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Background During the past 5 years, high-throughput technologies have been
successfully used by epidemiology studies, but almost all have focused
on sequence variation through genome-wide association studies
(GWAS). Today, the study of other genomic events is becoming
more common in large-scale epidemiological studies. Many of
these, unlike the single-nucleotide polymorphism studied in
GWAS, are continuous measures. In this context, the exercise of
searching for regions of interest for disease is akin to the problems
described in the statistical ‘bump hunting’ literature.

Methods New statistical challenges arise when the measurements are con-
tinuous rather than categorical, when they are measured with un-
certainty, and when both biological signal, and measurement errors
are characterized by spatial correlation along the genome. Perhaps
the most challenging complication is that continuous genomic data
from large studies are measured throughout long periods, making
them susceptible to ‘batch effects’. An example that combines
all three characteristics is genome-wide DNA methylation measure-
ments. Here, we present a data analysis pipeline that effectively
models measurement error, removes batch effects, detects regions
of interest and attaches statistical uncertainty to identified regions.

Results We illustrate the usefulness of our approach by detecting genomic
regions of DNA methylation associated with a continuous trait
in a well-characterized population of newborns. Additionally, we
show that addressing unexplained heterogeneity like batch effects
reduces the number of false-positive regions.

Conclusions Our framework offers a comprehensive yet flexible approach for
identifying genomic regions of biological interest in large epidemio-
logical studies using quantitative high-throughput methods.
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Introduction
Identification of biologically relevant regions of the
genome in epidemiological studies frequently involves
measurements from a large number of genomic
loci.1,2 As the cost of microarray technologies has
rapidly decreased over the past several years, large
epidemiological studies have begun to measure thou-
sands to millions of genomic markers on thousands of
people. Searching for association between disease out-
comes and genomic sequence variation, marked by
single-nucleotide polymorphisms (SNPs), has been
the most common genomics application, referred to
as genome-wide association studies (GWAS).3–5 In
these studies, measurements from SNPs are categor-
ical with three possible genotypes (AA, Aa or aa).
Today, other genomic measurements, such as DNA
methylation, are becoming common in large-scale epi-
demiological studies. Many of these, unlike SNPs, are
continuous measurements, are more susceptible to
measurement error, are more densely spaced across
the genome, and have more complicated correlation
structures.6–8 The goal of these additional types of gen-
omic studies is similar to GWAS—screen genome-
scale data to identify contiguous regions for which a
genomic event, such as methylation, is associated
with an outcome of interest. Yet, the differences be-
tween these newer technologies and GWAS require
new analysis techniques to accomplish this goal.

The methodology presented here is motivated by
genome-scale array-based DNA methylation data.
DNA methylation is a chemical modification of DNA
that can be inherited during cell division but is not
contained in the DNA sequence itself. DNA methyla-
tion involves the modification of a cytosine base (C)
to form methyl-cytosine. In adult cells of mammals,
this modification occurs almost exclusively at Cs that
are immediately followed by a guanine (G) in the 50

to 30 direction, denoted CpG. Since DNA methylation
is inherited during cell division, yet is dynamic
enough to vary across cells with the same genome,
it is considered an important developmental mechan-
ism that helps explain phenotypic variability across
cell types.9,10

The health implications of deciphering the DNA
methylation code have recently received much atten-
tion both in the scientific literature and in the
media.11–14 In cancer biology, aberrations in DNA
methylation accompany the initiation and progression
of cancers.15,16 Much of the excitement surrounding
epigenetics relates to the promise of therapies that
alter the epigenetic code by activating or silencing
disease-related genes. In fact, two epigenetic drugs
that reactivate tumour suppressor genes by removing
methylation marks (Vidaza and decitabine) have
received United States Food and Drug
Administration (FDA) approval,17,18 highlighting the
medical promise of mapping and understanding the
role of DNA methylation. Furthermore, DNA methy-
lation is of particular interest to epidemiologists

because it is more susceptible to environmental in-
sults than DNA sequence, and may be a mechanism
for environmental risk factors for disease.

