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Abstract
The very nature of nuclear medicine, the visual representation of injected radiopharmaceuticals,
implies imaging of dynamic processes such as the uptake and wash-out of radiotracers from body
organs. For years, nuclear medicine has been touted as the modality of choice for evaluating
function in health and disease. This evaluation is greatly enhanced using single photon emission
computed tomography (SPECT), which permits three-dimensional (3D) visualization of tracer
distributions in the body. However, to fully realize the potential of the technique requires the
imaging of in vivo dynamic processes of flow and metabolism. Tissue motion and deformation
must also be addressed. Absolute quantification of these dynamic processes in the body has the
potential to improve diagnosis. This paper presents a review of advancements toward the
realization of the potential of dynamic SPECT imaging and a brief history of the development of
the instrumentation. A major portion of the paper is devoted to the review of special data
processing methods that have been developed for extracting kinetics from dynamic cardiac SPECT
data acquired using rotating detector heads that move as radiopharmaceuticals exchange between
biological compartments. Recent developments in multi-resolution spatiotemporal methods enable
one to estimate kinetic parameters of compartment models of dynamic processes using data
acquired from a single camera head with slow gantry rotation. The estimation of kinetic
parameters directly from projection measurements improves bias and variance over the
conventional method of first reconstructing 3D dynamic images, generating time–activity curves
from selected regions of interest and then estimating the kinetic parameters from the generated
time–activity curves. Although the potential applications of SPECT for imaging dynamic
processes have not been fully realized in the clinic, it is hoped that this review illuminates the
potential of SPECT for dynamic imaging, especially in light of new developments that enable
measurement of dynamic processes directly from projection measurements.

Preface
Today our healthcare system is facing challenges in the diagnosis and therapy of
cardiovascular disease, cancer and mental disease, which affect all segments of our
population. Single photon emission computed tomography (SPECT) continues to be an
important tool in the clinical diagnosis of these diseases. It is the number one protocol for
clinical evaluation of cardiovascular myocardial ischemia (seriously compromised blood
flow) and viability (live tissue with reduced flow).
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SPECT is an imaging procedure in which an isotope tagged to a biochemical compound is
injected into a patient’s vein. As the isotope decays, it emits photons from the body, and
these photons are detected and recorded by a camera that provides a digital image of the
distribution of the radiotracer in the body. The SPECT system may consist of one, two (as
shown in figure 1) or three detector head(s). The SPECT procedure records images of the
distribution of the biochemical compound in the patient’s body from different projections as
the detector(s) rotate around the body. The detectors only need to acquire 180° of projection
images but may acquire as many as 360° of projections. Newer SPECT systems being built
today are constructed in the form of a fixed array of detectors partially or fully
encompassing the patient’s body.

Once the biochemical compound enters the blood stream, it travels to body organs (brain,
liver, kidney, heart and the peripheral vascular system) and is absorbed by these organs
according to each organ’s affinity for the particular compound. Dynamic SPECT is an
imaging procedure that follows the dynamic process of the biochemical compound once it
enters the blood—transported by the blood, absorbed in organs and body tissues, and then
either trapped within cells or on cell surfaces, or released back into the blood stream or the
lymph system. Dynamic SPECT imaging, acquired using detector heads that rotate or
remain fixed while radiopharmaceuticals exchange between biological compartments,
records the actual movement (speed) of the isotopes through the body.

The premise of this review is that special data processing methods are required to extract
dynamic information directly from projection measurements of injected radioactive
biochemical compounds from dynamic SPECT data acquired using detector heads that rotate
while radiopharmaceuticals exchange between biological compartments. These special data
processing methods can also be applied to non-rotating SPECT and position emission
tomography (PET) imaging systems.

The extraction of dynamic information and estimation of model parameters directly from
projection measurements were first presented in a book chapter (Gullberg et al 1999). The
chapter also reviewed work of the conventional approach to reconstructing a sequence of
three-dimensional (3D) images, drawing regions of interest (ROIs), generating time–activity
curves for these regions, and then estimating kinetic model parameters from these time–
activity curves. Much of this work was built upon the developments in dynamic PET
imaging. Several references to the PET literature can be found in this first book chapter, as
well as in more recent reviews (Lodge et al 2005, Heller et al 2009). Later, a second book
chapter (Gullberg et al 2004) reviewed the improvements in the conventional approach
resulting from equipment advancements that enabled sufficient timing resolution to obtain
wash-in and wash-out rate parameters of compartment models from time–activity curves
generated from a sequence of reconstructed ROIs.

This review concentrates on the problem where all kinetic model parameters and time–
activity curves are estimated directly from projection measurements and illustrates examples
of this approach for imaging applications in dynamic cardiac SPECT. This approach is
commonly referred to as 4D or 5D imaging in the literature and presentations at scientific
meetings. The terminology of 5D imaging is given to methods of estimating time varying
dynamics of the tracer through the organ while the organ, such as the heart, is also moving.

The introduction to this paper evolved out of work presented at an American Society of
Nuclear Cardiology meeting (Gullberg et al 2000). The sections following the introduction
give the mathematical developments used in dynamic cardiac SPECT, comparing
conventional ROI methods, direct methods and semi-direct methods. For readers who do not
want to go into the mathematics, the introduction gives a good overview of dynamic cardiac
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SPECT. The paper assumes a basic understanding of nuclear medicine physics as found in
Cherry et al (2003). Other works that give the basics of nuclear medicine physics, SPECT
and clinical applications can be found in the chapters of the following two books: (Wagner
et al 1995, Henkin et al 2006). Also, chapters 7 and 8 in Phelps et al (1986) give a very
good introduction to kinetic modeling and the estimation of model parameters. A glossary is
presented that defines several of the terms and acronyms for radiopharmaceuticals that may
not be known to the general reader. A list of symbols is also presented to help the reader
understand the definition of the different variables used in the equations.

1. Introduction
Dynamic single photon emission computed tomography (SPECT) is a technique that uses
tracers to obtain images that reflect fundamental biophysiologic functions of perfusion and
metabolism in body organs. This is done by quantifying the temporal changes of
radionuclide concentration in tomographic sections through angular sampling of projections
(Carson 1986b, Gullberg et al 1999). This technique, in conjunction with mathematical
model-based analysis of regional kinetics of the radiotracer, allows for the quantitation of
functional parameters, which are estimated by utilizing a time series of dynamic
reconstructed images. Physiologic parameter estimation using kinetic analysis is well
established in positron emission tomography (PET). However, the methodology has not seen
routine clinical application in PET or SPECT. The development and use of kinetic analysis
in dynamic SPECT applications have been limited by low sensitivity, poor spatial resolution
and poor temporal resolution, which are consequences of the need to mechanically rotate the
detector head for most studies. The use of ring detector systems for dynamic brain SPECT
applications (figure 2), along with recent advancements in dynamic cardiac SPECT
instrumentation (figure 3), has demonstrated SPECT’s effectiveness for extraction of
physiologic values of perfusion (Smith et al 1994, 1996) and metabolism (Gullberg et al
1999). This requires measurement of the blood input to the organ of interest and observation
over time of the blood input and uptake as well as wash-out from the organ of interest. One
then is able to fit physiological compartment models (see section 2.1) that represent the
wash-in of the radiopharmaceutical, its metabolism or catabolism, and the wash-out of the
tracer and its metabolites from the organ of interest. While this procedure has been used for
years with PET to study several in vivo biochemical and physiologic processes in health and
disease, it remains a challenge with SPECT, because most data are acquired using slow
camera rotations. However, with recent developments in representation of data using a
multi-resolution spatiotemporal basis (see section 3), special data processing methods can be
used to extract kinetics from dynamic SPECT data acquired using detectors that rotate while
radiopharmaceuticals exchange between biological compartments.

1.1. History
1.1.1. Early development of dynamic SPECT—Dynamic SPECT was used in brain
studies as early as 1963 (Kuhl and Edwards 1963) using two discrete detectors and later
using a fixed four-headed detector system, each with a linear array of eight discrete
scintillation detectors (Kuhl et al 1976). This was followed in 1978 by another fixed four-
headed detector system (DCAT) (Stokely et al 1980) capable of rapid acquisition (5 s
sampling) of a few transaxial sections for imaging 133Xe in the brain. In 1990, brain imaging
was realized with a rotating four-headed gamma camera system (Kimura et al 1990). Also,
dedicated brain systems consisting of a ring of scintillation detectors were developed
(Rogers et al 1982, 1988, Hirose et al 1982, Moore and Mueller 1986, Genna and Smith
1988, Rowe et al 1993, Ogasawara et al 2000, Komatani et al 2004). These included the
SPRINT system (Rogers et al 1982, 1988) developed at the University of Michigan; the
Headtome II hybrid emission/CT system (Hirose et al 1982) developed by Shimadzu
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Corporation, which incorporated scintillation detectors arranged in a circular ring with a set
of collimator vanes that swung in front of discrete detectors; a unique Cleon Brain SPECT
system originally developed by the Union Carbide Corporation in the 1970s, which
consisted of 12 detectors that scanned both radially and tangentially (Stoddart and Stoddart
1979) with a reconstruction method (Moore and Mueller 1986) that was later marketed by
Strichman Corporation; ASPECT, a dedicated brain system (Genna and Smith 1988), later
manufactured by DSI, Inc. as the CERASPECT (Komatani et al 2004) (figure 2); and the
FastSPECT system (Aarsvold et al 1988, Rowe et al 1993) developed at the University of
Arizona, which was reported to be able to acquire dynamic tomographic data with a
sampling interval of 2 s. A system with multiple rings of scintillation detectors was
developed for brain SPECT studies in Japan by Shimadzu (Ogasawara et al 2000). The
system consisted of 64 NaI crystals in a 38 cm diameter circle. Early on there were two ring
systems proposed for cardiac SPECT imaging—the Shimadzu whole body system
(Yonekura et al 1985) and the cardiac FastSPECT system (Rowe et al 1992)—but both
systems remained conceptual designs.

In 1990, dynamic SPECT (Stewart et al 1990) was applied to the estimation of the wash-out
of 99mTc-teboroxime from the myocardium in canine cardiac studies using a single-slice
ring detector (SPRINT). However, it was not until 1991 (Budinger et al 1991) that it was
demonstrated that a reliable blood input function could be obtained from 5 s sampling
intervals of reconstructed dynamic SPECT data, and that this sampling regime would be
sufficient for compartment model-based analysis of the data. Using the triple-headed camera
configuration (figure 3(a)) first developed in 1985 (Lim et al 1985), the time–activity curves
of a radionuclide were quantified in canine and human experiments. The dynamic data sets
were reconstructed and corrected for attenuation using a reconstructed attenuation
distribution obtained from a separate transmission scan. During the same period, commercial
three-headed SPECT systems were used by two groups to image the wash-out of 99mTc-
teboroxime from the heart by obtaining 360° tomographic acquisitions every 1 min
(Nakajima et al 1991, Chua et al 1993).

