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Background Gestational age at birth strongly predicts neonatal, adolescent and
adult morbidity and mortality through mostly unknown mechan-
isms. Identification of specific genes that are undergoing regulatory
change prior to birth, such as through changes in DNA methylation,
would increase our understanding of developmental changes occur-
ring during the third trimester and consequences of pre-term birth
(PTB).

Methods We performed a genome-wide analysis of DNA methylation (using
microarrays, specifically CHARM 2.0) in 141 newborns collected in
Baltimore, MD, using novel statistical methodology to identify gen-
omic regions associated with gestational age at birth. Bisulphite
pyrosequencing was used to validate significant differentially
methylated regions (DMRs), and real-time PCR was performed to
assess functional significance of differential methylation in a subset
of newborns.

Results We identified three DMRs at genome-wide significance levels adja-
cent to the NFIX, RAPGEF2 and MSRB3 genes. All three regions were
validated by pyrosequencing, and RAGPEF2 also showed an inverse
correlation between DNA methylation levels and gene expression
levels. Although the three DMRs appear very dynamic with gesta-
tional age in our newborn sample, adult DNA methylation levels at
these regions are stable and of equal or greater magnitude than the
oldest neonate, directionally consistent with the gestational age
results.

Conclusions We have identified three differentially methylated regions asso-
ciated with gestational age at birth. All three nearby genes play
important roles in the development of several organs, including
skeletal muscle, brain and haematopoietic system. Therefore, they
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may provide initial insight into the basis of PTB’s negative health
outcomes. The genome-wide custom DNA methylation array tech-
nology and novel statistical methods employed in this study could
constitute a model for epidemiologic studies of epigenetic variation.

Keywords Epigenetic epidemiology, differentially methylated regions, pre-term
birth, gestational age, genome-wide DNA methylation

Introduction
Gestational age is the most important indicator of peri-
natal mortality in developed countries,1 and also con-
tributes to childhood and adult morbidity and
mortality.2–4 In 2005, approximately 13% of infants
in the USA were born pre-term (<37 weeks), a rise
from <10% in 1990.5 The mechanism by which
pre-term birth (PTB) increases morbidity and mortality
is largely unknown. Recognition of specific genes that
are still undergoing regulatory change prior to birth
would not only increase our understanding of the
developmental changes that are occurring during late
pregnancy, but also it would aid in identifying genetic,
epigenetic and environmental factors that could lead
to PTB. The risks of negative public health conse-
quences of PTB are many, including mortality, learning
disabilities and respiratory illnesses.6 Identification of
environmental and epigenetic factors has the potential
to prevent or ameliorate these adverse impacts.

From the point of view of a developmental change
that is associated with health risk and environmental
mediators, epigenetic changes in the fetus are poten-
tially important, since epigenetic information affects
gene expression, and its function varies within an in-
dividual across developmental stages. A significant
challenge in understanding the role of epigenetic
changes in epidemiology is integrating novel molecu-
lar, epidemiological and biostatistical tools at a
genome-scale level. Unlike classical genome sequence
analyses, the methods and study designs for whole-
genome epigenetic epidemiology are not yet well
established. The approach we have taken here is to
design a genome-scale epidemiological analysis
a priori from this joint conceptual perspective. We
focused on DNA methylation because it is a key pri-
mary epigenetic process, with a well-established
mechanism for propagating non-sequence-based in-
formation during cell division. The DNA methylation
analysis presented here can serve as a paradigm for
other epidemiological studies intending to character-
ize epigenetic profiles in specimen repositories, in
which DNA methylation but not other epigenetic
marks (e.g. histone modifications) are preserved.
We have applied a significant technological exten-
sion of our previously described comprehensive
high-throughput array-based relative methylation
(CHARM) approach7 that can now detect 5.2 million
cytosine–guanine dinucleotide (CpG) sites which can

be subject to DNA methylation. We also formally
define an epigenetic variable, termed differentially
methylated region (DMR), which we have used pre-
viously, but now have advanced its genome-wide de-
tection to include novel statistical strategies to
improve signal to noise detection, as well as the con-
cept of regional methylation detection (Jaffe et al.,
companion paper8).

While one would expect large-scale epigenetic
changes to occur between early embryogenesis and
the end of gestation, at present nothing is known
about epigenetic changes in the fetus that occur rela-
tively late in pregnancy, covering intervals relevant to
the variation in gestational ages at birth that repre-
sent dramatic changes in health outcomes. Epigenetic
changes in placental samples across gestation have
been observed, implying the importance of such
modifications for support of a growing fetus,9 but
genome-scale site-specific methylation data on the
fetus itself, and with respect to the late gestational
ages associated with most births, have not yet been
reported to our knowledge. For these reasons, we
performed a genome-scale comprehensive analysis of
DNA methylation on 141 newborns to identify regions
of the genome with DNA methylation levels correlated
to gestational age at birth. We then validated these
microarray results via bisulphite sequencing and fur-
ther characterized the relationship between develop-
mental age and DNA methylation at the DMRs by
comparing these newborn results to the same regions
among adult DNA samples.