Currently, the DNA methylation data produced by
large epidemiology studies are mostly microarray
based. For each individual, DNA methylation levels
are measured for thousands to millions of CpGs.
Although at the cellular level, DNA methylation is
binary on each strand (methylated or not), these tech-
nologies require millions of cells, and therefore report
continuous measurements related to the proportion of
cells methylated at the site in question. The general task
in studies performing genome-wide DNA methylation
scans is to identify genomic regions exhibiting an asso-
ciation between DNA methylation levels and the out-
come of interest (Figure 1A). Various authors have
noted that methylation levels are strongly correlated
across the genome.6,7 Furthermore, reported function-
ally relevant findings have been generally associated
with genomic regions rather than single CpGs, either
CpG islands,19 CpG island shores,20 genomic blocks16 or
generic 2-kb regions.21 Therefore, we propose a search
for association at the region level as opposed to the
single CpG level and demonstrate that this approach
greatly improves specificity. From a statistical perspec-
tive, this task amounts to finding spatial intervals in
which an estimated function (e.g. average difference
between outcome groups, or correlation with a continu-
ous trait) is different from 0 (Figure 1B). We propose a
method to accomplish this that borrows from a topic
widely discussed in the statistical literature referred to
as ‘bump hunting’.22–25

In genomics, bump hunting has been referred to as
‘peak detection’ in the context of finding transcription
factor binding sites with chromatin immunoprecipita-
tion onto microarray (ChIP-chip) data.26,27 However,
a key difference between the epigenomic data, for
which our method is developed, and previous bump
hunting problems, is that the number of individuals is
relatively large (we are now analysing data sets as
large as 320 individuals, and anticipate thousands).
Furthermore, the correlation observed in epigenomic
data is substantially different than previously pub-
lished applications. For example, we observe measure-
ment error correlations between adjacent probes
genome-wide ranging from 0.064 to 0.26, whereas
most existing approaches are developed for independ-
ent data. Epigenomic bumps are expected to have
greater variability in size and shape than in previous
applications as well. For example, while ChIP data
(used to find, for example, transcription factor bind-
ing sites) peaks are expected to be triangle shapes
spanning several hundred base pairs,26 regions of dif-
ferential DNA methylation range from several hun-
dred base pairs to several megabases.16 In some
situations, for example, in cancer studies, we also
expect a larger number of bumps (thousands), lead-
ing to different approaches to correct for multiple
testing comparisons. Finally, and perhaps most
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importantly, the fact that samples in large studies are
acquired, and often measured, across long periods of
time make them particularly susceptible to ‘batch
effects’ – unobserved correlation structures between
subgroups of samples run in high-throughput experi-
ments.28 These effects are characterized by sub-groups
of measurements that have qualitatively different
behaviour across conditions and are unrelated to the
biological or scientific variables in a study. The most
common batch effect is introduced when subsets of
experiments are run on different dates. Although pro-
cessing date is commonly used to account for batch
effects, in a typical experiment these are probably
only surrogates for other unknown sources of vari-
ation, such as ozone levels, laboratory temperatures
and reagent quality. Unfortunately, most possible
sources of batch effects are not recorded during
genomic data generation.

The problems outlined above for DNA methylation
high-throughput data in epidemiological studies re-
quire a novel analysis strategy. Here, we introduce a
generic method that combines surrogate variable
analysis (SVA),29 a statistical method for modelling
unexplained heterogeneity like batch effects in gen-
omic measurements, with regression modelling,
smoothing techniques and modern multiple compari-
son approaches to provide reliable lists of epigenomic
regions of interest from epidemiological data.

We highlight the strengths of our method and dem-
onstrate the utility of combining batch correction with
bump hunting in DNA methylation data.

Methods
Our goal is to identify genomic regions associated
with disease via genome-scale microarray-based epi-
genomic data and epidemiological disease-related
(covariate/exposure/phenotype) data.