The first results of a compartment model-based analysis of dynamic cardiac SPECT data
were obtained using the three-headed PRISM system (figure 3(a)) (Picker, Cleveland, OH)
(Smith et al 1994, 1996). Using attenuation-corrected dynamic reconstructed data from
canines, it was demonstrated that the estimated wash-in and wash-out of 99mTc-teboroxime
correlated with microsphere-derived flow estimates. A similar approach was demonstrated
in humans (Chiao et al 1994a). Although the work did not correct for attenuation, it was
shown that the wash-in and wash-out estimates of 99mTc-teboroxime for the whole left
ventricular myocardium changed significantly in response to coronary vasodilatation.

The original three-headed PRISM SPECT system (figure 3(a)) had the mechanical stability
and control hardware to allow acquisition of 360° of data in 5 to 10 s. The major advantage
of a system of multiple-gamma camera heads is the improvement in sensitivity afforded by
better coverage of the solid angle. However, the arrangement of the detector heads is
important for minimizing attenuation of posterior views for cardiac imaging. Another
advantage is that multiple heads reduce the angular range of motion necessary to acquire a
complete data set. Thus, only 120° of rotation is needed for a three-headed system and 90° is
needed for a four-headed system. The disadvantages are that a system of multiple large
field-of-view gamma cameras is expensive, and fast rotations (complete tomographic
acquisitions of 10 s or less) are not available on all systems.

1.1.2. Dynamic SPECT applications—The main focus of this review is the application
of dynamic SPECT to cardiac studies. However, dynamic SPECT has found significant
application in pulmonary (Coates 1992, Ercan et al 1993, Sakaji et al 2001), renal (Hansen
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et al 1994, Akahira et al 1999) and brain studies. Dynamic SPECT imaging has been used to
estimate lung regional function using 133Xe (Sakaji et al 2001). It has been used to evaluate
renal plasma flow of transplanted kidneys using 99mTc-MAG3 (Akahira et al 1999). A
simulation study also showed that dynamic SPECT could be useful for evaluating kidney
function using a three-headed SPECT system to image 123I-hippuran (Vanzi et al 2004). A
major portion of the application of dynamic SPECT in the study of in vivo physiological
function has been directed toward the study of brain disorders.

A body of recent work is directed toward the dedicated ring detector systems for brain
imaging and systems with detector arrays partially encompassing the body are currently
being introduced into the clinic for cardiac imaging. A ring-type dedicated brain SPECT
called the Headtome was successfully used with 99mTc-HMPAO to quantitatively image
brain blood flow in patients with a stroke (Toyama et al 1996). Another ring system, the
CERASPECT (DSI, Inc. Waltham, MA) (figure 2), was used to study the retention process
of 99mTc-ECD in normal and ischemic lesions, and early phase images of the tracer were
found to be as useful as 133Xe-rCBF SPECT for detecting mild or moderate ischemic lesions
(Komatani et al 2004). A study using 123I-iodoamphetamine (123I-IMP) in patients with
meningiomas, which compared lesion-to-normal ratios with angiographic vascularities and
histological types, concluded that dynamic SPECT with 123I-IMP was more effective than
angiography for evaluating the vascularity of lesions (Nakano et al 1988). Studies using ring
SPECT cameras have been employed to image subacute cerebral infarction (Ogasawara et al
2001a), herpes simplex encephalitis (Ogasawara et al 2002b), reperfusion hyperemia after
acute cerebral embolism (Ogasawara et al 2002a) and Lhermitte-Duclos disease (Ogasawara
et al 2001b).

For several years, dynamic SPECT has been used to evaluate the central benzodiazepine
(BZP) receptor binding of 123I-iomazenil (123I-IMZ, a benzodiazepine antagonist) in the
diagnosis of central nervous system disorders with abnormalities in BZP receptor binding
(Ito et al 1997). These studies with dynamic SPECT and 123I-IMZ have shown defects in the
benzodiazepine receptors in brain pathologic diseases such as ischemia, epilepsy,
Alzheimer’s disease, Huntington’s disease and schizophrenia (Moriwaki et al 1998), and for
prognosis prior to endoreterectony (Tsuchida et al 1999). Recently it was reported that
dynamic SPECT was used with 123I-IMZ to study a rare case of slowly progressive neuronal
death associated with postischemic hyperperfusion in cortical laminar necrosis (Iihara et al
2009). The condition was experienced after cerebral artery bypass surgery for an
intracavernous carotid artery aneurysm. Studies have also shown that dynamic SPECT gives
comparable results to those of dynamic PET using 11C-IMZ (Bremner et al 1999). Kinetic
model-based methods have been developed for SPECT to quantitatively measure 123I-
iomazenil binding to benzodiazepine receptors in the human brain (Dargham et al 1994).
The significance of receptor-binding kinetics has generated interest in using a standard input
function instead of having to perform arterial sampling to obtain the input function (Seike et
al 2004).

It is interesting to note that in Japan, more so than in the USA, noninvasive tests are used for
diagnosing brain autoregulatory abnormalities (Rudzinski et al 2007). Dynamic SPECT
scans are used to quantify cerebral blood flow (CBF) and cerebral vascular reactivity (CVR)
in a single session using a split dose administration of 123I-iodoamphetamine (123I-IMP)—
one at rest and one during Diamox challenge (Imaizumi et al 2002). The rest/stress protocol
is much like that performed to evaluate myocardial perfusion. First, a rest dynamic cerebral
blood flow study is performed after the injection of 123I-IMP. After the completion of the
first study, Diamox is administered to stress the cerebral vascular system. A second study is
then performed after administration of a second injection of 123I-IMP. A large-scale clinical
trial showed that appropriately quantifying dynamic SPECT data by correcting for
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attenuation, scatter and collimator response gave values for CBF at rest and during Diamox
treatment that were reproducible among institutions, and it demonstrated that the modality
was useful for diagnosing brain autoregulatory abnormalities and for providing CBF and
perfusion reserve from a single scanning session (Iida et al 2006).

1.1.3. Dynamic cardiac SPECT advances—Early work in dynamic cardiac SPECT
concentrated on using systems with rotating multiple-gamma camera heads to image tracers
with fast kinetics (Chua et al 1993, Smith et al 1994, 1996). However, the focus has
changed, since tracers with slower wash-out kinetics, such as 201Tl (Iida and Eberl 1998,
Gullberg et al 1999) and 99mTc-sestamibi (Gullberg et al 2007a, Reutter et al 2007a), are
more readily available for perfusion studies, and cardiac metabolic agents, such as 123IPPA
(Limber et al 1995, Gullberg et al 1999) and 123I-BMIPP (Gullberg et al 2006), are more
appealing for myocardial viability studies or for evaluating myocardial fatty acid
metabolism in patients with hypertrophic cardiomyopathy (Okizakia et al 2007). In addition,
improvements in data processing techniques have allowed processing of kinetics using only
a single rotating detector that is commonly used in clinical nuclear medicine. The use
of 99mTc-teboroxime (Chua et al 1993, Smith et al 1994, 1996), a rapidly exchanging agent,
shows promise in the application of dynamic SPECT for imaging the heart. Also, recent
results suggest that implementing a dynamic SPECT protocol can shorten clinical 123I-
MIBG imaging studies that are used to assess the severity of heart disease and prognosis in
patients with chronic heart failure (CHF) (Takeishi et al 2005, Hu et al 2005).

Although the standard single-gamma camera configuration for SPECT is still commonly
encountered in clinic inventories, it has been supplanted at many institutions by dual- or
triple-headed detector systems, with dual-headed detector systems being most prevalent.
Today, the dual-headed detector SPECT system (figure 1) is the most common imaging
system used in nuclear cardiology because it can perform cardiac scans (the most commonly
performed procedure) as well as whole body bone scans. The detectors on these dual-headed
detector systems are much larger than the original three-headed detector PRISM system
(figure 3(a)), but the rotational speed of the modern systems with the most robust gantries is
still limited to a single tomographic acquisition every 15 s. As a result, data processing
techniques have emphasized the development of methods for processing kinetics directly
from projection measurements.

1.1.4. New dedicated cardiac SPECT systems—Digirad was the first company to
develop and manufacture a dedicated cardiac SPECT scanner (Patton et al 2007). New
versions of the system have small multiple-gamma cameras that rotate to obtain sufficient
angular sampling along with an x-ray transmission system for obtaining an attenuation map
for attenuation correction. The new dedicated cardiac system developed by Spectrum
Dynamics (Caesarea, Israel) (Sharir et al 2007, 2008, 2010, Berman 2007, Gambhir et al
2009, Erlandsson et al 2009, Ben-Haim et al 2010, Patton et al 2007) (figure 4) is able to
obtain high quality cardiac perfusion images of 2 min stress and 4 min rest acquisition times.
Another newly developed dedicated cardiac scanner is the CardiARC (Lubbock, TX)
(Berman 2007, Patton et al 2007), which is similar in concept to the original SPRINT design
with a fixed ring of detectors and a rotating slit collimator. GE Healthcare (Haifa, Israel) has
announced the development of a new dedicated cardiac SPECT system (figure 3(b))
(Volokh et al 2008, Garcia et al 2008, Esteves et al 2008, Buechel et al 2010). Another
dedicated cardiac SPECT system called C-SPECT, being built at Rush University Medical
Center, Chicago, IL, is being funded by the NIH (Chang et al 2008, Ordonez et al 2008).
Ultimately, dedicated cardiac SPECT systems with total acquisition times of 2–3 min may
become available. While these more recent non-rotating detector systems are ideal for
dynamic cardiac SPECT, rotating three- and two-headed detector systems have been shown
to provide adequate temporal resolution (Gullberg et al 2004).
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1.2. Radiopharmaceutical considerations for dynamic cardiac and brain SPECT
This discussion of applications is not a comprehensive review of nuclear medicine imaging
approaches to the brain and heart using radiopharmaceutical agents, but is intended to
highlight the application of dynamic SPECT along with some comments relative to
competitive approaches with PET. A ‘chemical microsphere’ is a term given to a radiotracer
that becomes trapped within a cell. Microspheres are small spherical particles with diameters
in the micrometer range, typically 15 μm for heart studies so these become trapped in small
capillaries. They are used to measure absolute organ blood flow. The microsphere method is
based on the principle of conservation of material (Fick principle); that is, the amount
accumulating in tissue is equal to flow times concentration of the material available in the
blood minus flow times concentration of the venous wash-out. In the microsphere method,
there is a no wash-out of the accumulated material. If a single photon tracer is trapped in the
tissue, its behavior will approximate the properties of a ‘chemical microsphere’. It has been
suggested that 99mTc-sestamibi (99mTc-MIBI) may be useful as a tracer for calculating
coronary flow reserve (CFR) using this ‘microsphere’ technique (Sugihara et al 2001). This
agent accumulates in the myocardium in proportion to flow but, unlike microspheres,
washes out slowly; thus quantitation of flow requires dynamic data acquisition and an
appropriate model, unless the wash-out is slow enough that the integral of uptake activity
over a short time period can be used in a ‘microsphere’ technique. The agent 99mTc-
tetrofosmin has also shown promising initial results for calculating CFR using a single-
headed detector SPECT system (Sugihara et al 2001). 123Iodorotenone (Marshall et al 2001)
is another potential agent that has an even higher extraction fraction than the commonly
used compounds of 99mTc-MIBI or 99mTc-tetrofosmin and may also be a useful tracer for
calculating CFR using the microsphere analogy. Further work is required to evaluate the
‘microsphere’ method for calculating CFR and to compare this approach with that of using
either dynamic SPECT or dynamic PET imaging of agents that have fast turnover (i.e., rapid
exchange, such as H2

15O).

