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The question of how traits and behaviors pass from one generation to the next has been the
subject of intense interest throughout the history of science. Simple parent-child correlations
are open to multiple interpretations, as parents transmit both environment and genome to
their children. Until recently, genotyping – or the direct measurement of variation in an
individual’s DNA sequence through biological assays – was exorbitantly expensive;
distinguishing the roles of genetics and environment was the realm of behavioral genetics, in
which samples of twin, adoption or other pedigree data were analyzed. However, with the
completion of the Human Genome Project in the early 2000s (Venter et al., 2001; Lander et
al., 2001) and the advent of inexpensive, genome-wide scans of variation, it is now
increasingly feasible to directly examine specific genetic variants that predict individual
differences.

In fact, the costs of comprehensively genotyping human subjects have fallen to the point
where major funding bodies, even in the social sciences, are beginning to incorporate
genetic and biological markers into major social surveys. The National Longitudinal Study
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of Adolescent Health, the Wisconsin Longitudinal Study, and the Health and Retirement
Survey have launched, or are in the process of launching, datasets with comprehensively
genotyped subjects. Similar efforts are also underway in Europe, for example with the
Biobank Project in the United Kingdom (Ollier, Sprosen and Peakman, 2005) and the large
scale genotyping of subjects at several European twin registries. These samples contain, or
will soon contain, data on hundreds of thousands of genetic markers for each individual in
the sample as well as, in most cases, basic economic variables. How, if at all, should
economists use and combine molecular genetic and economic data? What challenges arise
when analyzing genetically informative data?

In this article, we lay out the terrain for such questions. We use the term “genoeconomics,”
originally proposed by Benjamin et al. (2007), to describe the use of molecular genetic
information in economics. To illustrate some of the challenges that researchers in this field
are likely to encounter, we present results from a “genome-wide association study” of
educational attainment, one of the first of its kind in economics.1 This type of study involves
analyzing hundreds of thousands of genetic markers and seeking to understand their
association with some trait of interest. We use a sample of 7,500 individuals from the
Framingham Heart Study. After quality controls, our dataset contains over 360,000 genetic
markers per person. Despite some initially promising results, the main findings from this
dataset fail to replicate in a second large replication sample of 9,500 people from the
Rotterdam Study, suggesting that the original results were probably spurious. These findings
are unfortunately typical in molecular genetics, and therefore also cautionary.

The frequent replication failures in the molecular genetics literature are likely a result of
several forces, the most important of which is probably that the samples used in research are
too small to ensure that there is adequate power to detect true associations (Ioannidis, 2005;
Ioannidis, 2007). When true effect sizes are small, the power to detect true associations will
of course be poor and the ratio of true to false signals will hence be low. Indeed, an
important implication of the genome-wide association study results reported in this paper is
that they confirm that common genetic variants with large main effects are likely to be
extremely rare for economic variables, which tend to be far removed from the molecular
genetic variant in the chain of causation. We perform power analyses to demonstrate this
point and show that under plausible assumptions about the effect sizes of a specific type of
common variation in the human genome, samples in the tens of thousands, perhaps more,
may be necessary to detect genetic influences on most complex economic variables in a
robust manner. This insight suggests that most existing genoeconomic studies, which are
based on samples in the hundreds, are dramatically underpowered and that we should expect
a high false discovery rate until this is remedied. Our choice of educational attainment as the
outcome variable of study was determined by the widespread availability of this
characteristic in cohorts that have already been genotyped. An important next step of a
successful genoeconomic research agenda is to start measuring more biologically proximate
variables – such as preferences– in large samples. Variables which are less distant from the
genome in the chain of causation are more likely to require smaller samples in order for
genetic associations to be reliably detected, and any detected associations are more likely to
have a biologically meaningful interpretation and economically meaningful implications.

The empirical results in this paper are also used to discuss several other methodological
issues that arise in the analysis of molecular genetic data. Our overall assessment is
cautiously optimistic: this new data source has the potential not only to complement

1Preliminary results from a genome-wide association study of educational attainment have previously been reported by Posthuma et
al. (2008) and Beauchamp et al. (2010). A genome-wide association study of self-employment has been initiated by van der Loos et al.
(2010).
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traditional behavioral genetic studies but also to add a new dimension to our understanding
of heterogeneity in economic behaviors and outcomes, especially when it comes to traits that
are close to the underlying biology. But for this ample potential to be realized, researchers
and consumers of this literature should be wary of the pitfalls that lie ahead (Benjamin et al.,
2007). The most urgent of these challenges is the difficulty of doing reliable inference when
faced with multiple hypothesis problems, which are on a scale that has never before been
encountered in social science.

Behavioral Genetics
Over the past few decades, behavioral geneticists have produced a compelling array of
evidence that genetic variance does affect in economic behaviors, outcomes, and
preferences. The general approach in these studies is to make assumptions about the extent
to which the different sibling types share genetic and environmental conditions and infer the
fraction of variance that can be statistically accounted for by genetic variation (heritability,
denoted h2), rearing conditions (common environment, denoted c2), and idiosyncratic
factors (unique environment, denoted e2). These studies often compare the resemblance of
adoptees reared in the same family to that of biological siblings reared in the same family, or
the resemblance of identical (monozygotic) twins, who share their entire genomes, to that of
fraternal (dizygotic) twins, who share approximately half their genomes. Sacerdote (2010)
provides an accessible introduction for economists. The standard textbook is Plomin et al.
(2008).