Methods
Study sample
Cord blood samples were obtained from the Baltimore
Tracking Health Related to Environmental Exposures
[THREE] Study.10 THREE is a cross-sectional sample
of newborns born at the Johns Hopkins Hospital in
Baltimore, MD, between November 2004 and March
2005. Of the 603 children delivered during that time
window, 300 were eligible (24 twin births removed,
291 did not have any or ample cord blood available).
Of these, 187 contributed a cord blood clot from which
DNA could be isolated for this epigenetic project. Clots
were saved during the second half of the data collection
period. Those with available cord blood clots are similar
to the rest of the study population with respect to
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gestational age, birthweight and maternal age, race,
body mass index and smoking status (data not
shown). Study personnel abstracted data from maternal
and infant medical records and study clinicians re-
viewed a 10% random sample for accuracy; gestational
age was taken as the best obstetrical estimate.
Information on potential confounders was based on
clinical records. Women who reported smoking during
pregnancy or had an umbilical cord serum cotinine
measurement 410 ng/ml were considered active smo-
kers; the remainder were considered passive smokers
or non-smokers (not reporting smoking and cotinine
<1 ng/ml).11 Copper (previously found to be associated
with gestational age in this population) was measured in
umbilical cord serum using inductively coupled plasma
dynamic reaction cell mass spectrometry (ICP–DRC–
MS)12 at Centers for Disease Control and Prevention
(CDC) laboratories, with 4 mg/dl as the limit of detec-
tion. The THREE study was reviewed and approved by
the Johns Hopkins School of Medicine Institutional
Review Board.

For comparison of newborn methylation results with
adult samples, CHARM 2.0 data were available on
156 adult samples obtained as unrelated controls for a
schizophrenia case–control epigenetics consortium.13–15

This sample was 40% male and had a broad age range of
between 16 and 89 years (interquartile range 31–55
years). DNA was obtained from the Rutgers University
Cell & DNA Repository (RUCDR). DNA had been isolated
from whole blood using Qiagen Autopure LS and pellets
were hydrated in 1�Tris-EDTA (TE) buffer. Sample con-
centration and integrity were verified locally using
NanoDrop and gel electrophoresis. DNA methylation
was measured using the CHARM 2.0 assay.

Laboratory analyses

CHARM DNA methylation
DNA was isolated from cord blood clot samples using
the DNeasy� Blood & Tissue kit (Qiagen), following
the manufacturer’s instructions. From the 187 fetal
cord blood clot samples available, 167 (89.3%) yielded
enough DNA for methylation array analysis. DNA
methylation was measured via the CHARM 2.0
assay, a customized microarray method extended
from our previous CHARM procedure,7 a genome-
scale microarray technique for DNA methylation
that identifies differential DNA methylation without
assumptions regarding where such changes would be,
interrogating all CpG islands, as well as CpG island
‘shores’.16 CHARM 2.0 now includes 2.1 million
probes, which cover 5.2 million CpGs arranged into
probe groups (where consecutive probes are within
300 bp of each other) that tile regions of at least mod-
erate CpG density. It includes all annotated and
non-annotated promoters and microRNA sites on
top of the features that are present in the original
CHARM method. The design specifications are freely
available on our website (rafalab.jhu.edu). For the
CHARM 2.0 assay, 5 mg of purified genomic DNA

was sheared, digested, purified, amplified, labeled as
described,17 but hybridized onto our new CHARM 2.0
array. We dropped 26 arrays with <80% of their
probes above background intensities, resulting in
141 samples for DNA methylation analysis. We then
filtered probes where signal was below background in
<25% of arrays (542 055) and removed sex chromo-
somes (39 454) to improve the batch correction
methods, leaving 1 569 888 autosomal probes covering
4 254 946 CpGs spread across 114 984 probe groups.
Subsequent pre-processing, normalization and correc-
tion for batch effects are described in the Statistical
Methods subsection. CHARM hybridization and pro-
cessing for these samples were performed across 5
separate days, with the following numbers of samples
per day: 40, 36, 38, 21, 6, reflecting a potential source
of batch effects that was addressed through the sur-
rogate variable analysis (SVA) described in the
Statistical Methods subsection.

