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AMS-dependent and independent regulation of
anther transcriptome and comparison with those
affected by other Arabidopsis anther genes
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Abstract

Background: In flowering plants, the development of male reproductive organs is controlled precisely to achieve
successful fertilization and reproduction. Despite the increasing knowledge of genes that contribute to anther
development, the regulatory mechanisms controlling this process are still unclear.

Results: In this study, we analyzed the transcriptome profiles of early anthers of sterile mutants aborted microspores
(ams) and found that 1,368 genes were differentially expressed in ams compared to wild type anthers, affecting
metabolism, transportation, ubiquitination and stress response. Moreover, the lack of significant enrichment of
potential AMS binding sites (E-box) in the promoters of differentially expressed genes suggests both direct and
indirect regulation for AMS-dependent regulation of anther transcriptome involving other transcription factors.
Combining ams transcriptome profiles with those of two other sterile mutants, spl/nzz and ems1/exs, expression of
3,058 genes were altered in at least one mutant. Our investigation of expression patterns of major transcription
factor families, such as bHLH, MYB and MADS, suggested that some closely related homologs of known anther
developmental genes might also have similar functions. Additionally, comparison of expression levels of genes in
different organs suggested that anther-preferential genes could play important roles in anther development.

Conclusion: Analysis of ams anther transcriptome and its comparison with those of spl/nzz and ems1/exs anthers
uncovered overlapping and distinct sets of regulated genes, including those encoding transcription factors and
other proteins. These results support an expanded regulatory network for early anther development, providing a
series of hypotheses for future experimentation.

Background
In flowering plants, male reproductive organs are called
stamens, each of which consists of a filament and an
anther [1]. Cells in the anther undergo meiosis to pro-
duce microspores, which further develop into mature
pollen grains [2]. Therefore, anther development is criti-
cal to achieve pollen formation and subsequent success
of fertilization [3-6]. According to morphological fea-
tures, anther development can be grouped into two
phases and then be further divided into 14 anther stages
[5,7,8]. At the beginning of phase 1 (anther stages 1 to 8),
the stamen primordium has 3 layers, L1-L3 from surface

to interior. The L1 cells later become the epidermis and
the L3 cells give rise to the vascular and connective tis-
sues. Some of the L2 cells develop into archesporial cells
which then divide into parietal cells and primary sporo-
genous cells. Additional cell division and differentiation
in the L2-lineage establish a characteristic four-lobed
structure at anther stage 5. Each lobe consists of central
pollen mother cells surrounded by outer endothecium,
middle layer and inner tapetum. Pollen mother cells
undergo meiosis at stage 5-6, producing tetrads at stage
7. Dissolution of the tetrad callose wall releases micro-
spores at stage 8. In phase 2, the microspores undergo
mitosis and develop into mature pollen grains during
stages 9-12. Meanwhile, pollen wall materials are depos-
ited from both the microspores and the tapetum layer.
After the degeneration of tapetum, the mature pollen is
released and is able to start pollination.
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Previous studies indicated that early anther develop-
ment depends on transcriptional regulation and cell-cell
communication [5,7-9]. The SPOROCYTELESS (SPL)/
NOZZLE (NZZ) gene is one of the earliest genes that
regulate anther cell fate determination [10,11]. SPL/NZZ
is activated by AG, a C function gene in the ABC model
[12-14]. SPL/NZZ is expressed as early as anther stage
2-5 and a mutation in SPL/NZZ leads to the failure of
differentiation of parietal and sporogenous cells, and
consequentially blocks the formation of anther wall and
microsporocytes [15,16].
EXCESS MALE SPOROCYTES1 (EMS1) and TAPE-

TUM DETERMINANT1 (TPD1) are also essential for
male fertility with a later expression peak at stage 5 [17].
EMS1 is a leucine-rich repeat receptor-like protein kinase
(LRR-RLKs) and TPD1 is likely its ligand [15,18,19]. In
both ems1 and tpd1 mutants, anthers produce more
microsporocytes at the expense of the tapetum, indicat-
ing that communication between adjacent cell layers
determines the cell fate of archesporial cell progenies in
order to form normal anther wall [17]. Besides EMS1 and
TPD1, other cell-cell communication-related genes are
also involved in anther development, such as SOMATIC
EMBRYOGENESIS RECEPTORLIKE KINASES1/2
(SERK1/2), and RECEPTORLIKE PROTEIN KINASE2
(RPK2) [20,21].
Upon the formation of the anther lobes, DYSFUNC-

TIONAL TAPETUM1 (DYT1) and AMS, encoding two
bHLH transcription factors, are required for tapetal func-
tions at subsequent stages [22,23]. In dyt1, tapetum cells
harbor enlarged vacuoles and reduced cytoplasm. The
dyt1 meiocytes have comparatively thin callose walls,
cannot complete cytokinesis and finally collapse. RNA in
situ hybridization experiments showed that DYT1
reaches its peak expression at anther stage 5 to 6 [22].
AMS functions near the time of meiosis, slightly later
than that of DYT1. In the ams mutant, the microsporo-
cytes can complete meiosis but the tapetum cells prema-
turely collapse and microspores are degraded before the
first pollen mitosis [23]. Beside these regulators, a large
number of other genes are also expressed in the anther,
and mutations in some of them lead to male sterility by
affecting early anther cell formation, tapetum formation,
meiosis or pollen maturation [5,7,16,24-28].
However, due to the functional redundancy of mem-

bers of many gene families, the subtleties of the pheno-
types of single-gene mutants, and possible early
phenotypes that obscure anther function, forward genet-
ics has limitations in uncovering anther gene functions
[29]. Expression profiling has become increasingly infor-
mative and might circumvent the limitation of forward
genetics. In recent years, global gene expression profiling
by microarray has been used to detect floral gene expres-
sion and obtain clues for understanding reproductive

development. However, most studies to investigate sta-
men expression profiles have been conducted by analyz-
ing transcripts from the whole inflorescences of male
sterile mutants [30-35], rather than the anther itself [32].
Little transcriptomic information about specific organs is
currently available, especially for Arabidopsis whose male
reproductive organs are quite tiny [32,33,36]. Thus the
detection of anther-specific or preferential genes in
mixed floral tissues might be hampered by the moderate
detection sensitivity of microarray technology. As men-
tioned above, SPL, EMS1 and AMS have important func-
tions at different stages of anther development, although
they have temporal overlap of expression [10,17,22,23].
Therefore, analysis of their shared and distinct effects on
the anther transcriptome can shed some light on gene
regulatory networks [37-39].
To obtain more information on transcriptomes near

the stage of meiosis, we collected anthers at stage 4 to 7
from ams mutants and wild-type Arabidopsis, even
though it is time consuming and technically difficult to
dissect developing anthers, because we wanted to iden-
tify the genes affected by the ams mutation that might
be too diluted to detect using RNAs from whole-inflor-
escences. The ams transcriptome data and comparison
with previous data from spl and ems1 anthers [32] pro-
vide detailed information on early anther development.
Additionally, with known information of other floral
organs in Arabidopsis, we identified genes that function
during early anther stage around meiosis. We found
that many transcription factor genes were preferentially
expressed during early anther development, such as
bHLH, MYB, and MADS. Closely related homologs were
hypothesized to have either redundant or divergent
functions according to phylogenic studies [40-42]. More-
over, further investigation of organ-specific transcrip-
tome revealed the importance of both anther-specific
and non-specific transcription factors in early anther
development. We propose an expanded gene regulatory
network that contributes to the precise regulation of
temporal and spatial events during early anther
development.