The simplest behavioral genetic model is based on a host of strong assumptions, including
the independence of genetic and family effects, functional form assumptions, and fails to
take assortative mating and non-linear genetic effects into account. In the 1970s, when the
debate between environmentalists and hereditarians reached its peak, there was much
controversy over whether the high heritability estimates, especially for IQ, were artifacts of
the simplistic behavioral genetic framework that would go away in more elaborate designs
and with better data. In response, behavioral geneticists have built much richer datasets and
expanded their models, relaxing the various problematic assumptions. They have
consistently found that personality, IQ and most other traits remain highly, or at least
moderately, correlated with genetic endowments (Bouchard and McGue, 2003). In fact, the
consensus in behavioral genetics that there is genetic variance in virtually all human traits is
so strong that it has been elevated to the status of a “law” (Turkheimer, 2000).2

Economic behaviors, preferences and outcomes are no exception. Behavioral genetic
methods originally made limited inroads into economics through the work of Taubman and
coauthors (for example, Taubman, 1976), who demonstrated that genetically identical
(monozygotic) twins exhibit greater similarity than fraternal (dizygotic) twins in both
educational attainment and income. Since then, a number of papers have followed suit in
applying behavioral genetic research designs to the study of economic outcomes. Many of
these studies rely on quasi-experiments such as adoption (Sacerdote, 2007; Björklund,
Lindahl and Plug, 2006; Björklund, Jäntti and Solon, 2005), twinning (Taubman, 1976;
Lichtenstein, Pedersen and McClearn, 1992) or comparisons of multiple sibling types
(Björklund, Jäntti and Solon, 2005). More recent work has also demonstrated that economic
preferences elicited from incentivized experiments or surveys are heritable, with estimates
typically in the 20–30 percent range (Wallace, Cesarini, Johannesson and Lichtenstein,
2007; Cesarini, Dawes, Johannesson, Lichtenstein and Wallace, 2009a, 2009b). These
estimates are biased downward because they do not take into account measurement error in

2These estimates have also recently been corroborated by techniques which utilize molecular genetic data in ingenuous ways to
estimate heritability (Visscher et al., 2006; Yang et al., 2010).
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the preference elicitation.3 Two other studies of portfolio choice data found heritability
estimates of about 0.25–0.60 for various financial decision-making variables (Barnea,
Cronqvist and Siegel, 2010; Cesarini, Johannesson, Lichtenstein, Sandewall and Wallace,
2010).

In interpreting heritability estimates, it is crucial to appreciate the possibility that genetic
effects may operate via environmental effects, because genotypes may either evoke
environmental responses or cause an individual to select a particular environment
endogenously (Becker and Tomes, 1979; Dickens and Flynn, 2001; Fowler, Settle and
Christakis, 2010; Jencks, 1980; Ridley, 2003). This possibility has given rise to the
expression “nature via nurture” – as opposed to “nature versus nurture”. Estimates of the
behavioral genetic model can therefore be thought of as reduced form coefficients from a
more general model in which some environments are endogenous to genotype (Dickens and
Flynn, 2001; Jencks and Brown, 1977; Jencks, 1980; Lizzeri and Siniscalchi, 2008).

As pointed out by Jencks (1980), a common mistake is to equate “genetic” with
“immutable”: the fact that a person’s DNA sequence is in some sense fixed does not mean
that the effects of that sequence are fixed. Goldberger (1979) provides several examples of
how the implications of heritability estimates have been misstated and notes that high
estimates do not imply that interventions are doomed to failure. While genetic variation can
statistically account for a moderate to large share of income in contemporary Western
societies, this does not mean that it would be infeasible to use redistributive policies or
policies that encourage human capital formation to change the distribution of income.
Heritability is a population parameter which depends on both the environmental effects
operating in a specific population at a certain point in time and on the genetic variation in
that population. It says little about what would happen to the mean and variance of the trait
were the environment to change. Therefore, there is no contradiction between observing a
high heritability for height, say, and secular increases in height over time as the environment
changes. Heritability estimates do not tell us how the genetic effects operate, of course, nor
do they tell us much about whether the mechanisms are easy or hard to modify. But far from
being useless, as has sometimes been asserted, heritability estimates tell us that for most
traits, a sizeable fraction of the within-family resemblance can ultimately be traced to shared
DNA. We suspect that were it not for the impressive cumulative progress in behavioral
genetics over the last couple of decades, the issue would still be contentious. Figuring out
how and why genetic factors matter is an interesting scientific activity, and molecular
genetic methods are an exciting tool to bring to bear on these questions.

Elementary Molecular Genetic Concepts
Molecular genetics is the branch of genetics that studies the structure and function of DNA
at its most basic level. Recent decades have seen major advances, allowing researchers to
better understand the numerous ways in which genomes vary between individuals. The
human genome consists of 23 pairs of chromosomes that package DNA. One member of
each pair of chromosomes is inherited from the mother and the other from the father. DNA
itself consists of two strands of elementary building blocks that together form a double helix
structure. The elementary building blocks, called nucleotides, each contain one of four
bases: A (adenine), C (cytosine), T (thymine), or G (guanine), resulting in four distinct
nucleotides. Due to a property of DNA called complementarity, a nucleotide with the base A

3Adjusting for noise appears to approximately double the heritability estimates (Beauchamp, Cesarini, Rosenquist, Fowler and
Christakis, 2011). Test retest data (unpublished) has been collected for a sample of about 100 twins that participated in the
experiments reported in Wallace, Cesarini, Johannesson and Lichtenstein (2007) and Cesarini, Dawes, Johannesson, Lichtenstein and
Wallace (2009a, b). These data suggest a test retest correlation of about 0.5. Adjusting for measurement noise would thus
approximately double the heritability estimates.
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is always paired with a nucleotide with the base T and a nucleotide with the base C is always
paired with a nucleotide with the base G, forming so-called base pairs and holding the two
strands of DNA together.

A locus is a specific position of a DNA sequence on a (pair of) chromosome(s). A locus thus
refers to a pair of base pairs (or nucleotide pairs), one base pair coming from the paternal
chromosome and the other base pair coming from the maternal chromosome. The human
genome consists of approximately three billion such pairs of base pairs arranged into the 23
(pairs of) chromosomes. Because of complementarity, the second base of a base pair can be
directly identified from knowledge of the first one, and so it is common practice to refer to a
locus as consisting of two single bases rather than of a pair of base pairs. For example, the
genotype AT-AT would be referred to as AA or as TT.4

Genes are sequences of nucleotide base pairs that code for some types of RNA products,
many of which in turn code for proteins. These RNA products and proteins begin cascades
of interactions that regulate bodily structures and functions. Only a small portion of the
genome actually consists of genes, and both genetic variation in the genes and in the
remaining portion of the genome can account for variation in behaviors and traits. However,
because of genes’ functional importance, many researchers have focused their attention on
genetic variation in the genes; also, it is often said, loosely, that “a gene causes” a behavior
or trait even though what is meant is that genetic variation at a given locus – often not even
in a gene – accounts for some of the variation in the behavior or trait.

