 The same miRNAs were also found to
be up-regulated in brain cells of Alzheimer patients,
suggesting that aluminum exposure may induce gen-
otoxicity via miRNA-related regulatory elements.150

Pesticides
Growing evidence suggests that epigenetic events
can be induced by pesticide exposures.28,151–153

Animal models have shown that exposure to some
pesticides, such as vinclozolin and methoxyclor, in-
duces heritable alterations of DNA methylation
in male germline associated with testis dysfunc-
tion,154–156 or affects ovarian function via altered
methylation patterns.157 Decreased methylation in
the promoter regions of c-jun and c-myc and increased
levels of their mRNAs and proteins were found
in livers of mice exposed to dichloro- and trichloro-
acetic acid.158,159 Dichlorvos has been demonstrated
to induce DNA methylation in multiple tissues in
an animal toxicity study.160 DNA methylation in re-
petitive elements in blood DNA was inversely asso-
ciated with increased levels of plasma pesticide
residues and other persistent organic pollutants
in an Arctic population,161 a finding later confirmed
in a similar study in a Korean population.162 Whether
aberrant DNA methylation represents the link be-
tween pesticides and risks of pesticide-related disease,
including the excess of cancer risk observed in
some epidemiology studies,163–168 remains to be
determined.

Dieldrin, a widely used organochlorine pesticide, has
been shown to increase acetylation of core histones
H3 and H4 in a time-dependent manner. Histone
acetylation was induced within 10 min of dieldrin ex-
posure, suggesting that histone hyperacetylation is an
early event in dieldrin-induced diseases. Treatment
with anacardic acid, a histone acetyltransferase
inhibitor, decreased dieldrin-induced histone acetyl-
ation.169 Dieldrin was further shown to induce his-
tone hyperacetylation in the striatum and substantia
nigra in mouse models, suggesting the roles for
histone hyperacetylation in dieldrin-induced dopa-
minergic neuronal degeneration.170

Air pollution
Exposure to particulate matter (PM) of ambient air
pollution has been associated with increased morbid-
ity and mortality related to cardiovascular and re-
spiratory diseases.171,172 Black carbon, a component
of PM derived from vehicular traffic, has been
linked to decreased DNA methylation in LINE-1 re-
petitive elements in 1097 blood DNA samples of

elderly men in the Boston area. Additional evidence
for PM effects on DNA methylation stemmed from an
investigation of workers in a steel plant with
well-characterized exposure to PM with diameters of
<10 mm (PM10). Methylation of inducible nitric oxide
synthase gene promoter region was decreased in
blood samples of individuals exposed to PM10 after
3 days of work in the foundry when compared with
baseline.173 In the same study, methylation of Alu
and LINE-1 was negatively related to long-term ex-
posure to PM10.173 In contrast, an animal experiment
on mice exposed to air particles collected from a
steel plant showed global DNA hypermethylation in
sperm genomic DNA, a change that persisted after
removal of environmental exposure.174 Inhaled diesel
exhaust particles’ exposure and intranasal Aspergillus
fumigatus induced hypermethylation of several sites of
the interferon gamma (IFN�) promoter and hypomethy-
lation at a CpG site of the IL-4 promoter in mice.
Altered methylation of promoters of both genes was
correlated with changes in IgE levels.175,176

We recently also associated PM exposure with his-
tone modifications in the above-mentioned steel
workers with high exposure level to PM.177 In this
study, exposure duration (years of work in the foun-
dry) was associated with increased H3K4me2 and
H3K4ac in blood leucocytes.177 In the same study,
we showed that exposure to metal-rich PM induced
rapid changes in the expression of two inflammation-
related miRNAs, i.e. miR-21 and miR-222, measured
in peripheral blood leucocytes.178 Using microarray
profiling, Jardim et al.172 have shown extensive alter-
ations of miRNA expression profiles in human
bronchial epithelial cells treated with diesel exhaust
particles. Out of 313 detected miRNAs, 197 were
either up- or down-regulated by at least 1.5-fold.172