Dynamic cardiac SPECT imaging could potentially be useful for measuring CFR, but it
requires a flow agent with a large range of flow values for which the extraction fraction
(arterial concentration minus the venous concentration divided by the arterial concentration)
remains linear as a function of flow. It was shown (Chiao et al 1994a) that wash-in and
wash-out estimates of 99mTc-teboroxime for the entire left ventricular myocardium change
significantly in response to coronary vasodilatation. Quantitative compartmental analysis
of 99mTc-teboroxime kinetics provides a sensitive indicator for changes in estimates of
wash-in in response to adenosine-induced coronary vasodilatation (Gullberg et al 1999,
2004). It has also been shown that dynamic imaging of 99mTc-teboroxime with compartment
modeling provides a better measure of flow with parametric images of better contrast
between normal and decreased flow regions than can be obtained from static imaging
of 201Tl or, for that matter, static imaging of 99mTc-teboroxime (Gullberg et al 2004). In
fact, dynamic SPECT may prove advantageous over static imaging because it may enable
better measurement of both perfusion and viability (Gullberg et al 2004).

In addition, dynamic SPECT methods may be useful for evaluating myocardial function
using other tracers such as the perfusion agent 99mTc-N-NOET (Calnon et al 1999) and
metabolic agents such as the fatty acid 123IPPA (Gullberg et al 1999). The agent 99mTc-N-
NOET has features of greater redistribution (the apparent filling in of a myocardial perfusion
defect over a period of time due to differential wash-in and wash-out of a tracer between
ischemic and normal regions). This agent has good linearity with flow but has not yet been
introduced into the clinic (Johnsonet al 1996). 99mTc-N-NOET, like 99mTc-teboroxime, is a
neutral compound but unlike 99mTc-teboroxime exhibits slower myocardial clearance. This
agent is thus a potentially better alternative for dynamic cardiac SPECT imaging than
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either 201Tl or 99mTc-teboroxime. In PET, 82Rb, 13NH3 and H2
15O are the tracers most

often used for measuring CFR.

There are also several radiopharmaceuticals used for brain SPECT that may be applicable
for dynamic SPECT. For brain tumor imaging the primary modality involves using PET to
image 18FDG (Chen and Silverman 2008). 18FDG-PET is also used to diagnose epilepsy.
However, SPECT imaging with 99mTc-HMPAO or 99mTc-ECD is also able to identify the
ictal (a physiologic state or event such as a seizure) onset zone in the majority of cases
(Goffin et al 2008). Interictal (the period of time between seizures as a result of an epilepsy
disorder) SPECT imaging is unreliable for determining the seizure onset zone, but
interictal 18FDG-PET is routinely used to detect brain areas of hypometabolism. For
diagnosing major depression disorders, PET is again an important imaging modality,
but 123I-beta-CIT and 123I-ADAM are also used with SPECT to diagnose depression (Meyer
2008). For central motor disorders, both PET and SPECT imaging agents play roles in
clinical diagnosis of Parkinson’s disease and other movement disorders (Kung et al 2003,
Seibyl 2008). 18F-DOPA-PET is important in the diagnosis of motor disorders.
However, 123I-FP-CIT, 123I-beta-CIT, 99mTc-TRODAT and 123I-altropane are also used.
These tracers measure different aspects of dopaminergic function and may contribute
different and potentially complementary information about the disease process. The focus
has been on patients in the early stages of illness. However, these agents might serve as
biomarkers of the progression of disease. SPECT has also been used to diagnose dementia
(Pimlott et al 2007, Jagust et al 2009, Resnick et al 2010). Specifically, it has been used in
the diagnosis of Alzheimer’s disease (Wolfe et al 1995, Jagust et al 1998, 2001). Addiction
is an area where there are no SPECT ligand tracers that compete with PET approaches
(Volkow et al 2003, 2009) as in the case for dementia studies.

1.3. Data processing techniques
Compartmental modeling of tracer kinetics is utilized to extract kinetic parameters from
dynamically measured data of compartment models that describe the pathways and dynamic
behavior of tracers in organ tissues (see section 2). Significant work has been accomplished
to improve the conventional method of analysis of dynamic cardiac SPECT data in which
ROIs are specified in a sequence of reconstructed images and time–activity curves are
generated from the data values in these ROIs (Gullberg et al 2004). These time–activity
curves are input to a nonlinear estimation program (Huesman et al 1995) that estimates the
compartment model kinetic parameters. The ROIs are usually drawn by hand, but semi-
automatic programs (Di Bella et al 1997) can improve reproducibility from study to study.
Kinetic parameters can also be calculated for every image voxel by fitting a time–activity
curve generated from a dynamic reconstructed sequence to a compartment model. The
parameter values are then mapped to colors or gray levels and displayed as parametric
images (Sitek et al 2002a, Gullberg et al 2004).

This review highlights advancements in the estimation of kinetic parameters from
projections as opposed to the conventional method of estimating kinetic parameters from
dynamic reconstructed images. This approach can be readily applied to all camera systems,
including those with low geometric efficiency and slow camera rotation. The possibility of
performing dynamic cardiac SPECT imaging using a single slowly rotating camera head is
enticing, since such scanners are both inexpensive and widely deployed. Unfortunately, the
angular projections obtained are inconsistent when a rotating camera head is employed to
image a distribution of emission sources whose activity varies significantly during the time
necessary for the camera head(s) to complete a revolution. Consequently, application of
conventional tomographic reconstruction algorithms yields inaccurate reconstructed images
that are ‘blurred’. This leads to biases in the estimated kinetic parameters. The inconsistent
projection problem may be viewed as one of attempting to interpolate in time and space
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simultaneously—in sinotimogram space (sinogram of a time-varying distribution
corresponding to projection data represented by three coordinates—the angle, the projection
bin and the time). Such interpolation is only feasible if a priori knowledge regarding the
geometry and time–activity evolution of the image sources is included.

A better approach to analyzing dynamic data (SPECT or PET) than using time–activity
curves generated from reconstructed regions is to estimate the time–activity curves or
kinetic parameters directly from the projection data of the sinotimogram, using an accurate
model of the data acquisition of the spatial and temporal distribution of the
radiopharmaceutical within the field-of-view. The simultaneous estimation of blood input
function and kinetic model parameters can reduce bias and improve precision by using the
interrelationship between blood and tissue imposed by the compartment model to constrain
the solution.

1.3.1. Estimating dynamic parameters directly from projection measurements
—The modeling of dynamic data is complicated by the combination of camera gantry
motion, potential organ motion and the time-varying nature of the radionuclide distribution
being imaged, resulting in inconsistent projection data sets wherein the projection from one
angle is not consistent with that from another angle because the radionuclide concentration
in the field of view changes between the time of acquisition for the different projections.
Entire tomographic slices or volumes must be represented by some types of
parameterization, and one does not have the option of analyzing a single ROI and ignoring
the remainder. The estimation can be formulated as a minimization of a weighted sum of
squared differences between the projection data and the model-predicted values. It was
shown that biases in estimates from time–activity curves generated by dynamic
reconstructions are eliminated by estimating dynamic parameters directly from the
projections (Limber et al 1995, Gullberg et al 1999). Results also suggest that direct joint
estimation of compartmental or other dynamic model parameters and blood input function
from projections produce estimates of kinetic parameters with lower variance and bias than
does the estimation of kinetic parameters from time–activity curves generated from dynamic
reconstructed ROIs (Reutter et al 2005) (see section 5.1).

There are two main approaches for estimating dynamic parameters directly from projection
measurements. One approach (semi-direct—a two step process) is to directly calculate
activities for ROIs as a function of time; the results provide time–activity curves from which
kinetic compartmental model parameters can be estimated (Carson 1986a, Formiconi 1993).
A second approach (direct—a one step process) is to estimate dynamic parameters directly
from the projection data, where it is assumed that the ROIs are specified and that
expressions between the compartment model parameters and the dynamically acquired
projections can be formulated in a chi-square formulation (Limber et al 1995, Zeng et al
1995). There are many variations or refinements that can be used with both methods. One
refinement of both methods is the segmentation of organ boundaries or tissue types
involving the joint estimation of spatial boundaries and temporal parameters. It was shown
that biases of estimates are reduced by simultaneously estimating kinetic model parameters
and boundary parameters of ROIs directly from projections and auxiliary boundary
information (Chiao et al 1994b, 1994c). These boundaries may be static or dynamic. A
method was proposed to estimate kinetic model parameters and boundary parameters for the
heart from dynamic gated cardiac SPECT data (Gullberg et al 2007b). This is commonly
referred to as 5D tomography.

Semi-direct approach (mathematical examples are presented in section 5): The
estimation of ROI time–activity curves from projections without reconstructing the ROI was
first implemented in PET and was fairly easily accomplished using a convolution
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backprojection algorithm. First, a method to estimate the average activity in a 2D ROI was
described (Huesman 1984). Subsequently, these ideas were extended to 3D ROIs (Defrise et
al 1990). To compensate for physical factors such as attenuation and detector resolution,
iterative algorithms that maximize a likelihood function had to be used (Carson 1986a,
Formiconi 1993). An extension of this is to estimate the time–activity curves directly as
continuous functions from projections, and then to estimate kinetic model parameters using
the estimated time–activity curves (Reutter et al 2000, 2002, 2004a) (see section 5.1).

Some of the first work in SPECT to reconstruct time–activity curves from dynamically
acquired projection data was accomplished by the group at the University of British
Columbia (Bauschke et al 1999, Farncombe et al 1999, 2000, 2001, Farncombe 2000, Celler
et al 2001). That work led to the development of the ‘dSPECT method’, which fits time–
activity curves for each voxel directly from projection measurements acquired from single
or multiple rotations of the gantry (see section 5.3). Initially, a version of the algorithm
reconstructed time–activity curves that were constrained to monotonically rise or
monotonically fall (Celler et al 2001). A modification led to the ability to reconstruct time–
activity curves that rose to an estimated maximum value and then fell, much as would be
expected, by the wash-in and wash-out of a tracer from an organ of interest (Farncombe et al
2001). The method required either prior knowledge or estimating the time frame when the
activity peaked in each particular voxel of the object being imaged (Farncombe et al 2001).
The main focus of dSPECT was to derive estimates of time–activity curves for studies
performed using only a single rotation of a standard SPECT camera. The method has been
utilized in clinical applications, including applications for reduction of bladder artifacts in
pelvic bone SPECT (Wells et al 2004) and for estimating time–activity curves from gated
cardiac SPECT data (Farncombe et al 2003a, 2003b, Feng et al 2006).