Results and discussion
Identification of genes regulated by AMS
To characterize genes involved in tapetum development
and function near the time of meiosis, we isolated total
RNA of stage 4-7 anthers from wild-type and the ams
mutant plants for Affymatrix ATH1 microarray analysis.
We included three biological replicates for each genotype
and the results are highly reproducible (with correlation
coefficients higher than 0.96, Supplemental figure 1 in
Additional file 1). We identified 1,368 genes that were
differentially expressed in ams compared with wild-type
anthers with at least 2-fold differences (P < 0.05)
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(Additional file 2) [32,43]. The scatter-plot of the 1,368
genes shows that they include genes expressed at differ-
ent levels (Figure 1A,B, 1st sheet in Additional file 2);
furthermore, genes with higher expression in ams than
wild-type tend to have low wild type expression, whereas
those with lower than normal expression in ams tend to
be expressed at higher levels (Figure 1B).
Recently, Xu et al. reported totally 549 genes that are
differentially expressed in ams floral buds compared
with wild-type buds, at four different stages using two
color arrays, including 134 genes that were differentially
expressed near the time of meiosis (Additional file 2)
[35]. Among the 1,368 genes identified in our study, 90

were also identified by Xu et al. in floral buds (Figure
1C). Because AMS is expressed from near anther stage 6
(meiosis) through the formation of microspores, our
samples from early stage anthers allowed an examina-
tion of the early AMS function in regulating transcrip-
tome and sensitive detection of expression shifts without
dilution by other floral tissues, resulting in the identifica-
tion of additional 1,278 genes (478 down- and 800 up-
regulated in the ams anthers) with differential expression
between wild-type and ams anthers (Figure 1C).
Nevertheless, our results and the previous study did

both detect 90 genes that are significantly affected by
the ams mutation (Additional file 2; Figure 1C) [35].
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Figure 1 The expression of genes differentially expressed in ams anthers. (A) A comparison between transcriptome data from ams and
wild type anthers. All expression data were converted to logarithm base 2 ratio. (B) A histogram of genes with elevated or reduced expression
levels between ams and wild type anthers. The y-axis the frequency of expression and the x-axis is the log 2 ratio of expression signals. (C) A
comparison between ams transcriptome data from anthers and inflorescences. (D) A comparison between differentially expressed genes in ams
anthers and those in wild type inflorescences compared with wild type anthers.
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Some of these genes show the same direction in expres-
sion shifts between the two studies; however, others had
the opposite directions (Figure 1C). Specifically, 34
genes with higher expression in the ams anther than the
wild-type anther had reduced expression levels in the
ams inflorescence compared with the wild-type inflores-
cence (Additional file 2); 9 genes showed the opposite
trend. These differences might be due to the difference
of sampling anther vs. flower bud that included later
stages, although other possibilities cannot be ruled out.
We observed more similar expression pattern between
our anther transcriptome and the published flower bud
transcriptome at meiosis stage (Additional file 2). 172
out of the 519 genes down-regulated in ams were
expressed significantly higher in the wild type anther
than the inflorescence, while 102 of the 849 up-regu-
lated genes showed this pattern (P-value < 0.05, Figure
1D, Additional file 2), suggesting that preferential anther
expression contributed to the difference between the
two studies. It is also possible that the loss of AMS
function might affect other aspects of flower develop-
ment than anther development, although not revealed
by phenotypic changes.
The GO categorization analysis of our anther transcrip-

tome results showed that categories of enzymes, trans-
porters, structural and other molecular proteins were
over-represented in the genes with reduced expression,
and hydrolases in those with elevated expression levels in
ams compared with wild-type (Figure 2A-C, Additional
file 3). To further investigate the putative functions of
genes with different expression patterns in the ams
anther from inflorescence, we then applied GO categori-
zation to all the newly found differentially expressed
genes in the ams anther. We found that some categories
were enriched in those with reduced expression levels in
the ams anther, such as structural molecules, transpor-
ters, oxidoreductases (supplemental figure 2 & 3 in Addi-
tional file 1). These categories are associated with
metabolic activities that are very dynamic in tapetum,
suggesting a positive role of AMS in regulating metabolic
functions in the tapetum. Meanwhile, genes with ion
binding, glycosyl-transferase and hydrolase activities were
enriched among the genes activated in ams.
As a putative bHLH transcription factor, AMS has the

ability to bind to the canonical bHLH binding site (E-box:
CANNTG) in vitro and in vivo [35]. In order to find candi-
date AMS target genes, we searched E-box elements
within 1 kb upstream sequences of genes with statistically
significant differential expression between ams and wild-
type anthers (Figure 3A &3B). We did not find statistically
significant interaction between the number of E-boxes in
the putative promoter regions and the fold change in gene
expression (compared with randomly selected genes on
the chip). It is possible that active AMS binding sites are

located not just in the 1-kb regions being analyzed, but
also in regions further upstream or even downstream of
the coding region. It is also possible that a number of the
genes affected in the ams anthers are indirectly regulated
by AMS, hence not containing AMS-binding sites in their
promoters.

AMS affects genes with putative functions in
phosphorylation, exocytosis, stress-response and
ubiquitin-proteasome pathways during male reproduction
Both somatic and reproductive cells were evidently
affected in the ams mutant anther, morphologically and
transcriptomically [23,35]. Specifically, the ams inflores-
cence showed reduced expression of genes predicted to
be involved in metabolism, such as lipid synthesis-related
genes [35]. Our anther transcriptome data provided spa-
tially more specific information for the expression pat-
terns of metabolism-related genes (Supplemental figure 4
in Additional file 1) and showed that the expression
levels of genes involved in cell wall formation, lipid
synthesis and secondary metabolism were obviously
altered in the ams anther, consistent with morphological
defects.
Interestingly, 32 genes located on chloroplast DNA were

reduced in expression in the ams anthers whereas starch
and sucrose related genes were increased (Additional file
4, supplemental figure 4 in Additional file 1). In addition,
more metabolism-related genes were found with shifted
expression, especially glycosyl-transferase (P < 0.01, sup-
plemental figure 5 in Additional file 1,). Besides, the
expression levels of genes with putative regulatory func-
tions were also changed, such as kinases and transcription
factors (supplemental figure 6-8 in Additional file 1).
Interestingly, most of the genes encoding kinases with
expression shifts were activated in the ams mutant, sug-
gesting a putative negative regulatory role of AMS (supple-
mental figure 4 in Additional file 1).
In addition, we found that genes likely involved in