Benzene
Benzene is an environmental chemical that has been
associated with increased risk of haematological
malignancies, particularly with acute myeloid leukae-
mia and acute nonlymphocytic leukaemia.179–184

Benzene ranks among the top 20 chemicals for pro-
duction volume in USA.185 Our results from a study of
police officers and gas-station attendants have shown
that low-dose exposure to airborne benzene is asso-
ciated with alterations in DNA methylation in blood
DNA of healthy subjects that resemble those found
in haematological malignancies,165–168,186 including
hypomethylation of LINE-1 and Alu repetitive elem-
ents, hypermethylation of p15 tumour suppressor
gene and hypomethylation of MAGEA1 (melanoma-
associated antigen 1 gene). Consistently, reductions
of global DNA methylation has been recently shown
in human lymphoblastoid cells treated with benzene
metabolites.187 In vitro experiments have also shown
that benzene exposure induces hypermethylation of
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poly (ADP-ribose) polymerases-1 (PARP-1), a gene
involved in DNA repair.188

Bisphenol A
Bisphenol A (BPA) is an endocrine disruptor with
potential reproductive effects, as well as a weak
carcinogen associated with increased cancer risk in
adult life through fetal exposures.189,190 BPA is
widely used as an industrial plasticizer in epoxy
resins for food and beverage containers, baby bottles
and dental composites.191 Dolinoy et al.192 reported
that periconceptional exposure to BPA shifted
the coat colour distribution of the viable yellow
agouti (Avy) mouse offspring toward yellow by
decreasing CpG methylation in an intracisternal A
particle (IAP) retrotransposon upstream of the
Agouti gene.193 In this animal model, the yellow-
coat phenotype is associated with increased cancer
rates, as well as with obesity and insulin resistance.
In the same set of experiments, maternal dietary sup-
plementation, with either methyl donors like folic
acid or the phytoestrogen genistein, blunted the
effect of BPA on IAP methylation and prevented the
coat colour change caused by BPA exposure.192 In
pregnant CD-1 mice treated with BPA, Bromer
et al.194 found decreased methylation and increased
expression of the homeobox gene Hoxa10, which con-
trols uterine organogenesis. In breast epithelial cells
treated with low-dose BPA, gene expression profiling
identified 170 genes with expression changes in re-
sponse to BPA, of which expression of lysosomal-
associated membrane protein 3 (LAMP3) was shown
to be silenced due to DNA hypermethylation in its
promoter.195

In a recent study by Avissar-Whiting et al.,196 an
elevated expression of miR-146a was observed in
BPA-treated placental cell lines and miR-146a expres-
sion was associated with slower cell proliferation
and higher sensitivity to the bleomycin-induced
DNA damage.

Dioxin
Dioxin is a compound that has been classified as a
human carcinogen by the International Agency for
Research on Cancer. As dioxin is only a weak muta-
gen, extensive research has been conducted to identify
potential mechanisms contributing to carcinogenesis.
One proposed pathway to carcinogenesis is related to
the powerful dioxin-induced activation of microsomal
enzymes, such as CYP1B1, that might activate
other procarcinogen compounds to active carcinogen.
The capability of dioxin to induce CYP1B1 has been
recently shown in vitro to depend on the methylation
state of the CYP1B1 promoter.197 Also, dioxin was
shown to reduce the DNA methylation level of Igf2
in rat liver.198 Recently, alterations in DNA methyla-
tion at multiple genomic regions were identified in
splenocytes of mice treated with dioxin, a finding

potentially related to dioxin immunotoxicity.199 In a
xenograft mouse model of hepatocellular carcinoma,
Elyakim et al.200 have also found that dioxin
up-regulated miR-191. In the same study, inhibition
of miR-191 inhibited apoptosis and decreased cell pro-
liferation, suggesting that increased miR-191 expres-
sion may contribute to determine dioxin-induced
carcinogenicity.