Statistical methods
We formalize the relationship between methylation,
disease phenotype, covariates and potential confound-
ing due to batch effects via the following statistical
model (Equation 1):

Yij ¼ �ðtjÞ þ �ðtjÞXi þ
Xp

k¼1

�kðtjÞZi, k þ
Xq

l¼1

al, jWi, l þ "i, j

For the epigenomics data, let Yij be the epigenomic
measurement (e.g. percentage DNA methylation), ap-
propriately normalized and transformed, at the j-th
genomic locus (e.g. each vertical scatter of points in
Figure 1A) for individual i. The variable tj denotes the
location on the genome of the j-th locus (i.e. ‘chromo-
some 2, position 42233500’), and the population

A

B

Figure 1 Example of a differentially methylation region (DMR). (A) The points show methylation measurements from the
colon cancer dataset plotted against genomic location from illustrative region on chromosome 2. Eight normal and eight
cancer samples are shown in this plot and represented by eight blue points and eight red points at each genomic location
for which measurements were available. The curves represent the smooth estimate of the population-level methylation
profiles for cancer (red) and normal (blue) samples. The green bar represents a region known to be a cancer DMR.20 (B)
The black curve is an estimate of the population-level difference between normal and cancer. We expect the curve to vary
due to measurement error and biological variation but to rarely exceed a certain threshold, for example those represented by
the red horizontal lines. Candidate DMRs are defined as the regions for which this black curve is outside these boundaries.
Note that the DMR manifests as a bump in the black curve
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baseline level of our epigenomic measurement is �(tj).
In a case–control setting, �(tj) represents the
population-level DNA methylation profile of the con-
trols. Note that in Figure 1A the blue curve is an es-
timate of �(t).

We let Xi represent the outcome of interest (like di-
chotomous cancer status in Figure 1, or a continuous
outcome in later examples), and �ðtjÞ measure the
association between the outcome of interest Xi

and the epigenomic measurement Yij at location tj.
Genomic locations of interest are those in which
outcome is associated with DNA methylation; i.e. lo-
cations tj for which �ðtjÞ 6¼ 0: Note that in Figure 1B,
the black curve is an estimate of �ðtÞ. Potential mea-
sured confounders (e.g. sex, age, race) are denoted by
the Zs, and the �kðtjÞ represents the effects of con-
founder k at locus tj, with each column of Z repre-
senting a different confounder. We let W represent
potential unmeasured confounders or batch effects,
estimated via SVA (described further below), and al,j

is the effect of unmeasured confounder l on locus tj.
The remaining unexplained variability is represented
by "i, j and includes both the variability associated
with measurement error as well as natural biological
variability. Because biological variance is known to
depend on genomic location8,30 we permit the vari-
ance varð"i, jÞ ¼ �

2ðtjÞ to depend on location tj. We fur-
ther assume measurement error is a stationary
random process with symmetric marginal distribution
centered at 0 and allow a general correlation
structure.

A formal definition of regions of biological interest
can now be provided as the contiguous intervals
Rn, n ¼ 1, . . . , N for which �ðtÞ 6¼ 0 for all t2 Rn.
These are the genomic regions in which methylation
levels at consecutive measured locations are asso-
ciated with the outcome of interest. Previous work
and biological insight suggests that for DNA methy-
lation, �(t) can be modeled as a smooth function of
genomic position t since DNA methylation levels for
CpGs within 1000 bases have been shown to be sig-
nificantly correlated6. Since for most of the genome,
�ðtÞ ¼ 0,�ðtÞ can be thought of as a straight horizontal
line with N bumps. Our goal is to find these bumps,
i.e. detect the Rns. We implement a modular approach
(Figure 2) with the following four steps: (i) estimate
the �ðtjÞ for each tj; (ii) use these to estimate the
smooth function �ðtÞ; (iii) use this to estimate the
regions Rn; and (iv) use permutation tests to assign
statistical uncertainty to each estimated region.

Note that if we fix j, Equation 1 is a linear regres-
sion model. However, because q and the Ws are un-
known, estimating the methylation association
parameters �ðtjÞ with the standard least squares ap-
proach is not appropriate. Generally, much of the
variability observed in high-throughput data is asso-
ciated with unwanted factors that affect groups of
samples in ways which introduce artificial within-
sample correlations, as described in a recent review

article.28 For example, an unmeasured difference
in temperature throughout a day in which samples
were processed may result in correlation structures
that generate distinct ‘batches’: morning, midday
and afternoon samples. In Equation 1, we account
for such sources of variability with columns of the
W matrix. A well-known statistical technique that
uncovers such structures is principal component ana-
lysis. In high-throughput experiments, the first few
principal components are commonly associated with
unwanted sources of variability.28 However, simply
removing these may result in unwittingly discarding
important biological signal. SVA uses an iterative
procedure that simultaneously estimates biological
signal of interest, e.g. preserves information on �ðtjÞ,
as well as effects of unwanted sources of variability.29