Humans share most, but not all, of their genetic material: approximately 99.6 percent of base
pairs are the same when comparing any two unrelated individuals (Kidd et al., 2008).
Genetic variation comes in many forms, but most can be traced to one of two types of
mutation events. The simplest mutation event is a base substitution, in which the base pair of
a nucleotide pair is substituted for another. Whenever a nucleotide varies at a specific locus
across individuals in the population, it is said to be a single nucleotide polymorphism, or
SNP (pronounced “snip”), with the different genetic variants of a SNP called “alleles”. Most
other forms of genetic variation are due to repeated segments of DNA. In variable number of
tandem repeat (VNTR) polymorphisms, there are differences across individuals in the
number of times that particular short segments of DNA are repeated. In copy number
variation (CNV) polymorphisms, there are differences in the number of repetitions of long
segment of DNA – of at least 1,000 base pairs and often many more.

Genotyping SNPs and other genetic variants is performed with technology that allows high-
throughput typing of hundreds of thousands of genetic variants per individual. Current
technologies type around 500,000 SNPs, but versions with over one million SNPs and other
variants are already available and this number is expected to increase in the very near future.
Within a decade, it will be possible to genotype entire genomes at relatively low cost.
Because SNPs in the vicinity of each other are often highly correlated, it is generally
possible to impute unobserved SNPs with high accuracy if a neighboring set of SNPs has
been genotyped5; for that reason, even though most arrays type only a minute fraction of the
three billion base pairs in the haploid human genome, they can in principle capture a large
part of the relevant genetic variation.

In some rare cases, a difference at a specific locus on a chromosome can single-handedly
lead to a disease: Huntington’s disease is an example. However, the vast majority of

4For an accessible introduction to the basic concepts in molecular genetics, see Strachan and Read (2003) or Carey (2003).
5When two SNPs are correlated, geneticists say that they are in "linkage disequilibrium." Even though the human genome is about 3
billion base pairs, half a million well chosen markers are sufficient to cover (“tag”) much of the genetic variation.
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physical characteristics are “polygenic,” meaning they are influenced by multiple genetic
polymorphisms (Mackay, 2001). The fact that there are so many potentially etiologically
relevant SNPs in the genome leads to challenges of inference in the face of multiple
hypothesis testing of a magnitude that social scientists have never before faced. Should
gene-gene interactions also turn out to be important, the combinatorics would simply be
staggering. However, as we later argue, the weight of the evidence suggests that a significant
portion of the genetic variance in complex traits is “additive.”

Many traits of interest to economists are several steps removed from the original genotype in
the chain of causation. Therefore, it is unlikely that genetic variants with a proximal effect
on socioeconomic status exist and will ever be found. However, simple association models
between candidate SNPs and various outcomes are still useful, because the main effects
discovered could suggest areas for further exploration and point to the more proximate
biological mechanism (for example, pointing to influences on the production of the
neurotransmitter dopamine in the brain).

Candidate Gene Studies
Genetic association studies are becoming increasingly common in the social sciences,
including economics. Many of the studies carried out to date have examined the relationship
between some economic characteristics – typically an experimentally elicited preference
parameter – and a relatively small number of genetic markers that are selected based on
some a priori hypotheses derived from information about their biological function. The
studies that follow this research design are therefore known as “candidate-gene” studies.

The first candidate-gene study in genoeconomics of which we are aware was by Knafo et al.
(2008), who reported that polymorphisms of the AVPR1a gene were associated with the
level of generosity exhibited by a sample of 203 college students playing a standard dictator
game (Forsythe, Horowitz, Savin and Sefton, 1994). There have subsequently been many
other reported associations between experimentally elicited preferences and genetic variants
(Apicella et al., 2010; Crisan et al., 2009; Dreber et al., 2009; Israel et al., 2009; Kuhnen and
Chiao, 2009; McDermott, Tingley, Cowden, Frazzetto and Johnson, 2009; Roe et al., 2009;
Zhong et al., 2009, Zhong, Israel, Xue, Ebstein and Chew, 2009). For a review of the
research to date, see Ebstein, Israel, Chew, Zhong and Knafo (2010).

The genetic markers used in these studies were typically selected based on evidence about
their neurochemical function, and the studies test the hypothesis that these genetic markers
are correlated with behavior. As an example, because the dopamine receptor D4 (DRD4)
gene affects dopamine receptors in the brain and because dopamine plays an important role
in learning and the processing of reward (Schultz, Dayan and Montague, 1997), many
researchers initially suspected that variation in the DRD4 gene is associated with variation in
risk preferences. Two early genoeconomics studies, Dreber et al. (2009) and Kuhnen and
Chiao (2009), both reported an association between a particular variant of DRD4 and
experimentally elicited risk preferences. However, Carpenter, Garcia and Lum (2009)
subsequently failed to replicate this finding, and in fact reported a borderline significant
association in the opposite direction.

Yet another set of studies drew on pharmacological randomized control studies which
demonstrated that exogenous administration of the neuropeptide oxytocin increases trust in
humans relative to a placebo (Kosfeld, Heinrichs, Zak, Fischbacher and Fehr, 2005). Such
findings suggest that variation in the gene OXTR, which encodes the oxytocin receptor, may
account for the heritable variation in prosocial behavior (Cesarini, Dawes, Johannesson,
Lichtenstein and Wallace, 2009a). Israel et al. (2009) reported an association between an
OXTR variant and giving in the dictator game, but Apicella et al. (2010) failed to replicate
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this association. Similarly, Nicolaou, Shane, Adi, Mangino and Harris (2011) reported an
association between a variant of the dopamine receptor D3 gene and self-employment but
the association did not replicate in a significantly larger sample (van der Loos et al., 2011).

An Illustration of Genoeconomic Research
Though genoeconomics research has so far mainly focused on candidate-gene studies,
another important research design is the genome-wide association study. In this approach,
tens or hundreds of thousands of genetic markers are individually tested for association with
a trait of interest. The molecular genetic approach is fundamentally different from the
behavioral genetic approach in that the effect of a genotype is estimated directly, rather than
inferred by contrasting the resemblance of different types of relatives. During the last
decade, genome-wide association studies have emerged as a standard research tool in
medical genetics. The approach has been somewhat successful in uncovering associations
between common variation and complex diseases and traits, with over 700 published studies
for more than 140 traits (Hindorff, Junkins, Hall, Mehta, and Manolio, 2010), a figure that is
rapidly growing. The advantages of genome-wide association studies are that they require no
prior knowledge about the pathways between genotype and outcome or behavior of interest
and that they scan all the available genome data, rather than study a particular variant. This
may lead to unanticipated findings. However, a potential downside is limited power, as
proper adjustment for multiple hypothesis testing requires extremely stringent significance
thresholds.