vesicular transport were up-regulated in ams, including
genes encoding two SNARE proteins and others related
to this process: 3 syntaxins, 3 myosin heavy chains and
2 clathrin proteins (Additional file 4, supplemental fig-
ure 9 in Additional file 1). Intracellular trafficking
machinery such as SNARE complex is important in ani-
mal and plant development [44,45]; for example, one
SNARE protein, SEC22, is preferentially expressed in
the flower and essential for gametophyte development
[46]. Other vesicular transport genes, such as AtVAM3
encoding a syntaxin-related protein, were shown to
function in vacuolar assembly in Arabidopsis [47]. It is
possible that the higher than normal expression of
genes for vesicular transport contributes to the abnor-
mally vacuolated tapetal cells observed in the ams
anther [23].
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We also found that the expression levels of stress-
responsive genes were changed in ams (Additional file
4, Supplemental figure 10 in Additional file 1), especially
the increased expression of 10 disease resistance genes
and two genes encoding respiratory burst oxidases.
These findings are consistent with recent studies show-
ing that multiple abiotic stresses can lead to male steri-
lity, such as extreme temperatures and drought [48-50].

In addition, some stress-inducible and/or hormone-
related genes were also found with expression alteration,
including RD22, an ABA-inducible gene responsive to
dehydration; VSP1, a JA-inducible gene; EPS1, a gene
possibly acting upstream of SA; CCR1, a cold inducible
gene; four disease resistance genes encoding TIR-NBS-
LRR class proteins; and three heat-shock genes, suggest-
ing complex interactions between internal and external
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signals regulating anther development and/or functions
[51].
Another regulatory pathway activated in ams is the

ubiquitin-proteasome pathway (Additional file 4), with
increased expression of genes encoding subunits of the
E3 ubiquitin ligases (Supplemental figure 11 in Addi-
tional file 1) [52]. Previous studies demonstrated essen-
tial roles of the ubiquitin-proteasome pathway in
embryogenesis, hormone signaling, light response, floral
development, self-incompatibility, and senescence
[48,52,53]. Our results suggested that this pathway may
also be regulated by AMS. It is possible that AMS
directly regulates the expression of some genes in the
ubiquitin-proteasome pathway; alternatively, AMS could
influence the expression of such genes indirectly either
via AMS-target genes or possibly through the accumula-
tion of damaged proteins which then induce the ubiqui-
tin-proteasome pathway [54]. Further experiments are
needed to test these hypotheses.

Anther-specific or preferential genes were over-
represented among genes differentially expressed in the
ams mutant
Differential expression patterns in vegetative and floral
organs can provide clues about gene functions [43]. To
find out the relationship between the gene expression
shifts in the ams mutant and their expression preferences
in different organs, we compared our data from wild-type
anther with previous microarray data from roots, stems,
leaves, seedlings, siliques and inflorescences. The same
RNA extraction method and ATH1 platform were
applied in both studies so the datasets should be compar-
able [43]. We defined as anther-specific (A-S) using these
criteria: 1) the expression in anther is significantly higher

than in any other tissue (with FDR < 0.05); 2) the expres-
sion is present in anther but not in any other tissues
according to two alternative methods (see materials and
methods for details and explanations) [43]. Using the
presence call of the MAS5 algorithm identified 124 A-S
genes, 76 of which had at least two fold difference; using
expression level of 50 as threshold identified 172 A-S
genes, 146 of which had at least two fold difference
(those with two fold differences are marked with “*” in
the second column in Additional file 5). Because both
methods for calling “presence” have limitations, only the
43 genes detected by both methods were discussed as A-
S gene (this rule also applied to the two groups described
below).
Genes were defined as anther-preferential (A-P) if the

expression in the anther is: 1) significantly higher than
those in any other tissue with FDR < 0.05 (genes with
more than 2 fold changes were marked with “*” in Addi-
tional file 5 and Additional file 3) present in anther
according to the MAS5 algorithm or with expression level
of at least 50. Therefore, A-P genes included A-S genes. In
addition, those with statistically significantly higher
expression levels in anther than in non-floral organs were
called reproductive preferential (R-P) genes (Additional
file 5, see material and methods for detail). We performed
real-time PCR for 6 of these genes and the results were
consistent (supplemental figure 12 in Additional file 1). In
our result, 24 genes involved in male reproductive devel-
opment were detected (Table 1). Consistent with previous
studies, SPL was found in the A-P group and EMS1 in R-P
group, while AMS as an A-S gene [10,17].
Recently, other studies were conducted to identify male

reproductive development-related genes. Wellmer et al.
identified genes expressed in stamen indirectly by
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comparing the inflorescence transcriptome of floral
homeotic mutants lacking stamens with wild-type [30].
In another study, Honys et al. analyzed microspores/pol-
len from different stages and defined the male gameto-
phytic transcriptome [33]. A comparison of our A-P
genes with these two previous gene lists (defined as sta-
men and pollen, Additional file 6) revealed that only a
small number of genes overlapped between the three
male reproductive datasets (Figure 4A, Additional file 6).
The differences in identified genes can be explained by
the difference of samples used in different studies: our
samples only included wild-type anthers at early stages
(stage 4-7), whereas the pollen transcriptome data were
from microspores and pollen at different stages; and sta-
men-specific genes was indirectly obtained by subtraction
of mutant transcriptome from wild-type and genes in this
list might function earlier during organ specification. The
dramatic differences between different samples suggest

strongly that gene activities alter dramatically between
different developmental stages of male reproductive
organs [33].
We analyzed the GO categorization for possible enrich-

ment of specific categories among the groups of differen-
tially expressed genes (Additional file 3) and found that,
among the 266 A-P genes, the over-represented GO cate-
gories were hydrolases, proteins with other binding activ-
ities, and other enzymes. No enrichment of other enzyme
activity was detected in pollen-specific or stamen-specific
datasets found previously [33], suggesting a specific
expression profile of early anther development.
Among genes with differential expression in ams, the

percentage of A-P genes (5%) is significantly higher than
its percentage in the whole genome (1%) (Figure 4B, Addi-
tional file 2 and Additional file 3). The stamen-specific
genes were also enriched among those differentially
expressed in ams (9%) compared with whole genome data

Table 1 Expression of genes known as anther development related genes

AGI Name wt s/w e/w a/w Function References

A-S

AT2G16910 AMS 7.7 -3.4 -3.5 1.7 tapetum dev. Sorensen et al., 2003

AT1G66170 MMD1 5.5 -1.8 -1.8 -0.1 male meiosis Alves-Ferreira et al., 2007

AT1G01280 CYP703A2 9.8 -6.2 -6.2 -0.6 pollen dev. and sporopollenin biosynthesis Souza et al., 2009