Specifically, SVA estimates q (the number of un-
measured confounders) and the columns of W (the
confounders themselves) in our model. SVA was ori-
ginally designed to handle batch effects in gene ex-
pression data, although it can also be used with
appropriately transformed DNA methylation data,
as we,31 and others,32 have demonstrated. With the
SVA estimates in place, we use least squares to fit
Equation 1 for each tj to produce locus-specific esti-
mates �̂ðtjÞ (Figure 2A). For most microarray data,
this involves fitting thousands to millions of regres-
sion models (see our open source code for details
available at rafalab.jhu.edu).

Although for each tj, �̂ðtjÞ is an unbiased estimate
of �ðtjÞ, the assumption that �ðtÞ is smooth implies
we can improve precision with smoothing techniques.
We therefore smooth the �̂ðtjÞs using loess,33 a
smoother that is robust to outliers, with a smoothing
window ranging from 300 to 900 bp and weighting
each point based on the standard error obtained in
the linear model fit (Figure 2B). We denote the
smoothed estimate with ~�ðtÞ (blue line in Figure 2B)
to distinguish it from the point-wise estimate �̂ðtjÞ

(points in Figure 2B). The smoothing window size
was motivated by the epigenetics literature6 as well
as our own statistical evaluation described in the
‘Simulation’ section.

We then generate candidate regions R̂n, n ¼ 1, . . . , N̂
using contiguous runs of measurements for which
~�ðtÞ > K or ~�ðtÞ < K where K is a predetermined
threshold (e.g. the 99th percentile of the ~�ðtÞ). To
then assess the statistical uncertainty for each candi-
date region R̂, we use permutation techniques to
accommodate the correlated measurement errors,
batch effects, and the high-throughput nature of
data when estimating the probability that an observed
R occurred by chance, given �ðtjÞ ¼ 0 across the
genome. We propose two approaches below for gen-
erating data with �ðtjÞ ¼ 0 for all j but that retain all
other statistical characteristics of the original data,
such as batch effects and correlated errors. Thus,
any resulting regions identified in these permuted
data sets are actually ‘null’ candidate regions
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occurring by chance. We repeat these procedures hun-
dreds of times to generate a distribution of null can-
didate regions. To work with scalars, we summarize
the strength of evidence for each region with its area,
computed with An ¼

P
j2R̂n
j ~�ðtjÞj (Figure 2C). This

area can be used to rank regions of interest for further
investigation. Our two permutation procedures and
associated metrics construct a null distribution of
area statistics based on the observed data, but under
the global null hypothesis. The first approach simply
permutes the outcome variable Xi and re-runs the
entire bump hunting procedure; all four steps. We
do this B¼1000 times, and for each permutation
b¼1, . . . , B, we produce a set of null areas
A�n, b, n ¼ 1, . . . , ~N�b and define empirical P-values as
the fraction of null areas greater than each observed

area. For example, an observed area greater than 95%
of the areas obtained from the permutation exercise
will be assigned an empirical P-value of 0.05. To
account for the multiplicity problem introduced by
genome-wide screening, we computed false discovery
rates (FDRs)34 based on these P-values, a standard
approach in microarray data analysis. Namely, we
use the P-values to estimate FDRs and for each can-
didate region define its Q-value as the minimum
FDR at which the associated area may be called sig-
nificant.35 We also report a more conservative uncer-
tainty assessment based on family-wise error rate
(FWER)36 protection that computes, for each observed
area, the proportion of maximum area values per per-
mutation that are larger than the observed area
(Figure 2D).