Hexahydro-1,3,5-trinitro-1,3,5-triazine
(RDX, also known as hexogen or cyclonite)
Hexahydro-1,3,5-trinitro-1,3,5-triazine (commonly
known as RDX, the British code name for Royal
Demolition Explosive) is an explosive polynitramine
and common ammunition constituent used in mili-
tary and civil activities. Although most of this envir-
onmental pollutant is found in soils, RDX and its
metabolites are also found in water sources.201

Exposure to RDX and its metabolites could cause
neurotoxicity, immunotoxicity and cancers.202 Zhang
et al.202 have recently evaluated the effects of RDX on
miRNA expression in mouse brain and liver. In this
study, out of 113 miRNAs, 10 were up-regulated and
3 were down-regulated. Most of the miRNAs that
showed altered expression, including let-7, miR-
17-92, miR-10b, miR-15, miR-16, miR-26 and miR-
181, were found to regulate toxicant-metabolizing
enzymes, as well as genes related to carcinogenesis
and neurotoxicity.202

Diethylstilbestrol
Diethylstilbestrol (DES) is a synthetic oestrogen that
was used to prevent miscarriages in pregnant women
between the 1940s and the 1960s.203 A moderate in-
crease in breast cancer risk has been shown both in
daughters of women who were treated with DES
during pregnancy, as well as in their daughters.204

Hsu et al.205 have demonstrated that the expression
of 82 miRNAs (9.1% of the 898 miRNAs evaluated)
were altered in breast epithelial cells when exposed to
DES. In particular, the suppression of miR-9-3 expres-
sion was accompanied by promoter hypermethylation
of the miR-9-3 coding gene in DES-treated epithelial
cells.205

Chemicals in drinking water
Chlorination by-products are formed as a result of the
water chlorination for anti-fouling purposes. Various
chlorination by-products in drinking water, such as
triethyltin,206 chloroform207 and trihalomethanes,208

have been questioned for potential adverse health
effects.209 These chemicals have been shown to
induce certain epigenetic changes. Rats that were
chronically intoxicated with triethyltin in drinking
water showed development of cerebral oedema as
well as an increase of phosphatidylethanolamine-
N-methyltransferase activities. This increased
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methylation might be a compensatory mechanism for
counteracting the membrane damages induced by
triethyltin.206 Chloroform, dichloroacetic acid (DCA)
and trichloroacetic acid (TCA), three liver and kidney
carcinogens, are by-products of chlorine disinfection
found in drinking water.210,211 Mice treated with
DCA, TCA and chloroform show global hypomethyla-
tion and increased expression of c-myc, a proto-
oncogene involved in liver and kidney tumours.207

Trihalomethanes (chloroform, bromodichloro-
methane, chlorodibromomethane and bromoform) are
regulated organic contaminants in chlorinated drink-
ing water. In female B6C3F1 mouse liver, trihalo-
methanes demonstrated carcinogenic activity.
Chloroform and bromodichloromethane decreased the
level of 5-methylcytosine in hepatic DNA. Methylation
in the promoter region of the c-myc gene was reduced
by the trihalomethanes, consistent with their carcino-
genic activity.208

Environmental epigenomics:
challenges and opportunities
for epidemiologic studies
The studies reviewed in this article have demonstrated
the potential effects of environmental pollutants on
the epigenome. Several of the epigenomic changes
observed in response to environmental exposures
might be mechanistically associated with susceptibil-
ity to diseases (Table 1). Further studies of epigenetic
mechanisms in disease pathogenesis, including the
role of epigenetics in the developmental origins of
health and disease, their relationships with environ-
mental exposures and the pathways associated with
the disease phenotype may help develop preventive
and therapeutic strategies.