Bisulphite pyrosequencing
Individual CpGs inside the DMRs meeting our signifi-
cance threshold were chosen for validation based
on MethPrimer software.18 Of the 141 samples for
which CHARM data were generated, 139 had ample
DNA for subsequent pyrosequencing. Genomic DNA
(200 ng) from each sample was bisulphite treated
using an EZ DNA Methylation-GoldTM Kit (Zymo
research) according to the manufacturer’s instruc-
tions. Bisulphite-treated genomic DNA was PCR
amplified using unbiased nested primers, and DNA
methylation was subsequently assessed quantitatively
by pyrosequencing using a PSQ HS96 (Biotage).
Quantitative measurements (percentage methylation
at each CpG) from the pyrosequencing results were
determined using the Q-CpG methylation software
(Biotage). Control titration standards of 0, 25, 50,
75 and 100% methylated samples were generated
using appropriate mixtures of Whole Genome
Amplified (WGA) Human Genomic DNA: Male
(Promega) using a REPLI-g Mini Kit (Qiagen) and
SSsI-treated WGA DNA. Primer sequences used for
the bisulphite pyrosequencing reactions can be
found in Supplementary Table S2 available as
Supplementary Data at IJE online.

Quantitative real-time PCR
To examine the correlation between DNA methylation
and gene expression in cord blood clots for each of
the top three DMRs, we performed real-time PCR
assays. Primers were designed to determine the
mRNA expression of the gene closest to each DMR.
Since this analysis required isolation of mRNA from
cord blood clots, we were only able to perform these
expression analyses on a subset of newborns with
cord blood clots available. This included 10 babies
with gestational age at birth <35 weeks, 15 with ges-
tational age at 40 weeks and 17 with gestational ages
541 weeks. For isolation of RNA, fetal cord blood clot
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samples were treated with TRIzol (Invitrogen) and
RNA was purified using a PureLinkTM RNA Mini Kit
(Invitrogen) according to the manufacturer’s instruc-
tions. cDNA was synthesized using a QuantiTect
Reverse Transcription Kit (Qiagen) and random hex-
amers. Real-time PCR amplification was performed by
using a Fast SYBR� Green Master Mix (Applied
Biosystems), and transcript levels were quantified
using an ABI 7900 Sequence Detection Systems
(Applied Biosystems). Relative expression level for
each gene was calculated based on the standard
curve and normalized by the relative expression of
b-actin. Primer sequences used for the real-time
PCR reactions are in Supplementary Table S3 avail-
able as Supplementary Data at IJE online.

Statistical analyses
Descriptive statistics (median or percentage) for ges-
tational age at birth and potential confounders were
calculated and compared using chi-squared tests for
categorical variables and Mann–Whitney U-tests for
continuous variables.

The CHARM microarray data were pre-processed
and normalized as previously described.19,20 We
employed a novel statistical approach (see companion
paper, Jaffe et al.8) for identifying regions of the
epigenome associated with gestational age in days.
Briefly, we fit a linear model predicting methylation
at each probe as a function of gestational age at birth,
adjusted for surrogate variables, estimated via
SVA21,22 to account for unmeasured potential con-
founding often due to batch effects. SVA identifies
combinations of probes in the data associated with
heterogeneity of DNA methylation, conditioned on
the covariate of interest, in this case, gestational
age, and then constructs a ‘surrogate variable’ for
each set. A value for each individual based on each
surrogate variable can then be used for adjustment in
subsequent regression. Measured variables in our data
set most associated with these surrogate variables (as-
sessed through pruned regression trees of all possible
variables) were array quality control score and hybrid-
ization date/batch. We did not adjust for sex, but did
remove sex chromosome probes from the initial
genome-wide screen. The estimated regression
coefficients from these linear models for gestation-
al age at each probe were then smoothed within
the CHARM array’s pre-defined probe groups.
Consecutive smoothed slopes above a fixed cut-off
of the 99.5th percentile of all smoothed slopes were
summed into a region-level statistic reflecting the area
of the DMR (see companion paper, Jaffe et al.8). We
then ranked DMRs by their areas and calculated two
measures of statistical uncertainty, a P-value and
q-value, for each DMR by permutation that accounts
for genome-wide testing. Gestational ages were per-
muted 1000 times, and each time, the above regres-
sion, smoothing, and thresholding procedure was
repeated exactly as on the observed data to get 1000

sets of declared DMRs that occurred solely by chance.
Empirical P-values, defined as the fraction of the
maximum areas from each permutation greater than
the observed area, were calculated (‘Pmax’) to compare
with a specified family-wise error rate control of 10%.
False discovery rate (FDR) q-values were obtained by
pooling all areas across all permutations, calculating
the proportion of these ‘null’ areas greater than the
observed area, then converting this to a q-value for
comparison to an FDR control of 5%.23 DMRs with
an empirical Pmax < 0.10 or an FDR q-value < 0.05
were examined visually via plots of the methylation
curve within the DMR. Average methylation for each
newborn across all probes within a DMR was plotted
against gestational age at birth with slopes and
P-values estimated via linear regression and Wald
statistics.