In this section, we describe a project in which we conducted a genome-wide association
study seeking to identify SNPs associated with educational attainment. In the process, we
describe the main steps generally required to work with genotypic data as well as some of
the challenges that arise in this type of research. What follows is an overview of the main
steps; additional technical details are available in an Appendix available online with this
paper at <http://e-jep.org>. In the first stage of this study, we analyzed data on about 7,500
individuals who have been genotyped at over half a million SNPs, to search for specific
SNPs associated with educational attainment. In the replication stage of our genome-wide
association study, we attempted to replicate the 20 most significant associations from the
first stage in an independent dataset with more than 9,500 genotyped individuals

The First Stage: Data from the Framingham Heart Study
The data for the first stage of the genome-wide association study comes from the
Framingham Heart Study (Dawber, Meadors and Moore, 1951; Feinleib, Kannel, Garrison,
McNamara and Castelli, 1975), a longitudinal study which was started six decades ago by
the U.S. Public Health Service to study cardiovascular diseases and which has played an
important role in the medical literature (Levy and Brink, 2005). The study was initiated in
1948, when two-thirds of all adults domiciled in the town of Framingham were enrolled.
The study was expanded in 1971 and 2002, when first and second generation descendants
were enrolled, respectively. The spouses of first-generation descendants were also enrolled.
Out of a total of 14,531 individuals included in the study, 8,496 had complete genotypic,
education, and basic demographic data. Genotyping was conducted using the Affymetrix
500K chip, an array which contains 500,568 SNPs (Affymetrix, 2009). More details on the
data used here, on the construction of the educational attainment variables, and on the
genotyping are provided in the online Appendix.

As genome-wide association studies have become increasingly popular in medical genetics
in the last few years, a number of methodological conventions have been developed, both to
deal with the complexities of genotypic data and also with the issue of testing hypotheses in
this context (Pearson and Manolio, 2008; Sullivan and Purcell, 2008). We followed these
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conventions here. We first applied a number of quality control measures to the Framingham
sample comprising all 9,237 individuals with genetic data. We dropped 499 individuals from
the sample because more than 5 percent of their genotypic data were missing; a high
“missingness” can be suggestive that problems occurred in the genotyping procedure for the
individual. Next, we only kept individual SNPs which satisfied each of three additional
quality controls: (i) a missing data frequency less than 2.5 percent; (ii) a test that the
observed genotype frequencies are equal to their theoretical expectations under random
mating (a test of “Hardy-Weinberg equilibrium”); (iii) the frequency of the minor allele (the
least common allele) greater than 1 percent. Failure to meet (i) and (ii) may indicate
genotyping errors for the SNP; failure to meet (iii) generally leads to imprecisely estimated
coefficients. From the 500,568 SNPs on our Affymetrix 500k array, 363,776 satisfied all
three criteria.

Another important step for the researcher working with genotypic data is to control for
population stratification – the differences in allele frequencies across subpopulations. Such
differences can occur as a consequence of founder effects, genetic drift, and differences in
natural selection pressures (Hartl, 1988)6. When both the frequencies of alleles and
environmental factors affecting a trait of interest differ across subpopulations, failure to
control properly for these differences can lead to omitted-variables bias and to spurious
associations between those alleles and the trait. An illustration of population stratification
was provided by Hamer and Sirota (2000), who asked their readers to entertain the thought
experiment of looking for genetic markers for chopstick use in a sample comprising
Caucasian and East Asian individuals. Without population stratification controls, markers
which differ significantly in frequency between the Caucasian and Asian subpopulations
will be found to be associated with chopstick use, but those associations will of course be
due to cultural, not genetic, differences. Although the individuals in the Framingham Heart
Study are almost all of European ancestry, population stratification has been shown to be a
concern even in samples of European Americans (Campbell et al., 2005).

Several approaches have been proposed in the literature to control for population
stratification. The most convincing solution to this problem is to only use within-family
variation in genotype, using sibling fixed effects models. However, this comes at the cost of
not using any of the between-family variation and thus of much reduced power. We
employed a standard approach (the EIGENSTRAT method) developed by Price et al.
(2006), which applies “principal component analysis” to the genotypic data. The first
principal component of a set of variables is the linear combination of the variables with the
coefficients chosen to capture as much of the sample variation as possible. The second
principal component is obtained analogously, but subject to the constraint that it seek to
capture whatever variation is remaining after the first principal component has been applied
—and so on. We used the scores of each individual on each of the 10 first principal
components as control variables in the main regression specification; in effect, these 10
values capture common variation across the population structure, and thus offer at least a
partial control for population stratification. Consistent with standard practice, we also
dropped individuals who were outliers from the sample, where outliers are defined as
individuals whose score is at least six standard deviations from the mean on one of the top
ten principal components. As a result, 531 outliers were eliminated, leaving 8,207
individuals with satisfactory genotypic data. The final sample used for the genome-wide
association study comprised 7,574 individuals with satisfactory data on genotype and on
observed characteristics. The sample size for each regression was generally a bit smaller

6In population genetics, a founder effect is defined as the reduction in genetic variance that arises when a new population is
established by a low number of isolated individuals. Genetic drift refers to changes in the allele frequencies in a population due to
chance events.
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than that, because for each SNP there were some individuals with missing genotypic
information.

Association Analysis
For each individual SNP that passed our quality control standards, we specified the
following standard regression model,

where Edu is years of education, SNPS is the number of copies of the minor allele (0, 1, or 2)
an individual has at SNP s, PC is a vector of the individual’s principal component scores on
the 10 top principal components of the genome of the sample, and X is a vector of controls.

A number of questions immediately arise in looking at this framework. For example, is the
relationship between the genetic differences and educational attainment linear? (In genetic
parlance, the model assumes that all genetic variation is “additive.”) The model is
misspecified if, in expectation, the educational attainment of the heterozygotes (those with
one copy of the minor allele) is in fact not the midpoint of the two homozygotes (those with
zero or two copies of the minor allele). The main justification for specifying an additive
model, besides parsimony, is that theory as well as converging evidence from behavioral
genetics and animal breeding (Hill, Goddard and Visscher, 2008) suggest that an additive,
polygenic, model of inheritance fits the data surprisingly well for most complex traits.
Among other observations, if higher order interactions between genetic polymorphisms were
important, one would observe a much more rapid decay of resemblance when comparing,
say, monozygotic twins to full siblings and cousins.