AT1G62940 ACOS5 11.6 -6.4 -5.7 -1.0

AT3G11980 MS2 10.6 -6.1 -5.9 -0.6

AT4G28395 A7 9.6 -4.1 -3.9 0.5 Rubinelli et al., 1998

A-P

AT2G17950 WUSCHEL 1 7.7 -2.5 0.4 0.5 floral dev. Ming et al., 2009

AT4G27330 NZZ/SPL 9.3 -3.9 -0.5 -0.5 early anther formation Ito et al., 2004

AT5G14070 ROXY2 9.1 -3.2 -1.7 -0.2 Xing et al., 2008

AT3G11440 MYB65 8.9 -2.2 -0.5 -0.4 Millar et al., 2005

AT5G06100 MYB33 7.6 -1.1 0.1 -0.4

AT3G42960 ATA1 11.9 -7.4 -6.7 -1.7 tapetum function Lebel-Hardenack et al., 1997

AT3G51590 LTP12 10.4 -6.1 -5.2 0.9 Ariizumi et al., 2002

AT3G28470 MYB35 8.6 -4.9 -4.5 0.0 Zhu et al., 2008

AT1G69500 CYP704B1 11.5 -7.4 -7.0 -2.0 pollen dev. and sporopollenin biosynthesis Souza et al., 2009

AT4G34850 LAP 5 11.4 -6.3 -5.8 -1.6 Dobritsa et al., 2010

AT4G35420 DRL1 11.9 -5.1 -4.6 -1.9 Tang et al., 2009

AT5G62080 MTG10 13.0 -7.4 -5.2 -4.2 Xing et al., 2007

AT3G22880 DMC1 10.7 -2.2 -0.1 0.0 male meiosis Doutriaux et al., 1998

AT3G15400 ATA20 12.1 -6.6 -5.6 0.1 pollen wall Rubinelli et al., 1998

R-P

AT5G20240 PI 11.8 0.4 0.0 0.2 whorl specification Li et al., 2008

AT3G17010 B3 8.7 0.9 0.4 0.3 early anther formation Gomez-Mena et al., 2005

At5G07280 EMS1 10.2 -0.9 -2.9 0.1 Zhao et al., 2002

AT1G71830 SERK1 8.0 0.8 0.1 0.1 Albrecht et al., 2005

“wt”, wild-type; “s/w”, fold change of the spl signals compared with wild-type; “e/w”, of ems1; “a/w”, of ams. A-S represents anther specific; A-P represents anther
preferential (A-S excluded) and R-P represents reproductive preferential (A-S & A-P excluded). All expression values are log2 ratio. “dev” means “development”
(Column sequence, abbreviation and the version of annotation are used as in tables and supplemental tables below.)
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(5%) (Figure 4C & 4D, Additional file 2). The results were
consistent with our hypothesis that AMS regulates genes
with important functions in male-reproductive organ
where they have higher expression levels [1,8].

Genome-wide analysis of gene expression during early
anther development by comparing anther transcriptomes
of male sterile mutants, spl, ems1, and ams
Previous studies revealed essential roles of SPL and
EMS1 in early anther development and ATH1 microar-
ray data from anthers of these mutants at stage 4-6
were collected and analyzed [32]. To obtain a better
overview of early anther development, we analyzed the

anther transcriptome data from this study with those of
spl and ems1 (detailed methods applied to all microarray
data is described in experimental procedures). 1,813 and
802 genes were identified as differentially expressed in
spl and ems1, respectively, contributing to a total of
3,058 genes that were differentially expressed by 2-fold
or more between the wild-type anther and one or more
of the spl, ems1 and ams mutant anthers (Additional file
7). Using the log2 values of the ratio of expression of
the differentially expressed genes, hierarchical clustering
was carried out to obtain heat-maps (Figure 5A). The
patterns of spl and ems1 were similar whereas ams had
a different pattern, consistent with the fact that the
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tapetum layer is absent in both spl and ems1 but is
formed in the ams anther.
In addition, we compared the direction of differential

gene expression by pair-wise comparison between

different mutants, as shown in Venn diagrams (Figure
6A-D) and found that many more genes showed changes
in the same direction in all three mutants than genes
with changes in the opposite direction, suggesting that
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the three transcription factors had similar effects on
some of the target genes. We also found that the non-
overlapping (differentially expressed in one mutant, but
not in either of the other two) percentage of differentially
expressed genes in ams (76%) is larger than those in spl
and ems1 (59% & 23%, respectively, Figure 6D), providing
strong evidence at the transcriptome level that the AMS
function was distinct from those of SPL and EMS1 and
likely regulates late gene expression in anther develop-
ment, consistent with other studies [23].
Because the three mutants showed related but distinct

phenotypes, we speculate that the functions of genes dif-
ferentially expressed in these mutants might differ from

each other. Thus we applied GO categorization of mole-
cular function to genes up- or down-regulated in each
mutant (in Additional file 3). First, genes annotated to
have “other binding activities” and “other enzyme activ-
ities” were significantly enriched in categories with
reduced expression in each mutant (P-value < 0.05), con-
sistent with previous knowledge of dynamic metabolism
in tapetum cells. In addition, genes encoding transcrip-
tion factors and DNA binding proteins are enriched in
categories with both up-and down-regulated genes in the
spl mutant, suggesting that SPL control anther develop-
ment at least in part by regulating genes encoding tran-
scription factors. Furthermore, the ams mutant showed
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reduced expression of many genes encoding structural
proteins, which mainly contribute to cell structural integ-
rity, suggesting that AMS might activate these genes to
promote maturation of tapetum cells.

SPL and EMS1 might control tapetum development by
activating AMS-dependent gene expression
To gain a better understanding of genes that may function
together in anther development, we divided the 3,058
genes into different clusters based on their expression pat-
terns. Totally 136 genes had repressed expression in all
three mutants (Additional file 7). Since tapetum cells are
either absent or dysfunctional in the mutants, we expected
that the expression of tapetum-related genes would reduce
significantly. Previous studies indicated that tapetal cells
were primarily involved in nutrition and material provision
for pollen maturation [2]. Consistent with this notion,
genes encoding enzymes in this group (21.8%) are
obviously over-represented comparing with all genes on
ATH1 chip (10.1%). Besides, genes belonging to the other
binding category were also enriched in this group (16.4%
V.s 9.9%, Additional file 3).
Among these genes, many of them are involved in bio-

synthesis of pollen wall-related compounds, such as lipids,

lignin and flavonoids. A recent study showed that the loss
of acyl-CoA synthetase, GhACS1 , which might be
involved in biosynthesis and transfer of lipids, can lead to
male sterility in cotton [55]. The expression levels of 8
Arabidopsis genes involved in the lipid metabolism path-
way were significantly reduced in the three mutants, sug-
gesting their potential roles in metabolism in tapetal cells
(Table 2). Besides, we found that the expression levels of
30 genes involved in endomembrane system decreased in
all mutants (Table 3). Recent studies in plants suggested
that many endomembrane proteins might be involved in
trafficking thus influencing signal transduction and devel-
opment [56-58]. Based on the observation of tapetum
defects in all three mutants [10,17,22], we speculate that
genes sharing similar expression patterns might be impor-
tant for maintaining the tapetum identity.
In addition, five genes for potential transcription factors

were also found in this category (Table 4). Among them,
At5g58610 and AGL25/At5g10140 are A-P genes.
At5g58610 has a putative function in pathogen defense
reaction, uncovering a possible factor in both anther
development and external biotic stress response pathways
[59,60]. AGL25, also known as FLC, is a repressor of
flowering and its expression is epigenetically regulated