Univariate relationships between potential confoun-
ders and methylation at DMRs were also estimated
via linear regression. Although some potential con-
founding due to these variables may already be
addressed via the SVA adjustment, we also explicitly
estimated relationships between average DNA methy-
lation for each DMR and each confounder through
linear models adjusted for the same surrogate vari-
ables used in our discovery. To do this, we applied
SVA analysis to the methylation data first, then
took SVA-adjusted methylation as the methylation
metric for linear regression with the covariate, to
ensure the same SVA adjustment was applied in
each analysis. Also, as a sensitivity analysis to assess
the influence of sex on our list of identified DMRs, we
repeated the original DMR identification procedure
adjusting for sex. We further performed the original
discovery procedure after omitting samples with
mothers who had pregnancy-induced hypertension
(PIH), intrapartum fever or diabetes, separately, to
assess influence of these variables on our results.

For analysis of DNA methylation data from pyrose-
quencing, we fit a linear model at every CpG predict-
ing DNA methylation as a function of gestational age.
We assessed the functional implications of differential
methylation at each gene by fitting linear models at
each CpG assessing the linear association between
DNA methylation and gene expression. Heavily
skewed gene expression values were transformed to
log2 scale.

Results
To identify epigenetic changes that occur throughout
later stages of gestation in an unselected population
of newborns, we performed the CHARM 2.0 assay,
which now includes approximately one-third of all
single-copy CpG sites including all islands and
shores, as well as all annotated promoters and
microRNAs. Bisulphite pyrosequencing and real-time
PCR were performed to validate DNA methylation
levels and functional significance of the DMRs
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associated with gestational age at birth. Of the 141
newborns with CHARM data, there were 18 PTBs
(<37 weeks) and the range of gestational ages in
days was 208–292 (see Supplementary Figure S1
available as Supplementary Data at IJE online for
full distribution). The pre-term newborns did not
differ in the distributions of sex or maternal age,
race or diabetes status compared with newborns
born after 37 weeks (Table 1). Birthweight differed
strongly between the two groups, as did smoking
and serum copper levels, which had been previously
reported for the full study sample of 300 newborns.24

Previous research indicates that increasing gesta-
tional ages at birth through 39–41 weeks is advanta-
geous for neurodevelopment25,26 and confers a lower
risk of respiratory morbidity,27 suggesting the need to
study gestational age on a continuum. Thus, treating
gestational age as a continuous variable in linear re-
gression, compared with pre-term and term birth
categories can be useful. Using this approach, we
identified 8611 candidate DMRs associated with ges-
tational age at birth (Supplementary Table S1 avail-
able as Supplementary Data at IJE online), of which
the top three DMRs met our genome-wide threshold
of protecting family-wise error rates <10% and false
discovery rates <5% (Table 2). The first of these
DMRs was found to be positioned in the first intron
of the nuclear factor I/X (NFIX) gene, encoding a
transcription factor known to be responsible for
fetal-specific transcription regulation during skeletal
muscle development.28 Another was positioned in

the first intron of the alternative transcript of the
Rap guanine nucleotide exchange factor (RAPGEF2)
gene, which encodes one of the RAS protein family
activators that maintains the GTP-bound state of RAS.
Although this DMR was not located at the promoter
of the canonical gene, the DMR contains strong
DNase I hypersensitive sites and a number of strong
transcription factor-binding sites including Gata-2
and PU.1, which are the critical transcription factors
in haematopoiesis.29,30 The third DMR was located
next to the promoter region of the methionine-S-
sulphoxide reductase 3 (MSRB3) gene, which encodes
the enzyme involved in the methionine cycle and is
responsible for antioxidant repairing by converting
methionine sulphoxide to methionine.31 Two of the
three DMRs are located at the CpG island shore, sug-
gesting that these DMRs may be associated with al-
ternative transcription or splicing.16

The methylation values at each probe for each of
these DMRs are shown in Figure 1 according to ges-
tational age in weeks (calculated from days).
Smoothed lines indicate the average methylation
curve for each week of gestational age at birth, and
show a dose–response trend between gestational age
and methylation levels across all weeks for each DMR.
To further illustrate this point, Figure 1 also shows
the relationship between the average methylation
across all probes in the DMR and gestational age,
and the linear fit of this relationship (see insets in
each panel). For the DMR near NFIX, DNA methyla-
tion levels of each probe are greater in high

Table 1 Characteristics of THREE study newborns included in this epigenetics project