A B

C D

Figure 2 Step-by-step illustration of our bump-hunting algorithm. (A) Logit-transformed methylation measurements
are plotted against the outcome of interest (gestational age) for a specific probe j. A regression line obtained from fitting
the model presented in Equation 1 is shown as well. The estimated slope �̂ðtjÞ is retained for the next step. (B) For 48
consecutive probes, the estimated �̂ðtjÞs are plotted against their genomic location tj. The specific estimated slope from
the probe in (A) is indicated by ‘A’ and an arrow. The blue curve represents the smooth estimate ~�ðtÞ obtained using loess.
(C) The smooth estimate ~�ðtÞ from (b) is shown but here with predefined thresholds represented by red horizontal lines.
The region for which ~�ðtÞ exceeds the lower threshold is considered a candidate DMR. The area shaded in grey is used as
a summary statistic. (D) A null distribution for the area summary statistic described in (c) is estimated by performing
using permutations (as described in the text). The histogram summarizes the null areas obtained from permutations
and estimates the null distribution. The area obtained from the region shown in (C) is highlighted with an arrow and
the label ‘C’. Note that this DMR region is not statistically significant as it can easily happen by chance
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Since in this first approach we estimate unmeasured
confounders (Ws) 1000 times, this procedure was
time-consuming (for the Tracking Health Related to
Environmental Exposures, THREE, data each of the
1000 permutations took 2 h), we developed a
second, faster approach based on the application of
the bootstrap to linear models of Efron and
Tibshirani37 that yielded practically equivalent results
for Q-values and P-values (Supplementary Figure 1,
available as Supplementary Data at IJE online). Note
that neither procedure requires the model errors to
follow a normal distribution to produce valid
inference.

Study population
To demonstrate the utility of our method, we applied
it to both quantitative and qualitative outcomes. For
utility with a binary outcome, we applied it to a pub-
lished colon cancer dataset20 including eight tumours
matched with eight normal tissue samples. To show
the method for a quantitative phenotype, we exam-
ined the relationship between gestational age at birth
and DNA methylation data among 141 newborn cord
blood DNA samples from Johns Hopkins Hospital.
This study, THREE, has previously been used to cor-
relate carefully measured environmental exposures
with anthropomorphic and maternal characteristics.38

The description of this study and the particular meth-
ods for this epigenomics project can be found in our
companion paper.31

Comprehensive high-throughput arrays
for relative methylation microarray
Both data sets presented here contain DNA methyla-
tion measurements from the comprehensive high-
throughput arrays for relative methylation (CHARM)
microarray design. This array has been used to suc-
cessfully identify regions of differential methyla-
tion for cancer20 and stages of differentiation.39,40

Methods for preprocessing this data type have been
previously described.8,20,41 The THREE data set used
the CHARM 2.0 array design,31 whereas the colon
cancer data set used the CHARM 1.0 design.

Pyrosequencing data
DNA methylation levels across three regions identified
via our bump hunting method in the THREE study
(see our companion paper, Lee et al.31) were also mea-
sured via pyrosequencing, the gold standard for vali-
dating DNA methylation measurements generated by
microarrays. These served as ‘positive controls’ in the
assessments of our method. Control probes included
in the CHARM array served as ‘negative controls’.
These control probes are from regions without CpGs
and therefore no methylation which implies we know
�ðtÞ ¼ 0.

Simulations
To systematically assess accuracy and precision of
our approach to microarray data, we generated DNA
methylation data following Equation 1. We created
data sets of 100 000 probes in 1000 probe groups
(100 probes per group) with similar statistical proper-
ties (e.g. autocorrelated DNA methylation profiles) as
the observed THREE data on 141 newborns. To emu-
late the observed correlation in the THREE data, we
used an autoregressive, lag 1 [AR(1)] process with
coefficient 0.21 and a standard deviation of 0.5. To
emulate the presence of outliers we used a t-distribu-
tion with 5 degrees of freedom to generate the AR(1)
innovations.42 The actual gestational ages of the
THREE study samples were used as our outcome of
interest so that simulated effect sizes were realistic.
We emulated 10 genomic regions of interest by letting
�ðtÞ > 0 in 10 probe groups. We varied the magnitude
�ðtÞ from 0.005 to 0.05 and the region lengths from
5 to 50 consecutive probes.

We simulated 100 data sets per combination
and applied our procedure with various choices for
the threshold constant K [as a percentile of ~�ðtÞ].
We also ran our procedure with and without smooth-
ing. All statistical analyses and simulations were per-
formed in the R statistical environment (version
2.13).