Another approach for extracting time–activity curves from dynamic data has been the
method of factor analysis of dynamic structures (FADS) (see sections 3.3, 5.2). This method
has been applied primarily in nuclear medicine to dynamically acquired planar data and to
the dynamic sequence of reconstructions of projection data acquired with fast SPECT
acquisition (Sitek et al 1999a, 1999b, 2000, 2002a, 2002b, Su et al 2007). However, it also
has potential application for extraction of time–activity curves directly from dynamically
acquired projections from slow rotation SPECT camera systems. For example, FADS was
applied to extract time–activity curves from projections of the uptake and wash-out
of 99mTc-MAG3 from the kidneys (Sitek et al 2001). Factor analysis was also used for
extracting the blood input function in rats from dynamic SPECT data acquired with slow
camera rotation (Hu et al 2008).

The group at LBNL has put effort into developing computationally efficient methods for
estimating the time–activity curves from dynamic SPECT projection data. A direct least-
squares estimation of spatiotemporal distributions from dynamically acquired SPECT
projection data was developed (Reutter et al 2000, 2002, 2004a). Temporal B-splines (see
section 3.1) providing various orders of temporal continuity, as well as various time
samplings, were used to model the time–activity curves for blood pool and tissue volumes.
An alternative time–activity curve model, based on a small set of orthogonal exponential
basis functions and couched in a similar least-squares estimation framework, was also
proposed (Maltz and Budinger 2000, Maltz 2000a).

There are several possibilities that could be used for the temporal basis functions in the
spatiotemporal representation of reconstructed dynamic data. These could be exponential,
spline or factor (discrete temporal function describing a time course of activity concentration
for a particular organ or tissue) basis functions. Multi-resolution B-splines and penalized
least-squares inversion (see section 5.1) have been used to reconstruct dynamic cardiac
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SPECT data from rest/stress cardiac patient studies acquired using a clinical SPECT system
with slow camera rotation (Gullberg et al 2007a, Reutter et al 2007a). By extending the
support of spatial B-splines into the time dimension, estimates of time–activity curves were
obtained directly from projections. The use of non-uniform time sampling with piecewise-
quadratic splines yielded smooth time–activity curves that captured the relatively fast rise
and fall of the tracer in the right (15 s after injection) and left ventricular blood chambers (45
s), as well as uptake and retention of the tracer in the left ventricular myocardium.

The solution to a system of differential equations which express the time varying
distribution between compartments involves expressions of exponentials. Therefore, it is
very natural to parameterize the kinetics of the radiopharmaceutical distribution in the tissue
as a spectrum of exponential terms in time. The spectral-based approach builds on earlier
work (Cunningham and Jones 1993) in which it was suggested that, instead of estimating the
kinetic parameters of models, one could estimate the coefficients of a predefined spectrum
of exponentially decaying factors. It is assumed that the decay constants for the exponentials
span some reasonable ranges of physiological values, and those are predefined with
sufficient sampling to adequately represent the kinetics of the tracer.

Efforts have been made to calculate these coefficients directly from projections for a few
spectral terms, such as for two spectral terms (Hicks et al 1989, Hebber et al 1997) or for
several spectral terms (Matthews et al 1997, Maltz 2001, 2002). This approach obviates the
need for iterative estimation of the nonlinear parameters (rate constants) of a compartment
model, allowing a convenient solution via linear methods (Maltz 2001).

A significant limitation of exponential spectral methods is that the solution obtained may not
be unique due to the large amount of parameter redundancy, which is characteristic of sums
of decaying exponential terms. Spectral coefficient estimates must therefore be interpreted
with caution. Application of dimension-reducing transforms, such as the singular value
decomposition (SVD), can decrease the dimension of the spectral estimation problem to
approximately 1/20th of its original size while ameliorating the problem of parameter
redundancy (Maltz and Budinger 2000).

Unfortunately, because sums of decaying real exponentials are not uniquely parameterized
in the presence of noise, solutions in terms of spectral coefficients may not be unique
(Lanczos 1956, Reich 1981). A strong dependence may consequently exist between the
particular solution obtained and the noise present within the data. The parsimonious
exponential spectral analysis (ESA) algorithm ameliorates the inherent problem of non-
uniqueness in ESA parameters (Maltz 2002). It has been shown (Maltz 2001) that using an
exponential basis with a nonuniform resolution reconstruction grid leads to a tremendous
reduction in the dimension of the problem of direct dynamic emission computed
tomography reconstruction from inconsistent projections. The solution coefficients, which
must be non-negative, can be determined by using either a non-negative least-squares
technique (Meikle et al 1996, 1998) or the ML-EM algorithm (Matthews et al 1997).
Computationally, it can be performed in succession by first determining spectral
components for each projection sample (Meikle et al 1996, 1998). The spectral components
for each pixel can then be reconstructed from the spectral components of the projection ray
sums. Instead of using an exponential decomposition, one can use some other parametric
decomposition (Matthews et al 1997), some other best fit model (Hudson and Walsh 1997,
Hutton et al 1997) or some physical factors (FADS method) (Barber 1980, Sitek et al
2002b).

Direct approach (mathematical examples are presented in section 4): A direct approach
involves eliminating the step of estimating time–activity curves by estimating the model
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parameters directly from the measured projections. This approach must apply the correct
model to every voxel or region, which requires modeling the entire object. One voxel or ROI
might be an input function, while another voxel or tissue region might be a one-
compartment perfusion model, a two-compartment metabolic model or a multi-compartment
ligand binding model. An important issue is the segmentation of organs or tissue types,
especially the segmentation of the blood ROI, since a direct approach requires the
simultaneous estimation of both the input function and the kinetic model parameters
(Reutter et al 2005) (see section 4.1). If the tissue or organ moves, such as in the case of
cardiac motion, this also needs to be modeled correctly. It is also necessary to model
accurately the physics of the imaging detection process, such as scatter, attenuation and
collimator response. One can see that this becomes a very large complex nonlinear
optimization problem.

A direct approach to estimating dynamic parameters can reduce the bias and variance, but it
assumes that the modeling is appropriate for the dynamic process being realized. If the
locations of the tissue regions are known, it has been demonstrated that bias is reduced by
estimating kinetic parameters of a compartment model directly from projections. This was
demonstrated for a 3 × 3 computer-simulated image array (Zeng et al 1995), for a 64 × 64
computer simulation using parallel geometry (Gullberg et al 1999) and for a 48 × 48 × 30
computer simulation using cone-beam geometry (Huesman et al 1998). These studies
assumed a one-compartment model with a blood input function (see section 2.2).

The most direct approach is to derive the kinetic model parameters directly from the
projection data for each pixel (Kadrmas and Gullberg 2001) (see section 4.3). This could be
one or multi compartments. Multiple compartments could be represented by a spectral
decomposition (see section 4.4). However, the low signal-to-noise ratio of dynamic SPECT,
and the poor condition number of the inverse problem, severely limit the number of regions
that may be resolved. To reduce the dimensionality of the problem so that it is not necessary
to specify a compartment model for each voxel, methods of presegmentation of particular
tissue regions based on anatomical and physiological considerations have been proposed
(see section 4.1). For myocardial studies, typical regions might include healthy blood pool,
myocardium, myocardial defect, liver and background (Huesman et al 1998, Reutter et al
1998a, 2000) (see section 4.2). The accuracy of the kinetic models depends on an accurate
initial segmentation, which might not be easily accomplished. For example, in a clinical
study the location of a defect is not known a priori. The most obvious way of ameliorating
this problem is to segment the myocardium into several regions such that the smallest
physiologically significant defect might be detected. Another approach would be to spatially
parameterize the entire myocardium or a small number of regions of the myocardium.
However, as the number of regions is increased, the statistical advantages of anatomically or
physiologically motivated presegmentation are lost.

Joint estimation of spatial boundaries and dynamic parameters: A refinement in the
estimation of dynamic parameters from projections involves simultaneously estimating the
geometric regions and the time–activity of the regions directly from the inconsistent
projection data. Progress toward the development of practical joint spatial and temporal
algorithms has been limited because of the severely ill-conditioned nature of this nonlinear
problem. The first joint spatial and temporal algorithm for dynamic emission computed
tomography (Chiao et al 1994b, 1994c) enabled the fitting of a single dynamic region (the
myocardium) to simulated myocardial data in the presence of noise and background activity.
The myocardial activity was described using a first-order single-compartment model, and
the geometry of the myocardium was described by a parameterized concentric polygonal
model. A local optimization strategy was able to recover the joint parameter set, which
consisted of the endocardial and epicardial radii at the vertices of the respective polygons,
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and compartment model parameters. It was demonstrated that biases in the kinetic parameter
estimates were reduced by allowing for estimates of the boundary of the ROI to be included
in the estimation process.

Extension of joint spatial and temporal algorithms to multiple regions proves non-trivial
because the parameter estimation problem becomes multimodal. Its solution consequently
requires a computationally intensive, multi-start optimization algorithm. Such an algorithm
was developed at the University of California, Berkeley, and is able to fit more than ten
dynamic regions to data acquired with the slow rotation of a single-gamma camera operating
at realistic photon count rates (Maltz et al 1998). A set of spatially constrained ellipses is
used to model regions within the image where the activity of each region is described using
a single-compartment model. It appears that it is the poor condition of the inverse problem
rather than a low number of photon counts per resolution element that limits the accuracy of
the recovered regional time–activity curves (Maltz 2000b). The ill-conditioning is due, in
part, to the well-known problem of parameter redundancy in sums of real exponential
functions (Lanczos 1956, Reich 1981). When several sources within the image follow first-
order single-compartment tracer kinetic models, the projection measurements are composed
of weighted sums of decaying exponential functions convolved with a blood input function.
When joint estimation is performed, it is the parameters of these exponentials, along with
the geometric model parameters, that are sought. Since vastly different parameterizations of
these sums may yield resultant functions that are indistinguishable at realistic noise levels,
there can be no certainty that a unique solution exists. This condition may be improved by
replacing the exponential functions with orthogonal basis functions that, when convolved
with the blood input function, are able to represent all physiologically feasible time–activity
curves using a less redundant parameterization (Reich 1981, Maltz et al 1998). The quality
of the reconstruction that may be obtained using joint spatial and temporal algorithms
applied to single slow rotation data is dependent on the quality of the constrained geometric
and kinetic models used to restrict the set of solutions to those that are physiologically
feasible.