Pre-term
(<37 weeks), N¼ 18

Term/post-term
(537 weeks), N¼ 123 P-value*

Male sex (%) 56 52 0.98

Maternal age, median (IQR) (years) 28 (22–30) 24 (20–29) 0.14

Maternal race (%) 0.32

Caucasian 33 21

AA 67 73

Asian 0 6

Maternal smoking (%) <0.01

Non-smoker 56 75

Passive smoker 0 11

Active smoker 44 14

Birthweight, median (IQR) (g) 2422 (2102–2689) 3279 (2906–3648) <0.01

Pregnancy-induced hypertension (%) 22 6 0.04

Intrapartum fever (%) 6 8 1.00

Serum copper, median (IQR) (mg/dl) 26 (22–34) 41 (30–55) <0.01

Elected delivery (%)a 44 37 0.59

aCaesarean section or induced delivery.
*P-values based on chi-squared tests for categorical variables and Mann–Whitney tests for quantitative variables.
IQR¼ interquartile range; AA = African American.
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gestational age neonates when compared with low
gestational age neonates (Figure 1a), and the average
DNA methylation level of each sample in the DMR
exhibits a linear correlation with gestational age,
with an estimated increase of 1.57% DNA methylation
per week of gestation [95% confidence interval (CI)
1.02–2.12], or an increase of 7.85 between Weeks 35
and 40, roughly corresponding to late pre-term vs
term births (P¼ 8.6� 10�8 for Wald statistic; see
Figure 1a, inset). In contrast, the DMRs at RAPGEF2
and MSRB3 show lower DNA methylation levels of each
probe in higher gestational age neonates when com-
pared with lower gestational age neonates (Figure 1b
and c), and the average DNA methylation levels of
each sample in these DMRs exhibit inverse linear cor-
relation with gestational age. For RAPGEF2, there is a
1.33 decrease in %DNA methylation (95% CI �1.76 to
�0.9) per week of gestation or a decrease of 6.65
between Weeks 35 and 40; (Wald P¼ 9.9� 10�9) and
for MSRB3, a 2.08 decrease (95% CI �2.51 to �1.64) per

week or 10.4 between Weeks 35 and 40 (Wald
P¼ 1.3� 10�16; see Figure 1b and c insets). Also note
the progressive change in DNA methylation within each
gestational age bin, a dose–response relationship
consistent with a functional relationship between
methylation and gestational age.

To validate these findings on a separate platform,
we designed bisulphite pyrosequencing assays for
CpGs within each DMR (indicated as red blocks in
Figure 1). The individual CpG results within each
DMR were correlated (average pair-wise correlation
for neighbouring CpG methylation was 0.85 for NFIX,
0.68 for RAPGEF2 and 0.82 for MSRB3) and confirmed
the CHARM differences in methylation by gestational
age. For NFIX, four CpGs were assayed (see Figure 1 for
locations), each showing an incremental increase in
methylation with increase in gestational age at birth,
consistent with the pattern detected in CHARM
(Figure 2a). All three of the CpGs assayed in
RAPGEF2 (see Figure 1 for locations) showed greater

Figure 1 Methylation plots for three identified DMRs for gestational age at birth. (a) NFIX, (b) RAPGEF2, (c) MSRB3. Top
half of panels show individual methylation levels at each probe by genomic position, with coloured lines reflecting the
average methylation curve for samples binned by gestational age—gestational ages in weeks were split into equal sized bins,
and the average age for each bin is shown in the legend. Bottom half of panels show location of CpG dinucleotides (black
tick marks) and CpGs validated by bisulphite pyrosequencing (black tick marks contained in red box) as well as the CpG
density by position (black curve) and the location of refseq annotated genes (bar, þ and � represent the direction of the
gene, green bar indicates CpG island). Vertical lines represent boundaries of the DMR. Inset box: linear regression plot of
average methylation across the DMR (Avg %M) per sample by gestational age (GA)

Table 2 Differentially methylated regions for gestational age identified via CHARM 2.0

Chr
Nearest

gene
DMR
area P-value q-value

DMR
start position

DMR
end position

Location
relative to gene

19 NFIX 0.343 0.001 0.012 13 130 686 13 133 039 Inside intron

4 RAPGEF2 0.223 0.047 0.029 160 026 138 160 028 079 Upstream, intron of alt. transcript

12 MSRB3 0.197 0.098 0.041 65 671 230 65 672 140 Promoter

P-values and q-values based on comparison of observed DMR area ranks to ranks among 1000 permutations of gestational age
values. All coordinates are based on hg19/build 37.
Chr, Chromosome; Alt., Alternative.

DNA METHYLATION AND GESTATIONAL AGE 193



methylation with early gestational age at birth, con-
sistent with the CHARM results (Figure 2b). For
MSRB3, all five CpGs assayed showed greater methyla-
tion in earlier gestational age samples as seen in
CHARM (Figure 2c). Thus, these DNA methylation
analyses on an independent measurement plat-
form confirmed the differential methylation by gesta-
tional age for each of the three genes identified via
CHARM.

Since the three DMRs we identified reflect variabil-
ity in methylation corresponding to late-stage devel-
opment in utero, we considered whether adult DNA
methylation at these same sites would show any vari-
ability and whether adult levels would be similar to
those of full-term births. We compared CHARM 2.0
data for each DMR among healthy adult blood DNA
samples with our newborn sample results. Although
the three DMRs appear very dynamic and progressive
with gestational age in the newborn sample, these
exact same regions have little variability in the adult
population. Given the span of adult ages represented,
this suggests that these sites are stable in adulthood.
The magnitude of adult DNA methylation levels is
similar to or more extreme than those of the latest
gestational ages in a direction consistent with the
newborn sample correlations to gestational age
(Figure 3). These results provide compelling support

for maturation-related changes in DNA methylation
at these loci, and also indicate that the process con-
tinues beyond birth, but reaches a maximum at some
time at or before adult life.