Results
As a demonstration of our approach, after normaliz-
ing raw data41 and applying the logit transform, we
applied our four-step bump hunting method to iden-
tify epigenomic regions associated with gestational
age at birth. The residuals were symmetric and ap-
proximately t-distributed (Supplementary Figure 2,
available as Supplementary Data at IJE online) com-
plying with the necessary assumptions for Equation 1
and loess smoothing. The method identified three
differentially methylated regions (DMRs) at a 5%
FDR (and 10% FWER) (Supplementary Figure 3,
available as Supplementary Data at IJE online).
These regions are biologically interesting and provide
insight into late gestational development as we report
in our companion paper (see Lee et al.31). These re-
gions were positively validated by bisulfite pyrose-
quencing, which we used to assess the accuracy of
the results obtained by applying our method to the
microarray data. To assess precision, we used the
CHARM control probes, which measure background
and technical signal. We therefore expected no differ-
ential DNA methylation at these probes, i.e. �ðtÞ ¼ 0.
We compared our procedure with and without the
smoothing step and found that smoothing improves
precision substantially without affecting accuracy
(Supplementary Figure 4, available as
Supplementary Data at IJE online).

Simulation studies confirmed that, in general,
smoothing is beneficial (Figure 3A and B) when
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associated epigenomic regions were analogous to the
DMRs identified in the real THREE data. However,
over-smoothing reduced our ability to detect shorter
regions—for example, when �(t)¼ 0.01 and the width
was 10 probes, the optimal smoothing span was in
the range of 5–9 consecutive probes (Supplementary
Figure 5A, available as Supplementary Data at IJE
online), or �375–675 bp for the CHARM design
(there are a median 70 bp between consecutive
probes). We also found that higher thresholds (K)
for declaring an associated region are preferable, up
to a point in which sensitivity decreases. Specifically,
when changing the threshold level from the 99th per-
centile of ~�ðtÞ to the 99.9th, we lost ability to detect
true signals. We also confirmed that the estimated
FWER agreed with the observed error rate
(Supplementary Figure 5B, available as
Supplementary Data at IJE online).

The importance of explicitly investigating potential
batch effects is best motivated with dichotomous out-
come data. For the colon cancer data we computed
the distance between each sample based on the raw
methylation measurements. We observed strong clus-
tering, which was driven mostly by batch (Figure 4A).
To demonstrate how the batch effect, if unaccounted
for, can lead to false-positive regions, we applied our
bump hunting procedure to the cancer dataset, with
processing date (Day 1 vs Day 2) as the covariate of
interest. We did not run SVA because we were expli-
citly looking for batch effects. We found regions as
long as 1 kb where methylation differs as much as
30% between batches (Figure 4B). These effect sizes
were similar to the effects found with cancer status as

the covariate of interest (an example DMR in this
dataset is shown in Figure 1A). However, when
cancer was defined as the outcome of interest, SVA
appropriately dealt with the batch effect by detecting
and removing variation due to date (Figure 4C).
However, because in this situation, batch and out-
come were perfectly balanced, the results obtained
by our method were practically the same as the
ones previously published.20

Finally, we used the pyrosequencing data to evalu-
ate the effect of batch removal on the results from
THREE. We found that the correlation between the
pyrosequencing and CHARM measurements improved
with SVA, while precision, measured by the standard
deviation of the ~� null regions, improved by 50%
(Table 1). Note that for DMR #3, the difference was
substantial. We also confirmed that unexplained
DNA methylation heterogeneity was reduced using
SVA in these DMRs (Supplementary Figure 6, avail-
able as Supplementary Data at IJE online). Our ex-
perience with batch effects is that they affect some
regions more than others and this is confirmed here.

Discussion
We have presented a general bump hunting frame-
work for association studies based on high-
throughput, genome-wide DNA methylation data.
We begin with raw high-throughput data and end
with regions of interest with appropriate measures
of statistical uncertainty. This genome-wide bump
hunting approach accommodates the features of
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Figure 3 Receiver operating characteristic curves obtained from Monte Carlo simulation. True positive rate is
plotted against false-positive rate for various tuning parameters needed for the bump hunting procedure. We examined
the performance of three choices for the threshold used to define candidate DMRs. The three choices are represented
with line type (solid, dashed, dotted). Specifically we compared the performance of using the 95th, 99th and 99.9th
percentile of the ~�ðtÞ. We also compared three choices of smoothing parameters used by loess: no smoothing and smoothing
windows of 9 probes (675 bp) and 15 probes (1125 bp). These are represented by colour. We assessed performance in
two scenarios. (A) We inserted 10 true DMRs each 10 probes long (�750 bp) with true effect size � ¼ 0:01. (B) As in (A),
but true DMRs were 20 probes long (�1500 bp) with the same effect size
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quantitative microarray genomics data that have not
been previously addressed in GWAS analysis, based
on categorical genomic data. The method addresses
batch effects, exploits the correlation structure of
the microarray data to identify DMRs, and provides
a genome-wide measure of uncertainty.