Here, the coefficient estimate of β1 cannot be regarded as an estimate of the causal effect of
SNPs on education; in particular, SNPs can be correlated with neighboring genetic
polymorphisms that causally affect education but are not included in the regression. Because
the Framingham sample is family-based and related individuals share parts of their
environments and large portions of their genomes, it is necessary to account for the non-
independence of the error terms. The interested reader is referred to the online Appendix for
additional details of the necessary calculations.

Inference under Multiple Hypothesis
A challenging issue that arises in genome-wide association studies is the huge number of
potentially relevant genetic variables – that is, a very large number of hypotheses are being
tested. Because of this, many SNPs will inevitably turn out to have a statistically significant
correlation with the dependent variables, at least at conventional levels of statistical
significance, due to sampling variation and other chance events. Several methods have been
proposed to draw statistical inferences in this context. The most commonly used – and the
most stringent – solution is to use an approach named after the Italian mathematician Carlo
Bonferroni, in which the conventional significance threshold is divided by the number of
tests performed to obtain a Bonferroni-corrected significance threshold (or equivalently, all
p-values are multiplied by the number of tests performed to obtain Bonferroni-corrected p-
values). In the study with the Framingham data, 363,776 tests were performed (one for each
SNP that passed the quality-control filters), thus yielding a Bonferroni-corrected
significance threshold of 0.05 / 363,776 = 1.37×10−7.

The Bonferroni approach is generally agreed to be overly conservative because SNPs that
are close to one another are generally correlated, and thus not statistically independent; thus,
the Bonferroni correction divides by too large a number. With this consideration in mind,
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one commonly used threshold in the early literature for genome-wide association studies
based on 500,000-SNP array data was set by the Wellcome Trust Case Control Consortium
at 5×10−7 (Wellcome Trust Case Control Consortium, 2007). The standard threshold is now
5·10−8 (McCarthy et al., 2008). For simplicity, we only report below the Bonferroni-
corrected p-values, but several more sophisticated methods have been developed to deal
with this situation.7 However, as we discuss below, despite the theoretical soundness of
these methods, previous experience with false positives in the field of medical genetics has
led researchers to be cautious in interpreting results that have not been replicated in an
independent sample.

The Replication Stage: Data from the Rotterdam Study
The data for the replication stage of the genome-wide association study comes from the
Rotterdam Study (Hofman et al., 2009), a study that currently consists of three cohorts.
Recruitment for the first, second, and third cohorts begun in 1990, 2000, and 2006,
respectively. Together, these three cohorts contain data on 14,926 individuals from the well-
defined Ommoord district in Rotterdam, all of whom were 45 years old or more when the
third cohort was recruited. Of these, 9,535 individuals have complete genotypic, education
and basic demographic data. Genotyping was done with the Illumina 550K and 610K arrays.

In the replication stage, we attempted to replicate the 20 most significant associations from
the first stage using the Rotterdam data as an independent sample.8 The procedures we
followed were very similar to those outlined above for the first stage, but many of the 20
SNPs were not directly available in the Rotterdam data and so had to be imputed, since the
Framingham Heart Study and the Rotterdam Study used different genotyping platforms.
Imputation is performed by using the correlation structure of an independent, more densely
genotyped reference sample to infer the expected genotypes at the SNPs that have not been
genotyped in the sample of interest. Though this procedure inevitably results in
measurement error for the imputed SNPs (and thus to downward bias in their coefficient
estimates), this effect is relatively small here as all 20 SNPs were imputed with a R2 greater
than 0.92. We used the HapMap CEU sample (the International HapMap Consortium, 2003)
as reference sample. Again, the online Appendix provides more detail on this procedure.

Results
Table 1 reports results for the 20 SNPs that attained the highest statistical significance in the
first stage analysis of the Framingham dataset. The first column gives the rs number – the
most widely used SNP identifier – of each SNP with the chromosome on which it is located
in parentheses. The second column shows a letter of the base pair corresponding to the
minor allele of the SNP; this can be useful to compare the direction of the estimated
coefficients across studies. The third column indicates whether the SNP is close (less than
100,000 base pairs away) to any known genes (as mentioned above, SNPs need not be
within genes).

The fourth column shows the estimated regression coefficients; these are clustered around
0.25 for most SNPs, meaning that in our sample, the difference between the two
homozygotes is about 0.5 years in educational attainment. However, these estimates are
subject to upward bias because of a “winner's curse” type of selection bias (Zhong and

7Some possibilities include permutation-based approaches (Churchill and Doerge, 1994), Bayesian approaches that incorporate prior
biological knowledge and SNP characteristics (Stephens and Balding, 2009), estimation and control of the false discovery rate (the
expected proportion of significant associations that are false positives) (Hochberg and Benjamini, 1990; Sabatti, Service and Freimer,
2003), and approaches that calculate the effective number of independent tests (Gao, Becker, Becker, Starmer and Province, 2010).
8An alternative approach would have been to pool all the coefficient estimates from the two samples and then meta-analyze the
results. This approach is typical in consortium studies.
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Prentice, 2008). Put simply, the significance of a SNP depends in part on the size of the
regression coefficient in the sample studied, so the most significant SNPs are likely to have
actual regression coefficients that are inflated relative to actual population parameter. In
fact, the similarity in the magnitude of our reported coefficient estimates may suggest that
the bias may count for much more than the underlying true coefficients. The estimated effect
sizes are usually smaller in follow-up studies than in the original study, even when
replication attempts are successful (Ioannidis, Ntzani, Trikalinos, and Contopoulos-
Ioannidis, 2001).

The fifth column reports the raw p-value of each SNP. Four of the SNPs are significant at
the 5·10−7 level and none of them at the 5·10−8 level. As shown in the sixth column, none of
the SNPs survive a Bonferroni correction at the 10 percent level, the two lowest Bonferroni-
corrected p-values being 0.11. The top two hits are in the vicinity of several known genes,
the closest being the IER2 gene, which is located a little over 40,000 base pairs away from
the two SNPs.9 As a robustness check, we also computed standard errors by clustering at the
level of the family. In general, the clustered standard errors were considerably smaller than
the standard errors used to compute the p-values reported in Table 1, and in this calculation
eight of the top 20 hits survived the Bonferroni correction at the 10 percent level.