5D processing of dynamic gated cardiac SPECT data: The estimation of dynamic
parameters from projections that model the deformation of the organ as a function of time
and the change in the concentration of the tracer as a function of time is referred to as 5D
tomography. For the heart, it is assumed that the data are acquired dynamically with cardiac
phase information either by list mode acquisition or by binning into gated dynamic frames
over the cardiac cycle. The groups at the University of Massachusetts and the University of
British Columbia extended the dSPECT method to obtain reconstructions of the time
variation of the concentration of the tracer in the heart from dynamically acquired gated
cardiac SPECT data (Farncombe et al 2003a, 2003b, Feng et al 2003a, 2006).

The group at the Massachusetts Institute of Technology (Feng et al 2003b, Shi and Karl
2003, 2004, Jin et al 2005, 2006a, 2006b) took a different approach from that used in the
dSPECT method by using the level set method (a numerical technique for tracking interfaces
and shapes) to delineate boundaries of moving organs, such as the heart, while
simultaneously estimating the time variation of the tracer concentration in the organ. 5D
tomography has all of the challenges of modeling both rigid and non-rigid body deformation
simultaneously with the modeling of a time varying tracer concentration from tomographic
projections (Gravier et al 2007, Gullberg et al 2007b). In the future, this will have important
applications in diagnostic medicine and in radiotherapy with injected radioisotopes.

1.3.2. Input function—One of the most difficult problems in applying kinetic modeling is
estimation of the blood input function (see section 2.3 for a more extensive discussion). The
sampling of the blood input at a high temporal resolution is more important than sampling
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the tissue response with a high temporal resolution. Estimation of the input function from
the imaging data is problematic due to partial volume effects, scatter and cardiac and lung
motion that tends to contaminate the blood data with data from the myocardium, liver and
other surrounding tissues. The input function is especially difficult to measure in pinhole
SPECT imaging of small animals using a rotating large field-of-view gamma camera (Hu et
al 2005). The blood volume is small, and thus it can be difficult to obtain the blood input
function (Laforest et al 2005). Furthermore, limited system resolution can make ROI
sampling of the ventricular cavity problematic. In addition, the recirculation time is of the
order of seconds (6–8 s in a rat). Therefore, it is difficult to capture the true time–activity
curve because the full tomographic acquisition requires 90 s. For this application, it has been
shown that factors can be estimated directly from projections but it requires the estimation
of greater than a million unknowns (Hu et al 2005). An intriguing approach is to estimate
the kinetic model parameters for the myocardium from projections without a priori
knowledge of the input function—blind estimation (Di Bella et al 1999). However, this
method limits which kinetic parameters can be estimated absolutely.

1.3.3. Multigridding approaches—An advantage of spatiotemporal modeling is the
ability to reduce the number of unknown parameters by using multi-resolution or
multigridding approaches to represent spatial and temporal distributions of dynamic data.
Three possible spatial basis functions involve the use of (1) uniform voxels, (2) splines or
(3) point cloud distributions of tetrahedral finite elements. These spatial basis functions can
be combined with temporal basis functions using, for example, exponential, spline or factor
basis functions or time–activity functions that fit a particular compartment model.

Multigridding approaches using splines: The spatial parameterization can involve a multi-
resolution or multigridding approach where inside the organ boundaries the changing tracer
kinetics are modeled with high resolution and outside the organ the distribution is modeled
with a more coarse resolution (Boutchko et al 2006b, Reutter et al 2006, Sitek et al 2006).
B-spline spatial basis functions can be used to model continuous 3D tracer distributions in
the heart (Reutter et al 2006, 2007b), and this approach improves signal-to-noise and
increases computational efficiency compared to methods based on small cube-shaped
voxels. Uniform B-spline basis functions have the property that splines of larger support can
be composed from a linear combination of splines of smaller support, thus facilitating
creation of a multi-resolution spatial model. B-splines can be evaluated quickly when
calculating projection data models or displaying reconstructed images, and there is no image
‘blockiness’ because B-splines yield a spatially continuous representation. A negativity
penalty can be incorporated into the estimation of the spline coefficients so that these
coefficients that tend to have negative values are constrained to stay near zero, with use of a
quadratic penalty that penalizes nonzero contributions to the projection data model (Reutter
et al 2007b). Use of the penalty reduces image noise when employing more compact splines
to maintain good resolution throughout the body.

Multigridding approaches using point clouds: Another multigridding image
representation is the use of point clouds where the points are distributed on an irregular grid
that adapts to the information content in the projection data (Sitek et al 2006). The points
serve as vertices of a tetrahedral mesh formed using the Delaunay tessellation algorithm (de
Berg et al 2008) or some other finite element representation. Inside each tetrahedron, a
continuous function is represented by the linear interpolation of the vertex values. An
original reconstruction is performed (using the ML-EM algorithm) on a coarse Cartesian
grid with the grid points distributed randomly with their density proportional to the second
directional derivative of the Cartesian image. The number of points is increased by the user
in the regions where high resolution is required. The point cloud is then allowed to deform
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and increase in density to achieve optimal correspondence with the Cartesian image. The
image is reconstructed on the new irregular grid directly from projections. Small
deformations of the grid are also allowed during the reconstruction. A reduction in the
number of grid points by a factor of 100 was achieved when the heart was reconstructed
with high spatial resolution (Boutchko et al 2006a), and other volumes with lower
resolution. In the reconstruction of low signal-to-noise ratio dynamic data, the application of
the point cloud grid significantly reduced the number of grid points and improved visual
perception of single frame images (Boutchko et al 2007). The process can also incorporate
the optimization of the grid geometry by optimizing the number of sampling points and their
positions. Point clouds constitute a convenient representation of SPECT images, which
allows a significant reduction in the number of unknowns (reduces computation time,
relaxes memory requirements and improves the stability of the solution) without loss in the
image resolution and signal-to-noise ratio.

1.4. Synopsis
Some of the special data processing techniques used for the estimation of dynamic
parameters directly from projections is presented in the following sections. The challenge is
the accurate estimation of the blood input function. A key to making these techniques robust
is the use of multi-resolution (multigridding) approaches to the spatiotemporal modeling of
the tracer kinetics. There is significant interest in developing dedicated cardiac SPECT
systems for acquisition of dynamics data. These data processing methods will become even
more powerful with data acquired with new, dedicated cardiac SPECT cameras, as well as
with currently available PET cameras. Finally, the development of hardware and data
processing techniques for dynamic SPECT will play a significant role in diagnosing
cardiovascular disease and diseases of other organs but will be especially important in
preclinical evaluation of diagnostic and therapeutic methodologies in small animals.

2. Principles of tracer kinetic modeling
Tracer kinetic modeling is used in several areas of biological research to follow dynamic
processes of blood flow, tissue perfusion, transport, metabolism and receptor binding. The
underlying physical principle is conservation of mass wherein the input activity must be
balanced by the accumulated activity and the output activity of a tracer within a system. The
second principle is that, for a tracer experiment to reflect the true physiology of a biological
system, that tracer must not itself perturb the system. These principles are reflected in many
early contributions (Fick 1870, Stewart 1897, Hamilton et al 1928 and Kety and Schmidt
1948). Model equations developed from these principles and known physiology are found in
Meier and Zierler (1954) and Zierler (1965). In these works, general equations were
formulated to estimate flow using tracers for both the injection inflow/outflow detection
technique and the injection inflow/residue detection technique (Bassingthwaighte et al
1993). An example of the injection inflow/outflow technique is found in the hanging heart
experiment (Marshall et al 2001). Tracer exchange has been modeled down to the scale of
actually calculating exchange between blood and extravascular spaces as a function of the
length along the capillary (Rose et al 1977).

While physiologic studies in the past used direct sampling of input tracer concentration,
tissue concentration and output concentration, it is possible to make all these measurements
using external detection methods. Specifically, dynamic SPECT can be used to measure the
time sequence of tracer content in tissues of the body from which physiologic parameters
can be derived.

Gullberg et al. Page 15

Phys Med Biol. Author manuscript; available in PMC 2012 March 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



2.1. Principle of compartmentalization
The modeling of tracer kinetics relies on the principle of indicator dilution, whereby models
are developed that compartmentalize the dilution of a measurable tracer that is introduced
into the biological system to be studied in order to follow a physiologic or biochemical
process of a particular biochemical substance (Huang and Phelps 1986). An appropriate
tracer must be chosen to ensure that it follows the dynamic process of interest, it is
measurable and it does not perturb the process being measured. The tracer is required to be
of low mass concentration such that it does not affect any saturable process. Upon
introduction, the tracer distributes throughout the sample. Measurements of the tracer are
taken as a function of time.

The compartmentalization is based on a priori knowledge of structural or configurational
information about the process or the organ system. Based on this information, a
compartment model is developed that gives a mathematical description of the pathways and
dynamic behavior of the tracer in the biological tissue of interest. The model is represented
by a number of compartments (volumes where the tracer is uniformly distributed) (Huang
and Phelps 1986) linked by arrows indicating transport between the various compartments
or network that relates the compartments based on known or assumed physiology. The
compartment may be a physical space such as an organ or may represent a metabolic or
bound state of the tracer. The amount of tracer leaving a compartment is usually assumed to
be proportional to the total amount in the compartment. The constant of proportionality (the
rate constant) has the unit of inverse time and denotes the fraction of the tracer that is in one
compartment that will leave the compartment per unit time. The kinetics between
compartments are described by a system of differential equations. A general formulation and
solution for n compartments is presented in Gunn et al (2001).

For example, assume that the concentration in the blood B(t) is known. (Throughout we are
going to assume that blood and plasma are the same. See section 2.3 for a discussion about
the bias incurred when the tracer exchanges between red blood cells and the blood plasma.)
The rate equation for the extravascular compartment (intracellular and extracellular space in
the extravascular tissue, figure 5) with concentration CEV(t) is

(1)

where VEV is the volume of the extravascular compartment, P1 and P2 (in units of cm
min−1) are the permeability coefficients for flux out of and into the capillary, respectively,
and S(cm2) is the surface area of the capillary in the sampled voxel. Setting K1 = (P1S)/VEV
and k2 = (P2S)/VEV, the rate constants in and out of the extravascular compartment are in
units of volume per minute per extravascular volume (VEV). If B(t) is the blood input, the
value of K1 includes flow as well as extraction. Throughout this review, we refer to it as
flow times extraction. (In the literature, others have used the terminology ‘flow extraction
product’.) Substituting K1 and k2 into equation (1), the differential equation describing the
exchange between the blood and extravascular compartment can be rewritten as

(2)

where the rate of change in and out of the extravascular compartment is proportional to the
concentration in the blood and in the extravascular compartment, respectively.
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Note that blood is not considered a compartment. For a compartment, the change in
concentration as a function of time is specified by a differential equation. In the applications
presented in this review, blood is not specified by a differential equation but instead is
estimated from the projection data. Also, the flow times extraction K1 is specified using a
capital letter instead of a lower case letter. Even though this is commonly found in the
literature, some authors will still use a lower case letter. The parameter K1 differs from k2 in
that it is a macro parameter (Gunn et al 2001), which is a function of flow (a global system
parameter) and the rate of extraction of the tracer from the blood into the extravascular
compartment. The parameter K1 is generally more stable with respect to parameter
estimation. We will see later that the estimation of k2 involves nonlinear estimation but if
known then K1 can be estimated using linear estimation techniques (see section 4.2).