Table 2 Genes significantly down-regulated in all three mutants are involved in metabolism of pollen wall formation,
including lipid, pectin, lignin and exine

AGI wt s/w e/w a/w Function Expression

lipid related

At5g61320 8.7 -3.9 -3.6 -2.2 cytochrome P450 - like protein A-S

At5g08250 8.9 -4.5 -4.1 -1.4 A-P

At1g06250 7.6 -3.2 -3.0 -1.8 lipase-like protein

At5g62080 13 -7.4 -5.2 -4.2 lipid-transfer protein

At3g07450 12.8 -7.5 -5.6 -5.2

At3g52130 12.9 -7.4 -6.0 -3.3

At5g07230 10.2 -8.1 -6.5 -2.7

At5g52160 10.7 -6.3 -6.2 -1.7

pectin

At3g24230 7.6 -3.2 -3.2 -3.2 pectate lyase A-P

At4g22080 8.5 -4.9 -4.6 -1.5

At1g75790 10.2 -5.8 -5.5 -1.9 pectinesterase like protein

At3g01270 6.2 -1.2 -1.2 -1.1 putative pectate lyase R-P

At5g50030 6.5 -1.3 -1.1 -1.4 pectin methylesterase inhibitor

lignin

At1g76470 10.3 -4.8 -5 -2.3 putative cinnamoyl-CoA reductase A-P

At3g21230 7.7 -3.1 -3.1 -1.8 4-coumarate-CoA ligase 2

exine

At3g13220 10 -5.9 -5.7 -2.2 WBC27 white-brown complex A-S

At4g14080 12.5 -8.1 -7.1 -3.8 maternal effect embryo arrest 48 A-P

At1g02050 11.6 -4.6 -4.7 -1.9 LESS ADHESIVE POLLEN 6 (LAP6)

All the expression values are log2 ratio.
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Table 3 Genes related to endomembrane system affected by SPL, EMS1 and AMS

AGI wt s/w e/w a/w Function Expression

At5g24820 10 -5.7 -5.4 -2.1 cnd41 A-S

At3g23770 9.9 -5.2 -5.3 -2.7 beta-1,3-glucanase, putative

At1g28375 9.7 -5.4 -5.1 -2.3

At3g21620 7.2 -2.7 -2.5 -2.1

At4g30040 6.6 -2.0 -2.1 -1.1 cnd41

At2g24800 8.1 -4.2 -4.2 -2.3 peroxidase A-P

At1g61070 10.2 -6.1 -5.7 -1.1 defensin

At4g14080 12.5 -8.1 -7.1 -3.8 A6 anther-specific protein

At1g75790 10.2 -5.8 -5.5 -1.9 pectinesterase like protein

At4g20420 11.7 -6.0 -5.4 -3.1 tapetum-specific A3

At1g76470 10.3 -4.8 -5.0 -2.3 cinnamoyl-CoA reductase

At2g21430 10.9 -4.5 -4.1 -2.1 cysteine proteinase

At1g02640 11.4 -2.0 -2.1 -1.2 beta-xylosidase

At1g04645 9.6 -5.3 -3.3 -3.4

At2g15120 8.2 -4.1 -3.4 -4.3

At4g20050 9.9 -5.3 -5.0 -1.6

At5g04820 8.8 -1.6 -2.2 -1.2

At4g29980 11.5 -5.9 -5.1 -4.1

At1g22015 10.0 -4.1 -3.8 -2.7

At1g28710 9.4 -4.0 -4.1 -2.3

At5g18290 9.2 -2.3 -2.3 -1.7 SIP1 R-P

At4g32105 8.1 -2.4 -2.5 -2.3

At1g49490 6.6 -1.7 -1.9 -2.0

At1g32170 7.4 -1.1 -1.3 -1.2 endoxyloglucan transferase

At4g16563 6.9 -1.4 -1.0 -1.2 nucleoid DNA-binding

At5g50030 6.5 -1.3 -1.1 -1.4 pollen-specific protein

At5g45880 7.1 -1.3 -1.0 -1.3 Ole e I

At5g44380 5.9 -1.2 -1.2 -1.7 reticuline oxidase precursor

At5g14300 5.8 -1.4 -1.3 -1.3 prohibitin - like protein

At5g12940 8.3 -2.0 -2.1 -1.1 leucine rich repeat protein

At5g09520 5.9 -1.9 -2.0 -1.8 surface protein PspC-related

At3g06300 9.8 -2.1 -1.3 -1.1 4-hydroxylase alpha subunit

At1g60390 9.4 -2.0 -2.3 -1.2 polygalacturonase isoenzyme

At3g05930 6.7 -1.4 -1.3 -1.2 germin-like protein

At1g02790 6.2 -2.0 -1.7 -1.5 polygalacturonase

At5g09730 8.2 -3.8 -2.7 -1.9 beta-xylosidase

At5g51950 8.2 -4.2 -4.1 -1.3 mandelonitrile lyase

At1g30760 7.4 -3.5 -3.3 -3.1 reticuline oxidase-like protein

At1g22890 7.7 -2.9 -1.1 -1.9

At1g33055 7.8 -1.9 -1.9 -2.5

At1g49500 9.3 -1.4 -1.5 -1.7

At3g22640 7.6 -3.0 -1.6 -3.1

At4g15750 6.4 -1.2 -1.2 -2.1

All the expression values are log2 ratio.

Ma et al. BMC Plant Biology 2012, 12:23
http://www.biomedcentral.com/1471-2229/12/23

Page 12 of 20



[61]. However, its possible function in anther develop-
ment is not known. Three others were AGL40/
At4g36590, MYB80/At5g56110 and HAT9/At2g22800.
AGL40 was found in the proliferative endosperm tran-
scriptome and MYB80/At5g56110 in tapetum develop-
ment [27]. These results suggested that normal tapetum
functions might require multiple transcription factors
preferentially expressed in the anther downstream of
AMS.