Epigenetics and developmental origins
of health and disease
During embryogenesis, epigenetic patterns change
dynamically to adapt embryos to be fit for further
differentiation.7 Two waves of epigenetic reprogram-
ming, which take place at the zygote stage and during
primordial germ cells formation, accompany mamma-
lian development.212

Experiments on mice carrying the Avy have demon-
strated that embryo life is a window of exquisite sen-
sitivity to the environment. In viable yellow (Avy/a)
mice, transcription originating in a IAP retrotrans-
poson inserted upstream of the agouti gene (A)
causes ectopic expression of agouti protein, result-
ing in yellow fur, obesity, diabetes and increased
susceptibility to tumours.213 BPA is a high-
production-volume chemical used in the manufacture
of polycarbonate plastic. In utero or neonatal expos-
ure to BPA is associated with higher body weight,
increased breast and prostate cancer and altered
reproductive function.

Additional experimental studies have suggested epi-
genetic mechanisms as potential intermediates for
the effects of prenatal exposures to pesticides such
as vinclozolin and methoxyclor,154 as well as of
other conditions such as nutritional supplies of
methyl donors.192 Evidence has also been accumulat-
ing in humans. Investigations of candidate loci among
individuals prenatally exposed to poor nutrition
during the Dutch famine in 1944–45 indicate that epi-
genetic changes induced by prenatal exposures may
be common in humans, although they appear to be
relatively small and greatly dependent on the timing
of the exposure during gestation.214,215 Based on find-
ings of changes in DNA methylation in subjects
exposed to the Dutch famine, Heijmans et al.216

have suggested that the epigenome may represent
a molecular archive of the prenatal environment,
via which the in-utero environment may produce ser-
ious ramifications on health and disease later in life.
Terry et al.217 found that prenatal exposure to cigar-
ette smoke was associated with increased overall
blood DNA methylation level in adulthood. Other
examples include decreased LINE-1 and Sat 2 methy-
lation level in adults and children prenatally exposed
to smoking,218 and global DNA hypomethyla-
tion in newborns with utero exposures of maternal
smoking.219 In addition to these DNA methylation
changes, Maccani et al.220 have recently observed
that miR-16, miR-21 and miR-146a were down-
regulated in cigarette smoke-exposed placentas com-
pared to controls.

Additional well-conducted epigenetic studies are
now warranted to generate a catalogue of regions
that are sensitive to the prenatal environment and
may reflect developmental influences on human
disease.

Can we develop epigenomic biosensors of
past exposures?
An important property of epigenomic signatures is
that, because they can be propagated through cell div-
ision even in cells with high turnover, they can persist
even after the exposure is removed. In addition, as
discussed above, an individual’s epigenome may also
reflect his/her prenatal environmental exposure ex-
perience. Thus, epigenomic profiling of individuals
exposed to environmental pollutants might provide
biosensors or molecular archives of one’s past or
even prenatal environmental exposures. Using epige-
nomics, exposure assessment might be brought to re-
search investigations and preventive settings where
repeated collections of exposure data might be un-
feasible or exceedingly expensive. Further research is
needed to establish how rapid are the changes
induced by environmental pollutants, as well as
whether they accumulate in response to repeated or
continuous exposure and how long they persist after
the exposure is removed.
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What are suitable study designs and
approaches for environmental epigenomics?
The field of environmental epigenetics has evolved
rapidly in the past several years. As research applica-
tions grow, investigators will be facing several diffi-
culties and challenges. Some studies have produced
inconsistent results on same pollutants. Several fac-
tors may contribute to the inconsistencies. Epigenetic
alterations are tissue specific.221 It is conceivable that
the same environmental pollutant may produce differ-
ent epigenetic changes in different tissues, and even
within the same tissue on different cell types. Larger
studies with well-defined exposure information that
allows examining epigenetic changes across different
tissues are needed. Different study design, small sam-
ple size and different laboratory methods may also be
major causes for the inconsistency. Replicating results
and identifying the sources of variability across stu-
dies is a major challenge for epigenetic investigations.
Because epigenetic markers change over time, disease
outcomes are prone to reverse causation, i.e. an asso-
ciation between a disease and an epigenetic marker
may be determined by an influence of the disease on
the epigenetic patterns, rather than vice versa.222

Although epigenetic alterations that were found to
be induced by or associated with environmental pol-
lutants were also found in various diseases, almost no
study has examined the sequence of exposures, epi-
genetic alterations and diseases.