The amount of tracer in a volume of tissue can deviate significantly in value from the
chemical concentration in individual spaces if the tracer does not distribute uniformly within
all spaces in the tissue. Thus, the ‘apparent distribution volume’ VD (see figure 6) is defined
at equilibrium as the volume of space that a tracer would occupy in the tissue extravascular
space VEV with the same concentration as in the blood (Huang and Phelps 1986),

(3)

where

Here, λ is known as the partition coefficient. The partition coefficient analogy comes from
the fact that a tracer might have different solubilities in different tissue types.

Strictly speaking, one should define the distribution volume or partition coefficient only in
terms of the definition given in equation (3). If we assume equilibrium, we can set equation
(2) to zero, which implies that K1B(∞) = k2CEV(∞) or the partition coefficient λ = CEV(∞)/
B(∞) = K1/k2 and the distribution volume is VD = (K1/k2)·VEV. Distribution volume is a
measure of how much is extracted by extravascular tissue at equilibrium. If a volume of
tissue has no net extraction, it is zero; but if all the material is extracted like a microsphere,
it is infinity. Thus the distribution volume concept is limited to situations where the wash-
out rate is greater than 0. In the literature, the distribution volume may be given the same
value as the partition coefficient by dropping the volume VEV from the expression.

2.2. Compartment modeling of cardiac perfusion
It is assumed that B(t) is known, either by fitting the input function to the measured
projections or by measuring plasma samples (figure 7). In this case, we have a one-
compartment model (figure 8) instead of a two-compartment model, since the kinetics of the
blood are estimated using an independent model. Thus, the differential equation in equation
(2) completely describes the kinetics of the model. It is assumed that the blood concentration
measured in the left ventricular cavity represents the blood concentration of the particular
radiopharmaceutical that is available to perfuse into the myocardium.

The activity concentration in the tissue at the time point t is modeled as
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(4)

where AT is the model of the myocardial tissue activity concentration (e.g. MBq/cc) in the
ROI, fv is the vascular fraction of blood in the tissue, B(t) is the measured activity
concentration in the blood at time t, CEV(t) is the activity concentration in the extravascular
compartment at time t and (1 − fv ) is the fractional volume of the extravascular space. The
blood activity concentration B(t) is measured using an ROI drawn inside the left
intraventricular cavity. The fractional blood volume fv accounts for blood in the myocardium
capillaries as well as spill-in from the ventricular cavities due to partial volume effects,
scatter, and lung and cardiac motion. This can be as high as 35–45% in dynamic SPECT
applications. The septum will contain spill-in from both right and left ventricular cavities,
whereas the lateral wall of the left ventricle will contain contamination primarily from the
left ventricular cavity. The spill-in varies with the tomographic resolution and motion
compensation accuracy. There can also be significant contamination from scattered events
detected from the liver since myocardial perfusion agents have high liver uptake. Using the
RV cavity as a source for an input function does not work well because of the dispersion
through the lungs, the time difference from RV to LV, and potential loss of tracer from the
blood into the lungs.

The activity concentration CEV(t) from the extravascular compartment is given by the first-
order ordinary differential equation in equation (2), which describes the kinetic exchange
between the blood and the extravascular space for the compartment model shown in figure
8. If all concentrations are zero at t = 0, the solution to the differential equation in equation
(2) is

(5)

(6)

The transfer function (response to an impulse) for CEV(t) is H1(t) = K1 e−k2t (Gunn et al
2001). The parameters K1 and k2 represent the respective wash-in and wash-out rate
constants of the radiopharmaceutical. The units of K1 and k2 are (ml min−1)/(ml of
extravascular space), but the units of K1 and k2 will be stated simply as min−1. It is common
in the literature to give units for K1 as (ml g−1 min−1). For tissue, a milliliter of tissue has a
mass of approximately 1 g, therefore the units of min−1.

The perfusion model presented here has been used to follow the dynamics of the myocardial
perfusion agents 201Tl, 99mTc-teboroxime and 99mTc-sestamibi. 201Tl is a potassium analog
that accumulates in myocardial cells by active transport associated with the Na+/K+

adenosine triphosphatase pump (Iida et al 2003). It primarily exchanges between the high
concentration potassium pool in the cytoplasma of the myocytes and the lower concentration
of potassium in the blood pool. 201Tl has a high transcapillary extraction fraction and is
rapidly cleared from arterial blood and taken up into myocardial tissue. Its half-life in the
human subject can vary with the time dependent blood concentration. 99mTc-labeled
sestamibi (Maublant et al 1992, Allman et al 1992, Williams and Taillon 1995, Gioia et al
1996, Maunoury et al 1996, Flamen et al 1995) is more widely used to image perfusion in
clinical studies and in some cases is used with 201Tl in rest(201Tl)/stress(99mTc-sestamibi)
protocols. Sestamibi has a biological half-life in the myocardium of 6 h. 99mTc-teboroxime
(Leppo and Meerdink 1989, Leppo et al 1991, Rumsey et al 1992, Maublant et al 1993,
Rosenspire et al 1993) is a boronic acid of technetium dioxime (BATO) complex that is

Gullberg et al. Page 18

Phys Med Biol. Author manuscript; available in PMC 2012 March 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



stable, neutral and lipid soluble. Teboroxime has the fastest clearance time (a 10–15 min
half-life in the myocardium) (Leppo and Meerdink 1989) of the three tracers and is 90%
extracted in the first pass. It is highly linear with flow. However, even though teboroxime is
highly extracted on the first pass, there is an indication that extraction from subsequent
passes may be affected by the binding of teboroxime to blood cells and plasma proteins
(Rosenspire et al 1993), as well as by any changes it might undergo from the chloro to the
hydroxide form, which has a lower affinity for the myocardium (Rumsey et al 1992).
Dynamic cardiac SPECT studies (Smith et al 1994, 1996, Di Bella et al 2001) indicate that
the wash-in rate constant for teboroxime is greater than that for thallium and in one case
indicated that the wash-in rate constant for thallium (K1 = 0.44 min−1) was half that for
teboroxime (K1 = 0.94 min−1) (Gullberg et al 1999). Thallium distributes as an analog of
potassium, thus should follow the membrane polarization/depolarization activity. If this is
compromised in ischemic tissues, the wash-in rate constant is expected to decrease.
Research indicates that teboroxime has a lower degree of sensitivity to cellular metabolic
impairment (Leppo et al 1991, Maublant et al 1993) when compared to sestamibi or 201Tl.

It has been well recognized for years that 201Tl imaging is a sensitive measure of tissue
viability. Dynamic imaging of 201Tl may prove to be an even more sensitive measure of
tissue viability using volume of distribution measurements [VD = (K1/k2)] instead of static
imaging (Gullberg et al 2004). These studies indicated that the distribution volume of
teboroxime was an indicator of tissue viability but that the distribution volume of thallium
provided an even better contrast of tissue viability. Dynamic SPECT may simultaneously
enable measurement of both cardiac tissue perfusion and tissue viability.

The one-compartment model shown in figure 8 assumes the following: (1) the time–activity
curve of the blood can be measured independently of the extravascular compartment of the
myocardial tissue, (2) all myocardial tissue regions exchange the tracer with blood, (3) the
distribution of the tracer is homogeneous throughout the ROI and (4) the tissue ROI contains
only regions of blood and extravascular compartments. In dynamic cardiac SPECT, the
kinetic parameters are estimated for multiple 3D regions in the left ventricular myocardium.

Due to the low sensitivity of dynamic SPECT and the complexity of the physics of the
image detection process, a one-compartment model is usually used to model perfusion in the
heart. However, it has been proposed that a two-compartment model is more appropriate
for 201Tl kinetics and that it is important to sample plasma (blood void of red cells) to obtain
an accurate input function (Eberl 2000). In some earlier work, two- and three-compartment
models were used to model cardiac glucose and fatty acid metabolism of 123I-labelled IPPA
in cardiac studies (Gullberg et al 1999). However, there is the issue of which is the optimum
model for the data presented (Coxson et al 1997). Recent cardiac metabolic studies
(Okizakia et al 2007) have demonstrated that fewer compartments may be more optimal
even though the kinetics are best represented by more than two compartments.

2.3. Blood and tissue time–activity functions
If the input function is measured from an intraventricular ROI, there are partial volume
effects that contaminate the blood with adjacent tissue activity photons and the tissue with
blood activity photons. The contamination of the blood data with tissue activity photons is
especially evident with high liver uptake where there can be contamination (crosstalk), not
only due to partial volume effects but also due to the background from scatter. Cardiac
motion will also make it difficult to obtain a pure blood input function (Ross et al 1997a).
Models of these effects were used to correct for the spillover of radioactivity both from the
myocardium into the LV ROI and from the blood into the myocardial ROI in PET H2

15O
flow studies (Iida et al 1991, 1992, 1995b). The partial volume effect in H2

15O studies was
also measured using data from a C15O (effectively labeled red cells) intravascular study in
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combination with the transmission data. Another problem is acquisition of the correct data
from plasma versus from whole blood. If there is exchange of the tracer with blood cells but
the wash-out is relatively slow, then measuring the blood time–activity curve in the
ventricular cavity may provide the wrong input function for myocardial tissue unless the
fraction trapped in the red cells is known. For 201Tl myocardial perfusion studies, it has been
shown that this can bias K1 (Iida et al 2008). In the delineation of the tissue ROI, care is
needed to avoid extending the borders beyond the anatomical myocardial volume. This too
can increase the partial volume effect (Welch et al 1995b).

Imaging results can be improved by optimizing the shape and sampling intervals of the time
activity curves. From linear system theory, it is important to match the spectrum of the input
function to the frequency response of the organ (Chen 1984). One also needs to select an
acquisition (sampling) interval long enough to maximize statistics but short enough to have
the timing resolution necessary to accurately capture the time–activity curves during the first
few minutes of rapid change in the tracer distribution. Optimization of time sampling
intervals is important for achieving best estimates of kinetic parameters in terms of bias and
variance. Measuring the input dynamics rapidly is probably more important than measuring
organ dynamics rapidly. In SPECT, hardware limitations hinder achieving short acquisition
intervals, which results in trade-offs between bias and variance. A study (Ross et al 1997b)
has shown that longer acquisition intervals (10, 20, 40 s) result in the most accurate
estimates of kinetic parameters when flow times extraction is high, such as during stress. At
rest, with low statistics, a rapid infusion always provides optimal estimates of kinetic
parameters. The smallest amount of bias is observed with a 10 s acquisition interval, and the
smallest amount of variance is seen with a 20 s acquisition interval. When the count rates are
doubled, longer infusions and shorter acquisition intervals provide more accurate estimates
of kinetic parameters during a resting state. When flow times extraction is increased during
stress, longer acquisition intervals result in better estimates, indicating that good statistics
are more important than temporal sampling resolution when estimating fast kinetics.