SPL and EMS1 can regulate early anther development by
AMS-independent pathways
Moreover, 354 genes showed reduced expression in spl
and ems1 but not in ams (Additional file 7), including the
enrichment of the categories of hydrolase activity (15.5%
vs. 8.4%), other binding activity (19.5% vs. 9.9%), and
other enzyme activity (18.0% vs. 10.1%). Among the
genes in this cluster, four genes: MS2, ACOS5,
CYP703A2 and A7, were involved in sporopollenin
monomer biosynthesis, the lack of which leads to male
sterility (Table 1) [62,63]. Since these genes were not
affected in the ams mutant, some lipid metabolic genes
might be activated independent of AMS and they might

exert functions earlier than AMS or in parallel to AMS
[63,64].
Besides, several genes encoding putative transcription

factors were found within this subset (Table 4). A-P
genes with known functions, such as TDF1/At3g28470
(or MYB35) and bHLH89/At1g06170, were also identi-
fied in this category [24,32,35]. TDF1 is essential to the
tapetum function controlling callose dissolution and acts
downstream of SPL and upstream of AMS and MYB103
(Table 4) [24]. Our data also support the regulatory
hierarchy of SPL-TDF1-AMS.
The expression of AMS is significantly reduced in spl,

therefore we assumed that genes down-regulated in ams
should have similar reduction in spl. Interestingly, we
found that 56 genes showed opposite expression changes
in spl and in ams compared with wild type anther, and
even larger proportion (1,065 genes) only differentially
expressed in ams (Figure 6A). Another gene with reduced
expression in spl and ems1 mutants is DYT1, which
encodes a bHLH protein similar to AMS [22]. It is possi-
ble that SPL might also regulate anther development
through pathways independent of AMS, such as those
requiring DYT1 function [22]. We speculate that SPL

Table 4 Transcription factors in SEA-L and SE-L cluster with known or putative function in anther development

Cluster AGI wt s/w e/w a/w Function Expression

SEA-L At5g58610 7.7 -1.6 -1 -1.9 PHD finger A-P

At5g10140 8.1 -3.2 -3.1 -1.8 AGL25

At4g36590 5.8 -1.7 -1.4 -1.7 AGL40 R-P

At2g22800 8.7 -2.9 -2.0 -1.3 HAT9

At5g56110 7.5 -1.6 -1.5 -1.8 MYB 80/MYB103

SE-L At1g06170 9.6 -5.9 -4.6 -0.8 bHLH89 A-P

At3g28470 8.6 -4.9 -4.5 0.0 TDF1/MYB35

At2g31210 7.1 -3.4 -2.9 -1.1 bHLH91

At3g57370 7.3 -2.8 -2.8 0.8 initiation factor IIB R-P

At1g77850 8.8 -2.4 -1.7 -0.1 auxin response factor

At2g28830 6.5 -1.1 -1.1 0.3 transcription activator

At5g62320 8.6 -3.3 -3.4 -0.3 MYB99

At4g09460 8.7 -3.4 -2.3 0.8 MYB6

At4g34680 9.3 -2.6 -1.2 0.3 GATA 3

At2g41630 10.6 -1.1 -1.4 -0.7 TFIIB

At3g10580 7.3 -2.5 -2.3 0.9 MYB

At5g61590 9.7 -2.3 -1.6 -0.3 AtERF107

At4g37790 8.1 -1.9 -1.8 -0.8 HAT22

At4g34990 8.5 -1.3 -2.2 -0.6 MYB32

At4g10920 8.0 -1.9 -1.8 -0.5 transcriptional co-activator

At1g66160 7.0 -2.8 -2.0 -0.5 PHOR1 like

At5g65790 7.5 -3.7 -3.2 -0.1 MYB68

At4g34000 7.7 -1.8 -1.4 -0.2 OBF3

All the expression values are log2 ratio. SEA-L includes genes whose expression levels were reduced in all three mutants. SE- L include genes whose expression
levels were reduced in both spl and ems1 mutants.
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might activate other transcription factors that affect
AMS-regulated genes in contrast to the function of AMS
(represented by factors × and Y in Figure 7). The effects
of AMS reduction in spl might be outweighed by the loss
of × or Y; such regulatory interactions would explain the
opposite expression changes in spl and ams. The identifi-
cation and understanding of the proposed factors will
require further investigations.

AMS-dependent and independent anther expression of
genes encoding transcription factors
Expression of bHLH genes during anther development
Since many transcription factors have been found to
play key roles in regulating anther development, we ana-
lyzed our anther transcriptome profiles by focusing on
transcription factor gene families [5,28,65]. To identify
additional candidate genes for anther development, we
analyzed all 147 known bHLH genes in Arabidopsis
(Additional file 8) [40]. For several clades according to
the most recent phylogeny trees of bHLH family
[40,66,67], including the clade that includes AMS, all or
most members of the same clade were expressed simi-
larly in the anther (Additional file 8), suggesting con-
served functional roles in anther development. For
example, bHLH91 and bHLH89 shared similar reduc-
tions in all three mutants, suggesting possible redundant
functions in the anther (Figure 5B).

In other cases, the closely related homologs did not
share similar expression patterns in mutant vs. wild type
anthers (Additional file 8). For example, bHLH93 is a
close homolog of AMS; but unlike AMS, it was preferen-
tially expressed in the inflorescence compared with the
anther. Also unlike AMS, it was elevated in expression
in spl. It is possible that some compensatory mechan-
isms might act to increase transcription of bHLH93
when AMS is mutated (Figure 5B).
In addition, some bHLH genes with known functions

in other organs showed increased expression in the spl
mutant, suggesting that SPL acts to maintain the iden-
tity of male reproductive organ by reducing the expres-
sion of genes needed for other organs. For example,
ZCW32 (bHLH31) controls petal formation and was
activated in the spl anther [68,69], suggesting that SPL
can promote the normal anther development at an early
stage by repressing some genes normally expressed in
nearby whorls.
Possible role of MADS-box genes in anther development
Genes of the MADS-box family have been extensively stu-
died in Arabidopsis, because they were first identified as
flower homeotic genes that determine floral organ and
meristem identities [70,71]. Till now, more than one hun-
dred MADS-box genes have been identified, 79 of which
were found to be present in our anther microarray data
but most were non-anther-specific (Additional file 7 &
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number
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B - 783
C + + 72
D - - 175
E + 731
F - 334
G + - 10
H - + 46
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Figure 7 AMS-dependent or -independent regulatory model during anther development. Genes with differential expression in the ams
mutant is divided into eight groups A-H (plus represents for higher expression in mutant compared with wild-type and minus for lower).
Negative regulation is shown by a T-bar and positive by an arrow, and stronger impact is shown by a thicker T-bar or arrow.
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Additional file 8) [70]. Except for APETALA2 (AP2), major-
ity of genes involved in the ABCDE model belong to the
MADS family [71]. They are mostly inflorescence-preferen-
tial rather than anther-specific genes from the comparison
of microarray data as described above. APETALA1 (AP1) is
an A function gene controlling the first and second whorls
and no expression shift was observed [72]. APETALA3
(AP3) and PISTILLATA (PI) are both B function genes,
essential for the formation of petals and stamens [72-74].
Interestingly, their expression patterns were different. PI is
an anther-preferential gene, but its expression level did not
change in any mutant while AP3 was obviously up-regu-
lated in spl, suggesting that AP3 is regulated more tightly
than PI during anther development . AG, the C class gene
controlling both stamen and carpel identities, shared simi-
lar expression patterns in the anther with AP3 [13], sup-
porting a role of AG in anther development after the
specification of stamen identity (Figure 5C).
Moreover, D class genes, including STK/AT4g09960,