To address potential confounding by sex, maternal
age, race, maternal smoking, presence of PIH, intra-
partum fever, maternal smoking and serum copper
levels, we estimated the linear relationships between
each of these variables and gestational age at birth.
Consistent with the general characteristics comparing
pre-term babies to the rest of the newborns, maternal
smoking, PIH and serum copper were associated with
gestational age (Table 3). To further address whether
these potential confounders were associated with
methylation at the identified DMRs, we estimated
the linear relationship between these variables and
the average methylation value per DMR as well. PIH
and serum copper were also associated with methyla-
tion at each of these DMRs (Table 3), suggesting the
potential for confounding. However, the strong asso-
ciation between methylation and gestational age
remained even after adjusting for PIH and copper in
both CHARM and pyrosequencing data. For example,
in the CHARM data, the coefficient for gestational
age at birth in linear models predicting average
methylation at each DMR with and without adjust-
ment for copper (which had a stronger effect than

1.56 (P=1.1e–12)

–0.69 (P=0.0012)

–0.68 (P=0.00017) –0.64 (P=5.8e–08) –1.57 (P=4.7e–10) –2.13 (P=5.1e–10) –2.09 (P=6.4e–06)

–0.29 (P=0.35) –1.47 (P=3.9e-06)

0.81 (P=2.7e–06) 2.48 (P=4e–10) 2.49 (P=5.1e–09)

(a)

(b)

(c)

Figure 2 Bisulphite pyrosequencing results for each DMR. (a) NFIX, (b) RAPGEF2, (c) MSRB3. Circles represent methy-
lation values (y-axis) at individual CpGs for their corresponding gestational age in weeks (x-axis). Lines represent predicted
values from linear regression. Reconstitution controls (represented as black dots) with explicitly designed % methylation
(x-axis) are located at the right of each panel (Recon). The numbers on the bottom of each figure represent effect size/slope
estimate from the regression of methylation on gestational age and P-value for a Wald test of this slope
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PIH) changed from 1.57 to 1.37 for NFIX, �1.33 to
�1.17 for RAPGEF2 and �2.08 to �1.87 for MSRB3,
and all remained statistically significant. We in fact
examined the potential influence of each potential
confounder on the detected associations with these
three DMRs and saw no substantial change in effect
sizes after adjustment for any of these covariates
(Supplementary Table S4 available as Supplementary
Data at IJE online).

Birthweight was also correlated with both gestational
age and with methylation at each of the three DMRs.
This is expected given the strong relationship between
gestational age and birthweight. Gestational age is the
best indicator of maturation of the newborn including
growth parameters. Since birthweight is largely a con-
sequence of gestational age, removing birthweight

variability would almost completely restrict variability
for gestational age in our analyses, so we did not con-
dition on birthweight for these analyses. When we con-
sidered birthweight for gestational age as a separate
phenotype, we saw no relationship to methylation at
the three DMRs (Supplementary Table S5 available as
Supplementary Data at IJE online).

To explore the functional significance of the differ-
ential methylation, we measured the expression of the
NFIX, RAPGEF2 and MSRB3 using real-time PCR.
RAPGEF2 showed an inverse linear correlation
between expression and DNA methylation levels in
two of the three CpGs at this DMR (CpG1: P¼ 0.37;
CpG2: P¼ 0.013, CpG3: P¼ 0.014, Supplementary
Figure S2 available as Supplementary Data at IJE
online).

Table 3 Co-efficient (95% CIs) of linear relationship between potential confounders and gestational age at birth or average
methylation at each of the identified differentially methylated regions

GA (in weeks) NFIXa RAPGEF2a MSRB3a

Male sex �0.12 (�0.84 to 0.60) �5.72 (�8.16 to �3.27) 1.85 (�0.21 to 3.91) 1.07 (�1.32 to 3.46)

Maternal age �0.06 (�0.13 to �0.00) �0.17 (�0.40 to 0.05) 0.17 (�0.01 to 0.35) 0.24 (0.04 to 0.44)

Caucasian race
(vs African American)

�0.38 (�1.26 to 0.49) �1.09 (�4.27 to 2.10) 0.53 (�2.01 to 3.07) 0.14 (�2.76 to 3.04)

Maternal smokingb
�0.62 (�1.06 to �0.18) 0.86 (�0.83 to 2.54) 0.39 (�0.95 to 1.73) �0.21 (�1.75 to 1.33)

PIH �2.25 (�3.54 to �0.96) �8.41 (�13.09 to �3.73) 5.01 (1.23 to 8.79) 6.77 (2.46 to 11.09)