To alleviate some of the problems of having to measure the input function either from the
imaging data or from frequent arterial blood samples, it has been proposed to develop a
library of input functions. It has been shown that population-based input functions calibrated
with one or two blood samples could be used as the input function in brain blood flow
studies using SPECT (Iida et al 1994, Onishi et al 1996). Also, library-based input functions
could be used for measuring myocardial blood flow using 201Tl (Eberl 2000). Another
approach is to first fit the noisy blood sampled data to a physiological model of the input
function, then use the fitted input function to estimate the kinetic model parameters (Feng et
al 1993).

Methods of blind estimation eliminate the need to measure an input function. Blind
estimation usually limits which kinetic parameters can be estimated absolutely. For the one-
compartment model, the flow times extraction K1 and the blood fraction fv are not estimated
absolutely (Di Bella et al 1999, Fluckiger et al 2009). This has also been studied for a three-
compartment model (Riabkov and DiBella 2004).

Many of the issues discussed in this section have been studied for conventional methods of
estimating kinetic parameters from time–activity curves generated from a dynamic sequence
of reconstruction images. The focus of this review is the estimation of these kinetic
parameters from projection measurements, and the same issues raised here will be important
in the estimation of blood input time–activity curves and kinetic model parameters from
projections.
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2.4. Estimation of kinetic parameters
The goal of parameter estimation in dynamic SPECT is to extract quantitative physiologic
information about organ function from dynamically measured data. Parameter estimation is
a branch of mathematics and statistics (Zar 1984, Brownlee 1984, Deutsch 1965, Beck and
Arnold 1977, Bard 1974) that involves the development of methods that make efficient use
of data in the process of estimating parameters of mathematical models. The process of
parameter estimation involves the interplay between experimental design, model
specification and techniques of data collection (Carson 1986b). The collected data are used
in the estimation process to produce parameter estimates of the model. On the basis of a
statistical model of the data, the estimation procedure produces improved parameter
estimates and statistical measures of their accuracy and precision. Careful statistical analysis
and hypothesis testing of the results provide a feedback mechanism whereby the model, the
data collection protocol and the parameter estimation process can be evaluated and
modified.

The model is a mathematical formulation that uses a set of parameters that reflect local rates
of physiologic transport and biochemical reactions. Because of physical complexities of the
image detection process, the models used in dynamic cardiac SPECT must necessarily be
relatively simple. The process of estimating the model parameters requires maximizing a
likelihood function with a statistical model that appropriately represents the statistics in the
data. In general, statistical models for the data can be very complex if the data are
reconstructed time–activity curves that contain correlations between the curve values in both
time and space. The maximization of the likelihood function may involve either nonlinear or
linear methods to estimate the parameters (see below).

Careful analysis of the parameter estimates provides useful information about the
appropriateness of the entire estimation process (Carson 1986b). Tests for goodness-of-fit
can be used to determine whether the model has captured all of the deterministic
characteristics of the data (Draper and Smith 1966, Dixon and Massey 1969, Brownlee
1984, Zar 1984). If the noise level is known, one quick and easy test is to determine whether
the chi-square of the fit is equal to the number of degrees of freedom (see chapter 12 of
Taylor (1982)).

2.4.1. Nonlinear methods—Model parameters are estimated directly from dynamically
acquired SPECT projection data or from blood and tissue curves of a particular ROI
estimated directly from projections. The process of estimating kinetic parameters of the
compartment model is a nonlinear estimation problem (Deutsch 1965, Bard 1974). An
iterative algorithm is used to solve the model parameters. If time–activity curves have been
estimated, an iterative algorithm, such as that found in the computer software package RFIT
(Huesman et al 1995), may be used to fit the model parameters so that the sampled time–
activity curves in the tissue ROIs fit the predicted time–response curves of the model. The
program estimates the model parameters and the statistical errors.

In the development presented later (see section 5), blood and tissue time–activity curves are
estimated directly from the projection measurements. Because this function is known only
from measurements of the dynamic reconstructions, it has statistical fluctuations. The kinetic
parameters are estimated for each ROI by fitting the measured tissue data to a model of the
dynamic emission tomographic reconstructions with a noisy input function (Huesman and
Mazoyer 1987).

2.4.2. Linear methods—The Patlak method (Patlak et al 1983, Patlak and Blasberg 1985,
Gambhir et al 1989, Kordower 2000, Choi et al 1991, 1993, Maguire et al 1997, Gill et al
2003, Wang et al 2008) is a linear approach to estimating kinetic parameters. The Patlak
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analysis depends on irreversible trapping of at least a portion of the tracer. It is a simplified
linear kinetic modeling technique that was originally developed as a graphic method
performed by linear regression of time–activity curves (Patlak and Blasberg 1985). The
method does not assume any particular kinetic model and involves only linear estimation
techniques. The limiting slope of the Patlak plot is the uptake rate constant of the system (or
the steady state response of the system), a very useful quantitative index for characterizing
the kinetic properties of tracers. The Patlak method has been applied in the analysis of blood
flow (Choi et al 1993), FDG kinetics (Choi et al 1991) and has found application in many
disease studies (Gill et al 2003). The linear parameters of the Patlak model have also been
estimated directly from projection data (Maguire et al 1997, Wang et al 2008).

The Logan method (Logan 2000) is another linear method that assumes the kinetics have
reached an equilibrium. Whereas the Patlak method applies to irreversible systems, the
Logan method applies to reversible systems. The method transforms the system of
differential equations into a form in which the distribution volume is the slope of a linear
equation, which in the case of a one-compartment model is K1/k2. The estimation of linear
coefficients is much more straightforward than estimating the nonlinear parameters of
kinetic compartment models.

3. Spatiotemporal modeling of dynamic image data
Spatiotemporal basis functions are the basic building blocks for modeling the variation in
the reconstructed spatial distribution with time. Time-varying activity concentrations within
volumes can be modeled by selecting a set of temporal basis functions that are capable of
representing typical time variations and have desired smoothness properties. These may be
splines, FADS, curves that fit compartment models, polynomial expansions or several other
possible spectral decompositions. Similarly, the spatially nonuniform activity concentration
within a particular volume can be modeled by selecting an appropriate set of spatial basis
functions defined within the volume. These could be splines, point clouds of tetrahedral
elements, blobs, various types of polynomial expansions or indicator functions
corresponding to voxels. The number of basis functions and their spatial and temporal
extents can be varied so that the spatiotemporal basis can optimally model the spatial and
temporal content of the data with the fewest number of basis functions. This provides a
multi-resolution structure that is ideal for estimating the parameters from projection data.
Given a set of temporal basis functions and a set of spatial basis functions, coefficients for
the resulting spatiotemporal basis functions can be estimated directly from the projections
(Reutter et al 2000).

Mathematically, the activity distribution A(x, t) in image space is modeled using the
following spatiotemporal basis functions,

(7)

where Sm(x), m = 1, …, M, are spatial basis functions; Vmn(t), m = 1, …, M; n = 1, …, N, are
temporal basis functions and amn are the coefficients of the basis expansion. The temporal
basis representation is generalized so that it is indexed with the spatial basis function Sm(x).

Previously, we denoted AT (t) (equation (4)) to specify a particular one-compartment model
for myocardial tissue. Here, we provide a general representation of the activity concentration
as a function of space x and time t in terms of spatial and temporal basis functions. The
following discussion provides examples of different selections of bases and includes
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examples where the spatial and temporal basis functions are completely independent, being
connected only by the coefficient indexed by both types of basis functions, whereas in
equation (7) the temporal basis functions are dependent on the index of the spatial basis
function.

The goal is to parameterize spatially non-uniform activity within segmented volumes and to
include smooth temporal changes within volumes, and so provide 4D and 5D representations
of dynamic reconstructions. The approach is to model continuous anatomy throughout
continuous time rather than through the use of small image voxels at discrete time segments.
This reduces the size of the parameter space and reduces noise. The following exposition
contains some examples of temporal and spatial modeling using spatiotemporal basis
functions.

The projections of the activity A(x, t) are written as a function of the detector position d at
time t (see figure 9),

(8)

where A(x, t) is the spatiotemporal distribution of tracer with x ∈ image space χ. The
weighting function F [x, d(t)] maps the activity A(x, t) into the projection P (d, t) with
detector position d(t) at time t. Therefore, in terms of the spatiotemporal basis functions, the
projections are expressed as

(9)

where

(10)

is the projection of the spatial basis function Sm(x) at the detector sampling position d(t).

The projection data can be recorded as individual events of radioactive emissions of the
radioisotope (list mode) or the accumulation of events in a detector bin di (t) over the
acquisition time interval Δtk divided by Δtk so that the value at all time points is in terms of
activity concentration in units of counts per unit time. The projection at tk in projection bin i
is the activity acquired over time Δtk,

(11)

(12)

where tk, k = 1, …, K is the time at which the projection samples pi (tk), i = 1, …, I, are
acquired (figure 9). The number of projection rays per projection angle is denoted by I. The
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total number of time samples is K. This expression is a general parameterization of both
space and time. This can be represented in matrix form as

(13)

where p is an IK-element column vector of modeled dynamic projection data values, F is an
(I K) × (MN) system matrix containing the elements

(14)

a is an MN-element column vector of coefficients, I is the total number of projection
measurements acquired by the SPECT detectors and MN is the number of basis functions
that span the space and time to be reconstructed.

The forward projection operator F is a linear transformation from the image space with
elements a into the projection space with elements p. The matrix F includes effects of the
physics of the imaging detection process, which include attenuation (Gullberg et al 1985,
1989, King et al 1995, 1996), geometric response of the collimator (Tsui et al 1988, Zeng et
al 1991, 1994, Formiconi et al 1989, Penney et al 1990, McCarthy and Miller 1991, van
Elmbt and Walrand 1993, Glick et al 1994) and scatter (Welch et al 1995a, Zeng et al 1999,
Bai et al 2000, Laurette et al 2000, Floyd et al 1985, Liang et al 1992, Frey and Tsui 1993,
Meikle et al 1994, Beekman et al 1996, 2002, Kadrmas et al 1998). A photon is emitted by a
radioactive nucleus traveling in all possible 4π directions. The geometric acceptance of the
collimator holes is of the order of 10−5. Also, the photon could be attenuated, meaning that
it is not detected at all by the camera, or the photon could be scattered and detected
incorrectly on the detector, thus making it unclear as to where the photon originated and
blurring the projected image. These effects are modeled by the system matrix, such that the
system matrix contains elements fik(mn) that are proportional to the probability that the
photon emitted from the support of the basis function Sm(x) during the time t corresponding
to the intersection of (tk − Δtk, tk) and the support of Vmn(t) is detected in a projection bin i.