The last two columns of Table I report the results of the replication attempt, with the
independent Rotterdam data, of the 20 most significant associations from the first stage. As
shown, none of the top 20 SNPs has a statistically significant association with educational
attainment in the Rotterdam data. In fact, the signs of the estimated beta coefficients from
the first stage and the replication stage are identical for only nine of the 20 SNPs and the
correlation between the 20 regression coefficients in the two samples is 0.01. In other words,
although our first-stage results might have seemed somewhat promising, the attempt to
replicate them in an independent sample was a complete failure. Although this may be a
false non-replication of true effects, we argue below that it is more likely that these initial
results were spurious.

Multiple Testing, False Positives, and Power Considerations
Our examination of the Framingham data revealed a number of markers with “suggestive”
associations with educational attainment, but an attempt to replicate these results in the
independent Rotterdam sample failed. This experience points to a number of valuable
lessons for economists interested in studying the molecular genetic basis of economic
behaviors and outcomes. As noted earlier, a number of studies using the “candidate gene”
approach have also found interesting associations, which then failed to replicate in
independent samples.

This pattern of failed replications is not unique to economics or the social sciences. After the
decoding of the Human Genome Project in the early 2000s, there was a rush to find the
molecular genetic correlates of important diseases; hundreds of studies, many with strikingly
small samples and often not properly controlling for multiple testing, were published to
report genetic associations with some traits and diseases. However, later meta-analyses and
review studies revealed that most of these associations failed to replicate (Ioannidis, 2005;
Ioannidis, 2007). Though it is possible that some of the published associations were true
only in the particular populations in which they were originally found because of treatment
effect heterogeneity or that they were falsely non-replicated (Ioannidis, 2007), the most
plausible explanation is that the initial findings were spurious. We are not suggesting that

9In Table V of the online Appendix, we report the SNPs (from the above set of 20) which are in or near any known genes, along with
the distances in base pairs.
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replications are always necessary: one can imagine cases where the corrected p-values are so
small that the results can be judged convincing on the basis of one sample alone. However,
as a practical matter, replication has emerged as an important method for evaluating work in
this area, and we think it is advisable that economists adopt this as a convention, at least in
the sense that the onus is on those who wish to depart from the default to provide a
convincing motivation.

More generally, it would greatly benefit the genoeconomics enterprise if economists and
other social scientists learned from the mistakes that have been made in genetic research in
the past decade, rather than repeat them in our own discipline. In our judgment, the plethora
of false positives can be attributed to two main factors: studies that are statistically
underpowered because sample sizes are too small; and bias toward publishing results that
seem to show positive and significant correlations. We will discuss these in turn.

Most published association studies, especially in economics and the social sciences, are
seriously underpowered given what we now know about the plausible effect sizes of
common genetic variants. Consequently, the probability that an association study will detect
a true signal is vanishingly small. In other words, with the small samples that are typical of
many studies, the probability that an association in the data is due to a true signal is low
relative to the probability that it is due to noise (in Bayesian language, the posterior odds of
a true association are low). This point is now close to universally accepted in the molecular
genetics community and is illustrated by our above results from our genome-wide
association study of educational attainment. Accumulating evidence from the genetics
literature suggests that for most complex traits, the genetic variance is highly diffuse
throughout the genome, that most true causal variants have very small effect sizes, and that
genetic markers with an R2 greater than 1 percent are rare (Visscher, 2008). In the case of
height, which is one of the most studied traits with a very high heritability of around 80
percent (Visscher, Hill and Wray, 2008), the 180 loci identified by the largest study to date,
with more than 180,000 subjects, only explain a total of about 10 percent of the variance in
this characteristic (Allen et al., 2011).

Several non-replicated published results notwithstanding, there is no reason to expect traits
of interest to economists to be different from medical traits with respect to the distribution of
the effect sizes of the genetic markers. In fact, the situation is likely to be even more difficult
for economists, because socioeconomic traits are generally very distal from the genome in
the chain of causation and because of the low reliability of many measured economic traits.
For example, it is not clear how well behavior in economic laboratory experiments captures
attitudes toward altruism, cooperation or risk.

For most traits, thus, the genetic markers that have been found so far generally explain only
a small fraction of the population variance. In contrast, estimates of the effect of heritability
from behavioral genetics often hover around 30 to 50 percent or more. This gap has given
rise to a debate in the genetics community about the causes of this “missing heritability”
(Eichler et al., 2010; Manolio et al., 2009). Many explanations have been proposed, the main
ones being about structural variants such as CNVs and VNTRs (discussed earlier), which
until recently were not typed by the main platforms; low power to detect multi-gene
interactions; very rare causal variants that are not captured by the main genotyping
platforms; and – perhaps the most plausible to us – very large numbers of causal variants,
each with very small effect sizes. A recent paper provided support for the latter explanation
as well as some hope to the genetic community: Yang et al. (2010) showed that considering
all the SNPs on some common genotyping chips simultaneously – as opposed to the usual
approach in a genome-wide association study of testing each SNP individually with some
stringent significance threshold – could account for 45 percent of the variance in human
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height. The 45 percent figure is bound to rise with more comprehensive genotyping
platforms and the advent of whole genome sequencing. Similar results were recently
documented for IQ (Davies, Tenesa, Payton, Yang and Harris, 2011).

With the newest genotyping platforms now integrating structural variants and increasing
their coverage to include rarer SNPs, very large samples will be needed to have adequate
statistical power to make progress in mapping the genetic architecture of complex traits. To
illustrate this point more formally, Figure 1 shows power graphs for the conventional 5
percent level of significance often used in the social sciences and for the much more
stringent 5·10−8 level of statistical significance. Statistical power, measured on the vertical
axis, is the probability that the null hypothesis of no association will be rejected at a given
significance threshold. This probability of rejecting the null hypothesis varies with the
sample size, shown on the horizontal axis. The four different curves in each panel
correspond to markers that truly explain (that is, their true population R2 are) 0.01, 0.05, 0.1,
and 1 percent of the variance of the trait. Thus, these graphs show the statistical power to
detect a true marker-trait association as a function of the sample size. In the first panel, for
the α=0.05 level of statistical significance – a significance threshold that is much higher than
what is generally relevant in association studies given the multiple testing involved –, a
sample of about 4,000 subjects is required to have power of 50 percent to detect a marker
with a true R2 of 0.1 percent (with no correction for multiple testing). For a marker with a
true R2 of 0.01 percent and with a sample of 10,000 individuals, the power of detecting the
association is less than 20 percent. Even for a marker with a very large true R2 of 1 percent –
larger than the R2's of all the markers that have been found to predict height – a sample of
almost 800 subjects is needed to have power of 80 percent. As can be seen in the second
panel, for the α=5·10−8 level of statistical significance, sample sizes in the tens of thousands
are needed to have confidence in statistical estimates if the marker has an R2 of 0.05 percent,
0.1 percent, or 1 percent. If the marker has an R2 of 0.01 percent, even sample sizes of
200,000 will have power of less than 20 percent.