Longitudinal studies with prospective collection of
objective measures of exposure, biospecimens for epi-
genetic analyses and preclinical and clinical disease
outcomes are needed to appropriately establish caus-
ality. Existing prospective epidemiology investigations
might provide resources for mapping epigenomic
changes in response to specific chemicals. However,
cohort studies in which biospecimens have been pre-
viously collected for genetic or biochemical studies
might pose several challenges. Most studies have col-
lected biospecimens, such as blood, urine or buccal
cells, which might not necessarily participate in the
aetiology of the disease of interest. Methods of collec-
tion and processing (e.g. whole blood vs buffy coat)
might modify the cell types stored, thus potentially
impacting on epigenetic marks. In addition, high-
coverage methods providing high-dimensional data
on DNA methylation, histone modifications and
miRNA expression are increasingly used in human
investigations.

Albeit epigenetic mechanisms have properties
that make them ideal molecular intermediates of en-
vironmental effects, the proportion of the effects of
any individual environmental exposure that might
be mediated through epigenetic mechanisms is
still undetermined. Epidemiology and statistical
approaches, including well-designed prospective
studies and advanced statistical methods for causal
inference are urgently needed. Similarly to genomic
studies,223 epidemiological causal reasoning in

epigenomics should include careful consideration of
knowledge, data, methods and techniques from mul-
tiple disciplines.

The potential interactions between different
forms of epigenetic modification
Most studies in environmental epigenetics have sep-
arately evaluated only one of the types of the epigen-
etic marks, i.e. DNA methylation, histone
modifications or miRNA expression. However, epigen-
etic marks are related by an intricate series of inter-
actions that may generate a self-reinforcing cycle of
epigenetic events directed to control gene expres-
sion.224 For instance, histone deacetylation and
methylation at specific amino acid residues con-
tribute to the establishment of DNA methylation pat-
terns. miRNA expression is controlled by DNA
methylation in miRNA encoding genes, and, in turn,
miRNAs have been shown to modify DNA methyla-
tion.225 Future studies that include comprehensive
investigations of multiple epigenetic mechanisms
might help elucidate the timing and participation of
DNA methylation, histone modifications and miRNAs
to determine environmental effects on disease
development.

Can epigenomics be used for prevention?
One major objective of epidemiology investigations is
to provide the groundwork for future preventive inter-
ventions. Numerous clinical and preclinical studies
showed that most of the epigenetic changes are re-
versible, which offers novel insights to develop new
preventive and therapeutic strategies that might take
advantage of molecules that modify the activities of
epigenetic enzymes, such as DNMTs and HDACs, as
well as of the growing field of RNAi therapeutics.
Drugs have been designed and developed that pro-
duce functional effects, such as histone acetylation
and DNA hypomethylation that might be used to re-
store the normal transcription level of genes. Future
epidemiology studies have a unique opportunity to
evaluate whether the effects of environmental expos-
ures on the epigenome are mitigated by positive
changes in lifestyles, or worsened by the interaction
with other risk factors. Future epigenomic research
may provide information for developing preventive
strategies, including exposure reduction, as well as
pharmacological, dietary or lifestyle interventions.
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KEY MESSAGES

� Rapidly growing evidence has linked environmental pollutants with epigenetic variations, including
changes in DNA methylation, histone modifications and microRNAs.

� Some of such epigenetic changes have been associated with various diseases.

� Further studies of epigenetic mechanisms in disease pathogenesis, their relationships with environ-
mental exposures and related pathways are needed for the development of preventive and therapeutic
strategies.

� Future epidemiology studies on environmental pollutants and epigenome face several challenges.
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