SHP1/At3g58780 and SHP2/At2g42830 , are important
for ovule development [75,76]. Although the expression
of D class genes was relatively low, we observed
increased expression of SHP1 in the ams mutant, sug-
gesting a possible negative regulatory role of AMS in
ovule development. On the other hand, E class genes,
SEP1, SEP2, SEP3 and SEP4, which are homologs that
have redundant functions, had different expression pat-
tern in the anthers. SEP1 and SEP2 were activated in spl
and ams, whereas SEP3 and SEP4 did not change much
(Figure 5C).
Beside the ABCDE genes, some other MADS genes

were also expressed in the anther (Additional file 8). The
expression levels of known flowering-time related genes
(FLM, AGL15, AGL18 and AGL20) [77-79] were reduced
in spl and ems1 slightly. FUL involved in fruit develop-
ment [80] was up-regulated in the spl and ems1 mutants,
suggesting negative roles of SPL and EMS1 in whorl 4.
AGL80, important for central cell and endosperm forma-
tion in female gametophytes [81], was also reduced in all
three mutants, suggesting a possible role in male gameto-
phyte (Additional file 8).
Differential expression of MYB genes in three mutants
In addition to the bHLH and MADS-box families, other
gene families are also involved in anther development. As
the largest Arabidopsis transcription factor family, MYB
genes play important roles in controlling many cellular
processes, such as secondary metabolism, morphogenesis,
and signal transduction (Additional file 8) [82]. Previous
studies revealed a number of roles of MYB genes in early
anther development (Figure 5D). For example, GAMYB
in rice functions in anther development via GA signaling
pathway [83]. In Arabidopsis, the GAMYB homologs
MYB33 and MYB65 also share a redundant function

regulating tapetum differentiation [22,27,84,85]. Our
microarray results indicated that expression of MYB33
and MYB65 was reduced only in spl, not in the other two
mutants, implying that the functions of MYB33 and
MYB65 are independent of EMS1 or AMS.
In addition, MYB35/TDF1 and MYB80/MYB103 con-

trolling callose dissolution and exine formation [27] were
reduced in spl and ems1, and MYB80 was also down-regu-
lated in ams, suggesting that it acts downstream of AMS.
Moreover, the MYB99 and MYB101 genes that regulate
phenylpropanoid metabolism [31] showed a similar
expression pattern to that of MYB35/TDF1. MYB26/MS35
and MYB105 are closely related homologs; both were
down-regulated in spl but up-regulated in ams. Previous
study suggested that MYB26 is required for endothecium
thickening and anther dehiscence [86]. RNA in situ hybri-
dization revealed that MYB105 as well as MYB101 are
expressed in late tapetum [86,87], consistent with our
findings of the changes of their expression in the mutant
anthers.
Expression of WRKY, bZIP, AP2/ERF and NAC genes
The WRKY family contains at least 72 members in Arabi-
dopsis [42] and has diverse functions, such as abiotic and
biotic stress response, hormone signaling pathway,
immune response and development in plants [88]. How-
ever, it is not known whether WRKY genes are important
for flower development. Here we compared the expression
of all WRKY genes on the ATH1 chip and found that 29
of them were expressed in the anther (Additional file 8),
with the highly similar WRKY2/At5g56270 and WRKY32/
At4g30935 [88] being anther-preferential. Moreover,
WRKY2 was down-regulated in spl, suggesting that it
might function downstream of SPL in anther development.
We also analyzed bZIP, ERF and NAC families of

transcription factors. Like the WRKY family, most genes
in these families do not have known functions in repro-
ductive development (Additional file 8). However, we
found several of them were differentially expressed in
the anthers of male sterile mutants, suggesting they are
components of a complex transcriptional network regu-
lating anther development.
Transcriptional regulatory network for anther development
Genetic studies and our transcriptomic analyses
reported here support an emerging transcriptional net-
work (Figure 8). Previous molecular genetic studies
showed that SPL up-regulates the expression of EMS1
and DYT1, which are upstream of AMS [22,23], as well
as other genes encoding transcription factors shown to
be important in anther development [8]. SPL also nega-
tively regulates the expression of B and C function
genes in the anther, as well as some genes that are nor-
mally expressed in petals and carpals, probably to pre-
vent anther from developing traits of other floral organs.
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In addition, the key position of SPL in anther regulatory
hierarchy as indicated by genetic studies is supported by
its effects on the anther transcriptome (Figure 8A).
EMS1 also positively regulates the expression of DYT1

[32]. EMS1 was shown to interact with its putative
ligand TPD1 [18], thereby regulating genes essential for
the differentiation of tapetum cells. In addition, some
genes important for meiosis are also affected in the

ems1 mutant. For example, the MMD and ROXY2
genes that are important in anther lobe formation and
meiosis, respectively, were significantly reduced in ems1
(Figure 8B).
AMS was down-regulated in spl and ems1 according

to the microarray data. Because DYT1 and AMS are
related bHLH proteins, which are known to form homo-
dimers or heterodimers with other bHLH proteins, we
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DYT1^

ACOS5 · LTP12 ·

bHLH91
bHLH89
bHLH10

MYB35^

NUB’ JAG’

AP3’b AG’c

AMS ·

MYB80 ·

ASHR3

MYB105^

MS1 ·MYB99 ·

TPD1*

ROXY2*
MMD^

MS2 ·

A B

C

Figure 8 Gene regulatory network of anther development during early stages. Gene regulation is represented by T-bars (negatively) and
arrows (positively). The direct regulation confirmed by experiment is represented in bold line. Genes encoding proteins with interaction is
represented by double arrows. Gene expression patterns in different tissues are shown by colors (blue for anther specific; red for anther-
preferential; green for reproductive-preferential and yellow for genes not included in ATH1 chip). Gene function in tapetum formation is marked
by an apostrophe; in pollen wall formation by an asterisk; in callose dissolution by double asterisks; in stamen and petal formation by the letter
b; in stamen and carpel formation by the letter c.
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propose that they probably regulate the expression of
different genes by forming different complex with other
proteins. DYT1 is also a putative candidate that exerts
opposite function as × and/or Y downstream of SPL in
anther development by interact with different proteins
(Figure 8C). This proposed transcriptional regulatory
network of anther development is based on information
from genetics, transcriptomics, and phylogenetics studies
(Figure 8A-C). The hypothesized interactions, including
the roles of some functionally redundant genes, could
be tested by further experiments.