As a result of such considerations, large multi-sample consortia are rapidly becoming the
norm in medical genetics, with total sample sizes in the tens of thousands and sometimes
exceeding 50,000; examples are the Wellcome Trust Case Control Consortium (2007),
CHARGE (Psaty et al., 2009), and GEFOS (Rivadeneira et al., 2009). The Gentrepreneur
Consortium (van der Loos, Koellinger, Groenen and Thurik, 2010), aimed at finding genetic
predictors of entrepreneurship in a sample of over 60,000 individuals, is one of the first such
consortia in economics; we and some collaborators are also in the process of forming a
similar consortium for educational attainment. We believe consortia of this type to be the
appropriate constructive response to the otherwise quite dismaying findings reported here.

The second main factor behind finding so many false positives in the literature is publication
bias. It is much easier to publish “positive results” than properly powered negative findings,
and this creates incentives for “data mining” and selective reporting. Researchers invest
significant effort in assembling datasets with rich genotypic and phenotypic information.
With little theory to discipline the empirical work, and with a still-scant biological
background regarding the genetics of socio-economic traits, the temptation is great to
experiment with different specifications on different traits and markers before settling on the
“right” tests to run. Unless the p-values in the subsequently published manuscript fully
account for the multiple testing and the uncertainty stemming from the specification search,
the resulting p-values will be too low. For example, if additive, non-additive, and sex-
specific models are estimated, but only findings from the model with lowest p-values are
reported, the resulting inference will of course be incorrect. It is difficult to assess the
magnitude of these problems in genoeconomics, but the reported p-values in many published
papers are likely to be grossly misleading. The lack of convincing replications and the

Beauchamp et al. Page 13

J Econ Perspect. Author manuscript; available in PMC 2012 March 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



known failed replications in the field are consistent with this interpretation. Journal editors
and referees also have a responsibility to avoid publishing headline-grabbing results, at least
when experience suggests that such results are likely to evaporate under later replication
attempts. And there needs to be some reward to carefully executed and well-powered studies
with negative findings.

In our view, the problem is not the fact that the approach of the genome-wide association
study is a largely atheoretical exercise. Exploratory data mining is a perfectly legitimate
scientific endeavor when it is identified and treated as such. Many of the replicable findings
that thus far have emerged from genome-wide association studies of medical outcomes were
unexpected and unlikely to have been uncovered from candidate-based approaches. But data
mining must be done with discipline, meaning a complete reporting of and correction for the
number of hypotheses tested, including any pre-testing of the model specification.

The nature of molecular genetic data makes the multiple hypothesis testing problem
particularly acute, but there may also be a silver lining. In particular, it is generally relatively
easy to attempt a replication of a genoeconomic finding in independent samples. Moreover,
awareness of these issues is growing among genoeconomists. Indeed, we believe that
economists have much to learn from the different scientific culture that prevails in the
medical sciences in general and in genetics in particular. Though the problems of multiple
hypothesis testing and publication bias have received some attention in economics (for
example, Anderson, 2008; Card and Krueger, 1995; De Long and Lang, 1992; Kling,
Liebman and Katz, 2007), they are generally overlooked. A culture that encourages – when
this is technically feasible – collaboration across groups of authors to pool data and to
replicate results across datasets would doubtless contribute to this desirable goal.

Molecular Genetic Data Providers
Most available genotyped samples have been collected for medical research purposes. These
studies vary in sample size from a few hundred to several thousand observations. In addition
to medical outcomes, the studies usually also collect some background information about
their participants that are interesting for economists, such as education, profession, labor
market experience, and income. Many of the large data-providers have formed research
consortia, the most important of which are the CHARGE and GIANT consortia. As the costs
of genotyping technologies are falling rapidly, social science data providers are expressing
greater interest in adding molecular genetic information to their lists of variables The first
major U.S. data provider to include such information was the Longitudinal Study of
Adolescent Health which, as part of its third wave of data collection between 1999 and
2001, collected saliva samples and genotyped approximately 2,500 individuals for six
genetic markers on or near genes linked to functions of the neurotransmitters dopamine and
serotonin. A major provider of genoeconomic data in the coming years will be the U.S.
Health and Retirement Survey, which is presently being expanded to include genome-wide
association data – over one million genetic markers – in approximately 13,000 subjects.
Given the large sample, and the rich set of phenotypic data on health, psychological well-
being and economic and financial behavior, we anticipate that this data will emerge as a
valuable resource for researchers in the social sciences interested in studying human genetic
variation.

We anticipate that a steady stream of new datasets with economic variables and
comprehensively genotyped subjects will be made available to researchers over time. One
promising approach for the near future is to focus on the collection of additional,
standardized socioeconomic variables in samples that already contain genotyped data. Over
time, adding genotype information to existing socioeconomic datasets should provide an
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important new source of data to economists interested in studying the molecular genetic
associates of economic behaviors and outcomes. Socioeconomic datasets already contain a
wealth of relevant variables and are unlikely to be matched by data collected for other
purposes in terms of measurement accuracy and breadth or duration of longitudinal follow-
up. We further anticipate the formation of genoeconomic research consortia for the social
sciences. An obvious challenge with this approach is that for research consortia to be
effective, everyone will have to measure the same set of traits using reliable batteries which
are uniform across surveys. The National Human Genome Research Institute is funding the
PhenX project to develop consensus measures for phenotypes and exposures to be used in
genome-wide association studies (https://www.phenx.org/).