Intrapartum fever 0.60 (�0.7 to 1.91) �1.93 (�6.76 to 2.9) �0.24 (�4.1 to 3.62) 0.13 (�4.28 to 4.55)

Serum copper (mg/dl) 0.04 (0.02 to 0.06) 0.13 (0.06 to 0.20) �0.10 (�0.16 to �0.05) �0.15 (�0.21 to �0.08)

Birthweight (kg) 2.07 (1.63 to 2.51) 2.86 (0.87 to 4.84) �2.89 (�4.43 to �1.34) �3.97 (�5.71 to �2.22)

Elected delivery �0.12 (�0.84 to 0.61) �1.84 (�4.50 to 0.82) 1.10 (�1.03 to 3.22) �0.56 (�3.00 to 1.88)

Bold indicates statistical significance at P < 0.05.
aAverage residual DNA methylation across DMR adjusted for the same surrogate variables from SVA used in the primary analysis.
bOrdinal variable: 0¼non-smoker, 1¼ passive smoker, 2¼ active smoker.

(a) (b) (c)

Figure 3 Methylation plots for three identified DMRs for gestational age at birth with adult methylation results included.
Individual adult methylation levels are represented as grey lines, and the black line represents mean adult methylation level.
(a) NFIX, (b) RAPGEF2 and (c) MSRB3
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Discussion
Using a genome-wide custom DNA methylation array
technology and novel statistical methods, we have
identified three differentially methylated regions
associated with gestational age at birth. Array-based
methylation results for all three regions were validated
via bisulphite pyrosequencing. These regions target
areas of the genome likely to be under developmental
regulation in late gestation, which may have implica-
tions for understanding the reasons for immediate as
well as long-term health effects of gestational age at
birth. The observed incremental progression between
methylation and gestational age at birth is further
supported by the observation that adults are not vari-
able at these DMRs, but rather appear to be stable at
levels similar to or more extreme than newborns with
the latest gestational ages at birth.

The genes nearest the identified DMRs may play
important roles in late-stage fetal development. NFIX
is known to be responsible for regulating skeletal
muscle,28 brain and bone development,32–34 which
show substantial growth during late gestation. This
finding offers face validity that our approach can iden-
tify epigenomic regions relevant to late gestational
development. RAPGEF2 plays a critical role in
embryonic haematopoiesis 35 and brain development
(i.e. commissures).36 Although this DMR was not
located at the promoter of the canonical gene, the
DMR contains strong DNase I hypersensitive sites
and a number of strong transcription factor-binding
sites including Gata-2 and PU.1, which are the critical
transcription factors in haematopoiesis.29,30 In utero, a
fetus has a higher haematocrit (given lower available
oxygen in utero), low B-cell function (given ready
transplacental passage of maternal antibodies) as
well as lower platelet counts than seen in babies
(born at term). This methylation change with gesta-
tional age could be involved in the ontogeny of
the haematopoietic system and the switch from
production of erythrocytes to increased production of
B-lymphocytes and megakaryocytes in preparation
for birth and, respectively, secretion of antibodies in
response to antigenic assaults as well as production
of platelets to prepare for possible birth trauma.
Furthermore, anaemia of prematurity is known to
cause morbidity in pre-term infants; disruption of
regulation of this system may contribute to anaemia
of prematurity, due to higher haematocrits and
restricted erythropoiesis at birth. The differential
methylation detected in our newborn sample did cor-
relate with expression of RAPGEF2 in cord blood cells,
lending support for involvement in development of
the haematopoietic system. Finally, MSRB3 encodes a
methionine sulphate reductase enzyme involved in
antioxidant repair, converting methionine sulphoxide
to methionine. This specific reductase has been found
to be present in many tissues including the human
lens and the cochlea and has been suspected to be
involved in cataracts caused by oxidative damage to

lens cells.31 Most congenital cataracts are idiopathic;
however, PTB and the administration of certain drugs
in utero have been identified as risk factors,37 pointing
to a possible role for oxidative stress for cataract for-
mation in infants as well as adults. Generally, a
number of morbid conditions associated with term
birth have been tied to oxidative stress, from admin-
istration of oxygen, including retinopathy of prema-
turity, bronchopulmonary dysplasia, necrotizing
enterocolitis and intraventricular haemorrhage.38

MSRB3 and other Methionine Sulfoxide Reductases
(MSRs) may play a role in this sensitivity to oxidative
stress. Mutations in MSRB3 also cause hereditary
deafness39 and variants in this gene have been asso-
ciated with primary tooth development during infancy
in a recent genome-wide association study.40