Although we illustrated our statistical methodology
on CHARM data, our approach can be applied to
other microarray platforms (Table 2). The only re-
quirement is closely spaced measurements across all
(or portions of) the genome to facilitate the smooth-
ing process.7 Our approach can also be extended to
data from next-generation sequencing (NGS) technol-
ogy. We are pursuing extensions of this approach to
account for binomially distributed data such as those
produced by NGS. Furthermore, by using a linear
model and modular approach, our method can be
easily adapted to accommodate other epidemiological
study designs.

While our method, applied to microarray data, suc-
cessfully identifies epigenomic regions of biological
interest, it cannot identify single base changes due
to the smoothing step. Although there is some evi-
dence that altered DNA methylation at a specific
locus might affect biological processes like transcrip-
tion factor binding,43,44 the strong correlation be-
tween neighbouring CpGs and the concern for many
false positives resulting from technical artifacts sug-
gests that smoothing provides statistically and bio-
logically meaningful results.

In general, our framework offers a comprehensive
yet flexible approach for identifying epigenetic re-
gions of biological interest in epidemiological studies.
While GWAS have been performed on dozens of dis-
eases, few have been able identify a substantial
amount of the estimated heritability. We therefore

A B

C

Figure 4 Illustration of batch effects. (A) A multidimensional scaling (MDS) plot of tumour (‘C’ label) and matched
normal (‘N’ label) colon mucosa samples, processed during two different dates (green is batch 1 and orange is batch 2).
Note the strong horizontal separation between the two batches. Note that the batch variability is stronger than the
biological variability represented by the vertical separation between the disease states. (B) The points show methylation
measurements from the colon cancer data set plotted against genomic location. Batches one and two are represented by
10 green and 6 orange points. The curves represent the smooth estimate of the batch-level methylation profiles for
batch one (green) and two (orange). The horizontal lines represent a false DMR driven by batch. (C) As in (B) but
after removing batch effects with SVA

Table 1 Batch correction on DNA methylation correlation
and slope variability

Before SVA After SVA

Correlation between CHARM and Pyro

DMR1 0.76 0.77

DMR2 0.83 0.84

DMR3 0.45 0.66

MAD

�̂ðtjÞ 0.0032 0.0019

~�ðtÞ 0.0020 0.0010

Correlation coefficients between microarray and pyrosequencing
data were calculated on a sample of 40 newborns both with
and without adjustment for unmeasured confounders through
SVA. Only CHARM probes within the range of pyrosequenced
probes were included in the analysis. The median absolute
deviation (MAD) of the gestational age regression coefficients
are shown for smoothed and unsmoothed estimates both with
and without surrogate variable adjustment. The signal-to-noise
ratio of the data improves when both SVA and smoothing are
used.
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expect many of these studies to explore the possible
role of epigenetics in these diseases.14 Since Illumina
has recently released a comprehensive yet relatively
inexpensive microarray product,45 we expect micro-
arrays to be the technology of choice for these
studies. In fact, we expect dozens of large epi-
demiological studies to use these arrays in the near
future. Our bump-hunting approach can be applied
to data from these arrays. The results presented here
suggest that our approach will outperform the single
CpG analyses that have been previously applied on
Illumina arrays. Our methodology will therefore be
indispensable for the necessary data analysis in the
emerging field of epigenetic epidemiology.
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KEY MESSAGES

� Genome-wide DNA methylation measurements will be ubiquitous in the emerging field of epigenetic
epidemiology.

� Systematic errors, unwanted variability and multiple testing issues make it necessary to apply rigor-
ous statistical methodology.

� We have developed bump-hunting methodology useful for finding loci of biological interest in the
context of DNA methylation studies. Our approach can be applied to a wide range of technologies
including Illumina’s Infinium HumanMethylation450 BeadChip.
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