Potential Benefits of Molecular Genetic Data
We have thus far discussed a number of methodological challenges that face researchers
who use molecular genetics to reliably identify genetic associates of economic traits. In
addition, the possibility of genome-based information and interventions raise a host of
privacy and ethical issues that we have not pursued here. Despite those difficulties, we
believe there are several reasons, beyond sheer intellectual curiosity, why the use of
molecular genetic data will ultimately benefit the economic sciences.

First, knowledge of the biological mechanisms might suggest additional policies or
interventions that had previously not been anticipated. There are already examples in the
medical literature of genome-wide association studies leading to unanticipated findings that
in turn have helped inspire new therapies (Hirschhorn, 2009). It is not a necessary condition
that the genetic markers identified have large effects on the outcome, only that the biological
pathway they implicate provides useful cues about possible prevention mechanisms. For
some behavioral outcomes, genetic markers may also be of diagnostic and predictive utility,
regardless of whether or not they shed direct light on biological mechanisms. For example,
Benjamin (2010) points out that if dyslexia can eventually be predicted sufficiently well by
genetic screening, children with dyslexia-susceptibility markers could be taught differently
how to read from a very young age. More generally, if molecular genetic data can be used to
predict which individuals are at high “genetic risk” for adverse outcomes, then it would in
principle be possible to use such information to evaluate the costs and benefits of taking
preventive measures targeted at helping at-risk individuals.

Given the current state of knowledge, the predictive utility of the genetic markers which
have been identified thus far (with very few, but important, exceptions) is too weak for these
hopes to be realized any time soon for the overwhelming majority of potential outcomes.
The initial promises that genomics would revolutionize “personalized medicine” have not
yet been realized. If anything, the main use of genotyping technology has proven to be
prognostic, not therapeutic, as anticipated by some (Christakis, 1999, p.196). Nonetheless, in
many applications where the purpose is risk prediction, several statistical techniques may
yield informative predictions without having precise estimates of the effect of individual
markers, by making efficient use of all the available genotypic information, using so called
polygenic risk scores (Purcell et al., 2009). As increasingly rich genetic information
becomes available and as new statistical techniques are developed, the predictive utility of
the genetic data will doubtless rise.

Second, analysis of molecular genetic data may also help empirical economists to estimate
causal effects. As genetic endowments become increasingly easy to measure, it will be
possible to control for genetic determinants of the dependent variable, thereby reducing
omitted variable bias (Bernheim, 2009). For example, a successful genome-wide association
study of educational attainment might be able to identify genetic markers that influence the
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general likelihood of high intellectual performance, delayed gratification, and persistence.
Such markers would be a valuable control variable in empirical studies on a number of
economic questions, including income, labor supply, occupational choice, or savings
decisions (though the absence of these variables is not a source of bias in a properly
controlled randomized evaluation).

Third, a more speculative empirical use of genetic data is to use markers as instruments in
empirical settings where reverse causality or omitted variable bias is otherwise a concern.
This use of genetic markers was anticipated by Davey-Smith and Ebrahim (2003) and was
pioneered in economic analyses by Ding, Lehrer, Rosequist and Audrain-McGovern (2006),
who used molecular genetic data to instrument for health in a regression of academic
outcomes on health. To serve as valid instrument, the marker Z needs to impact the outcome
Y only through its impact on the intervening variable X. This chain of causation will be
exceedingly, perhaps impossibly, difficult to establish in many cases that interest economists
(Conley, 2009; Cawley, Han and Norton, 2011). There are two major challenges. First,
many markers are pleiotropic, meaning that they influence multiple outcomes directly. If the
marker Z also affects Y through other unobserved channels for which the researcher cannot
control, then the so-called exclusion restriction fails. Second, even if the marker does not
have pleiotropic effects, it may be correlated (in linkage disequilibrium) with a genetic
marker that affects Y through the unobservables. Economists will likely be in a better
position to assess the plausibility that a given marker satisfies the exclusion restriction once
its biological function is intricately understood. Conley (2009) argues that it is very unlikely
that any markers which satisfy the requirements of a valid instrument will ever be found.

Finally, and perhaps most importantly, molecular genetic data may prove helpful in
understanding variation in policy response across individuals. Plausibly uncovering such
treatment-effect heterogeneity will require a detailed research design where plausibly
exogenous environmental variation is used to estimate the gene-environment interactions
(Conley, 2009). The most frequently cited example of a gene-environment interaction is the
work of Caspi et al. (2002). These authors studied the determinants of a composite index of
anti-social behavior in a sample of 1,037 male children in New Zealand. In a regression of
their index on a particular polymorphism in a gene called MAOA, childhood maltreatment,
and the interaction of these two variables, they found a significant interaction and concluded
that the MAOA gene modifies the influence of the childhood maltreatment. While this paper
is a useful illustration of the possibilities in this area, it is important to note that childhood
maltreatment is not necessarily exogenous but may be correlated with other unobserved
determinants of poor outcomes. Also, a recent meta-study (Risch et al., 2009) was unable to
corroborate the Caspi et al. (2002) findings. This is not too surprising, because the study is
vulnerable to exactly the same criticisms that we have made against candidate genes studies
in economics. Economists have a powerful toolkit for the estimation and identification of
causal effects which has the potential to contribute to the current gene-environment
interaction literature. Presently, this literature suffers from the limitation that the
environmental variables used may be endogenous, as existing studies are not based on
experimentally or quasi-experimentally generated exogenous variation in environment
(Conley, 2009).

The cost of genotyping has now fallen to a level where it is feasible to directly study
molecular genetic variation and many social science surveys are in the process of
incorporating this information. We believe that such data will add a valuable new
understanding to our dimension of heterogeneity in economic behavior. If researchers
adhere to high empirical standards, we are confident that genoeconomics will generate a
number of durable scientific insights that will ultimately lead to a richer and more
comprehensive economic science.
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Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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FIGURE I.
NOTES: Each curve in these graphs shows the statistical power to detect a true marker-trait
association as a function of the sample size. Statistical power is the probability that the null
hypothesis of no association will be rejected at a given significance threshold. The four
different curves in each panel correspond to markers that truly explain (that is, their true
population R2 are) 0.01%, 0.05%, 0.1%, and 1% of the variance of the trait. The two panels
correspond to two different significance thresholds (α = 0.05 and α = 5e-8). These power
graphs are for single tests – that is, without correction for multiple hypothesis testing.
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