These results do not appear to be sensitive to con-
founding by measured variables. Furthermore, it is
possible that methylation may be part of the mechan-
ism relating factors to gestational age at birth. In this
case, one would not want to adjust for such factors in
analysis. Thus, we were conservative in our approach
to adjustment. Nonetheless, inclusion of potential
confounders in our models did not attenuate the
relationship between methylation and gestational
age at these DMRs. Our use of SVA to reduce the
impact of measurement issues, such as batch effects,
may also have adjusted for potential residual con-
founding not captured by a measured variable. It is
worth noting that serum copper levels have previously
been shown in this sample to be related to gestational
age at birth and, therefore, a potential confounder.
Nonetheless, the relationship between DMR methyla-
tion and gestational age did not attenuate after
adjustment for copper. We did, however, observe a
relationship between copper levels and methylation
in these adjusted models, suggesting an independent
effect of copper on methylation, consistent with the
growing interest in environmental impacts on the epi-
genome and their implications for human health.41,42

Also, although we saw a relationship between birth-
weight and these DMRs, this appeared to be a func-
tion of the relationship between gestational age and
birthweight, rather than specific to birthweight itself.
Although a recent report did see a relationship
between global DNA methylation and birthweight
for gestational age,43 we did not see an association
with these particular DMRs when considering birth-
weight adjusted for gestational age (Supplementary
Table S5 available as Supplementary Data at IJE
online).

An important caveat in this study is that we mea-
sured DNA methylation from a surrogate tissue,
blood, for which methylation changes may not reflect
those of tissues undergoing developmental epigenetic
changes. Despite this, one of these genes, RAPGEF2,
showed the expected inverse relationship of
DNA methylation and gene expression. Consistent
with this idea, RAPGEF2 regulates embryonic
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haematopoiesis,35 whereas NFIX and MSRB3 play in
the development of organs such as brain, tooth, skel-
etal muscle and bone.32,33,40,44 Thus, differential ex-
pression by methylation patterns of the latter two
genes may not be detectable in cord blood, or these
DMRs may regulate the enhancer function of distal
genes or focally modify the high-order chromatin
structure and thus not manifest a change in cord
blood expression of NFIX or MSRB3. These results
are quite encouraging for epigenetic epidemiology in
general, since they indicate that DNA methylation dif-
ferences may be widespread, and methylation profiles
in blood may be a useful indicator of developmental
change even in tissues that do not utilize the differ-
entially methylated genes in normal developmental
processes.

Overall, the results obtained here by genome-wide
DNA methylation analysis are encouraging for the
field of epigenetic epidemiology, since they indicate
that DNA methylation differences are detectable
with this strategy. Specifically, this work identifies
epigenetic changes associated with gestational age at
birth. The underlying reason for this correlation
cannot be determined in this cross-sectional study,
but there are at least two implications of these find-
ings for the epidemiology of PTB. First, regions of the
genome that are still undergoing DNA methylation
variation late in gestation may be functionally related
to the health consequences of PTB, and our findings
can inform new epidemiologic research and biological
mechanisms towards understanding the reasons for
negative outcomes in premature babies and lessening
these negative infant, childhood or even adult health
consequences related to gestational age at birth.
Secondly, it is possible that these results reflect
involvement of DNA methylation in the aetiology of
PTB. There are a number of mechanisms (including
infections leading to inflammation,45 preeclampsia46

and stress47) and risk factors (African American
race, bacterial vaginosis, cigarette smoking and low
maternal pregnancy body mass index48,49) associated
with PTB, which could be associated with epigenetic
changes themselves, although this explanation is less
consistent with the function of the particular genes
identified in our study. In addition, the use of assisted
reproductive technology and nutritional deficiencies
have been identified as possible risk factors for
PTB50,51 and also have the potential to alter the
epigenome.52,53 Identification of epigenetic changes
associated with PTB potentially could be useful for
identifying, among the many factors associated with
PTB, which are most likely to be causal factors,
although our design did not contain a large number
of spontaneous PTBs and thus the relationship
between methylation and causes of PTB may be
best suited for subsequent studies in different
samples.

Further work is required to determine whether the
detection of DNA methylation in non-primary proxy

tissues (in this instance, blood) indeed is a useful
indicator of developmental change in the primary
tissue for expression of affected genes. However, the
work presented here shows that DNA methylation
changes progressively during late fetal development,
and thus opens the door to studies of the epigenetic
epidemiology of PTB.

Supplementary Data
Supplementary Data are available at IJE online.
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KEY MESSAGES

� There is a need for established statistical methodology for performing genome-wide DNA methylation
studies in epidemiologic samples.

� Using a novel statistical approach for DNA methylation micro-array data, we identify three regions of
the genomic containing methylation levels that are associated with gestational age at birth in a
sample of 141 newborns.

� Differential methylation by gestational age at NFIX is consistent with the role of this gene in skeletal
and brain development; at RAPGEF2 may implicate the haematopoietic system in ways relevant to
anaemia of prematurity; and at MSRB3 may relate to the role of this gene in protection from oxidative
damage, which may have implications for several health consequences of PTB.
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