Conclusion
In this study, we identified genes whose expression was
changed in spl, ems1 and ams at anther stage 4-7 and
further categorized these genes according to their
expression patterns. These genes might directly regulate
some fundamental biological processes during anther
development. In addition, both anther-specific and non-
anther-specific genes are identified in anther develop-
ment. Transcriptome analyses also showed AMS-depen-
dent and -independent pathways. Careful analyses of
transcriptome combined with genetic and phylogenetic
information revealed an elaborate regulatory network
during early anther development and expanded our
understanding of the hierarchy of anther-development-
related genes, especially transcription factors.

Methods
Plant materials
All the plants in this study were grown in soil under long
day condition (16 h light/8 h dark) at constant 22°C. The
wild-type in this paper refers to ecotype Landsberg erecta
(L er). The mutants of spl, ems1 are of L er background as
described [22,32], while the ams mutant is of Columbia
background. We select 21-28 day old plant to collect
anther at 4-7 stage as described previously [32].

Microarray experiment
Following the Affymetrix GeneChip Expression Analysis
Overview described on the website [35], cRNA was
synthesized for hybridization as described [32]. Hybridi-
zation, washing, staining, scanning and data collection
were performed at the Genomics Core Facility, Pennsyl-
vania State University, University Park.

Microarray analysis to identify differentially expressed
genes in anther of mutants
Normalization was applied using Bioconductor package
in R by RMA [43], and all expression values were con-
verted to logarithms base 2. LIMMA library was then
used to compare signals from mutant and wild-type
anther. Only genes with more than two-fold changes
were selected. To obtain more reliable result, we

screened out genes with q-value (FDR) larger than 0.05,
since q-value is more stringent than p-value of T-test
based on previous study [89].
Similar data processing was performed with the

microarray results from different organs. The microarray
data from all organs in wild-type Arabidopsis were nor-
malized together and converted to logarithms base 2
values. We defined genes as anther-specific if they met
these criteria: 1) the expression in anther is significantly
higher than in any other tissue with FDR < 0.05; 2) gene
is present in anther but absent in any other tissues. We
used two alternative methods to define whether a gene
is present in a tissue. One of the methods was using the
Affymetrix’ MAS5 algorithm. This method uses a com-
parison of hybridization intensity with wild-type oligo
set vs mismatched oligo set; sometimes similar levels of
hybridization to both sets can actually be real expres-
sion, yet such results would lead to “absent” calls.
Therefore, we also used a second method to define “pre-
sence”, by using a threshold of 50 for expression value,
previously determined on basis of analysis of variation
among samples of the same tissue [32,43]. Both results
are shown in Additional file 5.
For the anther-preferential genes, we used the criteria

that the expression in anther is 1) present using both
MAS and/or 50 cutoff; 2) significantly higher than in
any other tissue with FDR < 0.05; 3) at least 2 fold more
compared with any other tissues. The reproductive-pre-
ferential genes required the expression present and sig-
nificantly higher in anther than only the vegetative
organs using FDR < 0.05 and 2-fold changes.
Hierarchical clustering of co-expressed genes was per-

formed by MeV 4.6 [86]. We used Euclidean distance
metric to conduct this analysis. For the identification of
the functions of the differentially expressed genes, the
annotations of genes on ATH1 microarray chip were
downloaded from Affymetrix website and we used the
GO categorization function on TAIR website [71]. To
verify whether one category is enriched compared with
the whole genome, we applied hypergeometric test and
only the categories with p-value less than 0.05 were
called statistically enriched group [90].

Cis-regulatory element analysis
Possible promoter sequences of all genes on the micro-
array chip (1 kb upstream of the start codon) were
obtained from TAIR website. The number of common
bHLH binding site (E-box) was then counted. We then
plotted the fold-changes of gene expression in ams
against the numbers of their putative AMS binding sites
using minitab [47]. The identification of cis-regulatory
binding site was conducted by perl [46]. The binding
motifs were obtained from Gene Regulation and Plant-
CARE [70].
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Real-time PCR experiments
To test the reliability of our microarray hybridizations,
six genes and one reference (ACT2, At3g18780) were
studied using Quantitative Real-Time PCR. RNA extrac-
tion and Real-Time experiments followed the protocols
described previously [91]. Triplicate reactions were per-
formed for all tissues with “no reverse transcription” as
a negative control. All primer information is provided in
Additional file 5. Relative transcript quantities were cal-
culated using the ΔΔCt method [92].

Additional material

Additional file 1: Figure S1. Correlation coefficients between signal
intensities from wild-type and the ams anther replicates. Pearson’s
correlation coefficients were larger than 0.96 between pair of the
biological replicates from the ams and wild type anther, indicating that
the results were highly reproducible. Figures S2 & S3. GO annotation
of genes up- and down-regulated in ams. GO categorization of genes
differentially expressed in the ams mutant compared with wild type. The
enriched groups were shown in different color with P-value provided.
Figures S4-S11. The genes involved in different metabolic pathways
that were activated or repressed in ams compared with wild type.
Red color represents genes activated while green color represents genes
repressed in ams compared with wild type. The overview of metabolism
activities was shown in supplemental figure 4. Figure 5, 6, 7, 8-11
showed expression shifts of genes involved in secondary metabolism,
regulatory pathways, receptor-like-kinase pathway, transcriptional
regulation, protein trafficking, stress response, ubiquitin and autophagy
dependent degradation pathway. Figure S12. Real-time PCR results
consistent with microarray data. Six genes were verified using real-
time PCR. The bars in blue represent the real-time RT-PCR results while
red the microarray results. All the numbers shown in this figure are the
fold changes of expression intensities in other tissues compared with
anther. “infl” is the abbreviation of inflorescence.

Additional file 2: Genes differentially expressed in anther and
inflorescences from the ams mutant. This additional file contains
information about genes differentially expressed in the ams anther and
inflorescences compared with wild type. Column sequence, abbreviation
and the version of annotation are as those used as in table 1 and all the
other supplemental tables. All expression values are log2 ratio.

Additional file 3: GO categorization of different clusters based on
expression pattern. This additional file contains information about
numbers of genes in each GO category. The enriched categories were
highlighted in red color.

Additional file 4: Genes differentially expressed in the ams mutant
with putative function in exocytosis, transportation, ubiquitination
and stress reaction. This additional file contains information about
genes involved in different pathways with elevated expression levels in
ams.

Additional file 5: Genes defined as specifically or preferentially
expressed in early anther or preferentially expressed in
reproductive tissue. This additional file contains information about
genes preferentially expressed in only anther or reproductive tissues
compared with roots, stems, leaves, siliques.

Additional file 6: Genes expressed in stamen, early anther and
pollen. This additional file contains information about the expression
levels of gene in different organs.

Additional file 7: Genes differentially expressed in spl, ems1 or/and
the ams mutants. This additional file contains information about the
expression levels of gene differentially expressed in the three mutants.

Additional file 8: Expression pattern of MADS, MYB, bHLH, WRKY,
bZIP, AP2/ERF and NAC families. This additional file contains
information about the expression levels of different gene families.
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