3.1. Spatial and temporal modeling using splines
The use of splines provides an efficient and accurate method of composing continuous
functions from discrete samples. Cubic spline functions are probably the most popular. They
form smooth functions from fitted data, and cubic spline interpolations do not exhibit
oscillatory behavior that is characteristic of high-degree polynomial interpolation.

There are various examples where splines have been used to model dynamic data. Work was
done in which five piecewise polynomial spline functions defined over four contiguous time
segments were used to fit the blood input function (Chen et al 1991). The segments were
determined by varying their endpoints in a prescribed fashion and using the set that yielded
the smallest weighted sum of squared errors, averaged over 100 simulated data sets. Others
(Nichols et al 1999) first calculated the temporal histogram for all of the data to model the
time course of activity in voxels reconstructed from dynamic list-mode PET data. The
segmented endpoints for cubic B-splines were defined by selecting a set that yielded
approximately equal arc lengths along the resulting time–activity curve.

For the modeling of dynamic cardiac SPECT data, constant, linear, quadratic and cubic B-
splines were compared (Reutter et al 2000). A basis of 16 B-splines (see figure 10) spanning
15 time segments that have geometrically increasing lengths were used such that the length
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of the initial time segment was varied, and the errors in the time–activity curve estimates
and the subsequent kinetic model parameter estimates were compared.

In the examples in section 5.1, the temporal spline representation will be independent of the
spatial representation, i.e.

(15)

Therefore, the model given in equation (7) can be represented as

(16)

where the set of temporal basis functions is independent of each of the spatial basis
functions and the coupling of the two basis functions is through the coefficients amn.

3.2. Temporal modeling using compartment models
Imposing a compartmental relationship (defined by a first-order differential equation)
between blood and tissue activities into the spatiotemporal model will provide more
temporal regularization than is provided by splines alone. The general temporal model has
two components (blood and extravascular),

(17)

where equation (17) is precisely a generalization of AT (t) in equations (4)–(6) in section 2
by coupling the temporal basis to a spatial basis with index m, and where  is the blood
volume fraction,  is the wash-in rate constant,  is the wash-out rate constant for the
tissue region m and Vn(t) is a temporal basis function for a blood input function

. The spatiotemporal representation is

(7)

(18)

where

(19)

In Reutter et al (2005), splines were used to model the blood input function and a
physiological compartment model was used to model changes in activity for tissue volumes.
In Kadrmas and Gullberg (2001), a compartment model was used as a Bayesian prior to
constrain the time–activity curves for each voxel to fit a one-compartment model.
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3.3. Temporal modeling using factors of dynamic structures (FADS)
Factor analysis of dynamic structures (FADS) (Barber 1980, Di Paola et al 1982, Buvat et al
1993, Sitek et al 2002a) is a semi-automatic technique used to extract time–activity curves
from a series of dynamic images. In applying the method, the goal is to extract time–activity
curves that are physiological in that they represent blood activity or an uptake and wash-out
of a particular tissue region. The FADS method can separate partially overlapping regions
that have different temporal behaviors (Nijran and Barber 1985, Nakamura et al 1989,
Houston and Sampson 1997). FADS can also separate different physiological regions and
automatically define regions in the image that have the highest concentrations of blood or
tissue components. For cardiac studies, the estimation of factors from dynamic SPECT data
was originally accomplished using a dynamic sequence of reconstructed images (Sitek et al
1999b, 2000, Hu et al 2008). However, the method has been shown to be effective in
estimating factors directly from projection measurements as well (Hu et al 2008, Sitek et al
2001).

Factors are temporal functions that have physiological interpretation (one possibility is a
blood input function) so that the elements of the factor curves are non-negative. In the factor
model, it is assumed that activity in each tissue region m is a linear combination of factors.
The general temporal model has the form

(20)

where for each index n there is a factor Fnk (k = 1, …, K) which is a discrete time–activity
function, and χk (t) is a characteristic function with χk (t) = 1 for tk − Δtk ≤ t ≤ tk and 0
otherwise. Note that for a given factor Vn(t), this temporal model is the same for all spatial
elements m. The total activity as a function of space and time can be written as

(15)

(21)

where M is the number of spatial basis functions (e.g., may be voxels), N is the number of
factors and K is the number of time samples. Usually, the number of factors N is equal to the
number of physiologic factors—that is, volumes exhibiting unique kinetics that are actually
present in the medical image—but this need not always be the case (Nakajima et al 1991).
Note that even though the representation in equation (21) is discrete in time and thus
corresponds to a spline representation of zero order, higher order splines can also be used.

3.4. Summary
The material in this section presents the foundation for spatial and temporal representation
of the evolution of in vivo physiological processes. An important aspect of the formulation is
the flexibility to allow multigridding of both spatial and temporal domains in order to reduce
the indeterminacy of the problem of estimating dynamic parameters directly from
tomographic projection measurements. The next sections show how direct and semi-direct
methods use the basic building blocks of spatiotemporal basis functions to estimate dynamic
processes directly from dynamically acquired projection data. The ultimate goal is the
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eventual quantification of physiological processes (perfusion, metabolic rate, etc) by
estimating kinetic parameters of compartment models.

4. Estimation of kinetic model parameters from projections—direct
methods

The time–activity curves and kinetic model parameters are estimated directly from dynamic
SPECT projection data by modeling the spatial and temporal distributions of the
radiopharmaceutical throughout the projected field-of-view for all time. In section 4.2, a
compartmental model-based approach is presented for estimating kinetic parameters directly
from projections. The organs are assumed segmented (see section 4.1) so that the blood
input can be identified and the appropriate models can be formulated for each tissue type.

The segmentation step is not essential but it can reduce dimensionally and the accuracy of
the procedure is critical in reducing bias. If the segmented ROI is larger than the desired
organ of interest, there could be cross talk from other organs. If the other organ has lower
counts, then the time–activity curve for the organ of interest will be too low. If the other
organ has higher counts, then the time–activity curve will be too high. The effect on the bias
would be the same as that experienced when manually sampling ROIs in the heart (Welch et
al 1995b).

4.1. Segmentation
4.1.1. Static segmentation of ungated data using 4D differential boundary
detection—The estimation process begins with an image segmented into blood pool, S
tissue types of interest and background, as shown in figure 11. In this example, a differential
4D segmentation method was used to automatically create geometric models of the surfaces
bounding volumes of time-varying tracer uptake in the myocardium, liver and body from
dynamic SPECT images in a late time frame. This method was previously used to
automatically segment the time-varying body and lung surfaces in human respiratory-gated
PET transmission images (Reutter et al 1997). Bilinear interpolation is used to obtain sub-
voxel spatial localization of the zero crossing points. In the output of a second directional
derivative operator, the zero-crossing points are linked together to form contours in each
spatial plane (Wallin 1991). These contours are linked together to form 3D surfaces.
Information about the centroid, bounding box and average image intensity gradient across
each contour, as well as each surface, is stored to facilitate identifying the surfaces. The
myocardium, liver and body surfaces are identified as being relatively large surfaces
associated with relatively high image intensity gradients. Data are analyzed efficiently in 4D
over appropriate spatial and temporal scales to extract and to physically model the surfaces
bounding volumes of time-varying tracer uptake. This structured analysis imposes spatial
and temporal continuity that complement the information which is available from
unstructured image voxel intensity alone.

4.1.2. Dynamic segmentation of cardiac-gated data using level sets—The organ
boundaries can also be determined using level set methodology (Osher and Sethian 1988,
Sethian 1996, Osher and Fedkiw 1999), which is a simple method for computing and
analyzing motion of a surface in two or three dimensions. The surface is specified as the
zero level set of a smooth function. This approach allows importation of mechanical
constraints, and it simultaneously segments organ boundaries and estimates model
parameters of changing activity concentration (Shi and Karl 2003, Feng et al 2003b, Shi and
Karl 2004).
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4.2. Compartmental model-based approach
From the segmentation into anatomical structures of blood, background and myocardial
tissue, the activity is modeled by the following spatiotemporal basis functions,

(22)

where χB (x) and χG(x) are characteristic functions for the segmented blood pool and
background defined on the entire image, i.e. these functions equal 1 if x is an element of the
region and zero otherwise. Also, it is assumed that the background tissue follows some
constant fraction g of the blood input.

For a one-compartment kinetic model (figure 8, equation (4)), the expression for the uptake
in the tissue type m is

(23)

where

and  is the wash-in parameter,  is the fraction of blood in the tissue and  is
given by

where  is the wash-out parameter and B(τ) is the blood input function. In the following,
the blood input function is parameterized by the expression

(24)

where Vn(t) the temporal basis functions and  are coefficients of the expansion for B(t).
Therefore

(25)

where

(19)

and
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(26)

(27)

Substituting this expression for  and the expression for B(t) in equation (24) into
equation (22) gives

(28)

where the spatial basis functions in equation (22) are assumed to be , i.e. the
spatial basis functions are taken to be voxels or tissue regions of unit weight.

The projections are written as a function of detector position d at time t (figure 9)

(8)

where A(x, t) is the spatiotemporal distribution of the tracer with x ∈ image space χ. From
the segmented image, a model of the attenuation distribution is created and the attenuated
unit activity projections of the blood pool, tissue and background regions are calculated for
each projection ray of each projection angle. That is, the number of events that would be
detected from each region, given a unit concentration of activity within the region, is
calculated for each projection bin acquired at each projection angle.

Substituting the expression for A(x, t) in equation (28) into equation (8) gives the following
expression for the projection,

(29)

(30)

(31)

(32)

The sampling of the data can be very irregular in time. Therefore, it is assumed that the time
tk specifies some projection angle θ(tk). The model does not imply that the detector needs to
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be stationary or that the tracer distribution is constant during the time interval Δtk. The
projection pi (tk), i = 1, …, I is the activity acquired over a time Δtk for projection bin i,

(11)

Substituting P(di (t), t) from equation (29) into equation (11),

Note:  from equation (25). Simplifying

(33)

where

(34)

(35)

(36)

(37)

Note  from equation (19). Rearranging the summations and
bringing the summation over n outside, the expression for the projection bin i at tk is given
as

(38)

The constants  and  are pure geometrical weighting factors for blood,
background and tissue type m, respectively. These equations are linear in the unknowns g,

 and . The nonlinear parameters  are contained in . For a list mode
acquisition, these weighting factors become more precise as a function of the event arrival
time.
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In the following equation, (38) is reformulated as a matrix equation. The wash-out
parameters are elements of the vector

(39)

the multiplicative parameters are elements of the vector

(40)

and the parameters of the unknown blood input function are elements of the vector

(41)

From the segmented image, the projections of the activity of the blood pool, tissue and
background regions along each projection ray for each projection angle are modeled. At a
particular time tk (corresponding to a particular projection angle acquired during a particular
rotation), the projections of the activity in the blood pool, background and tissue type m
along each of the I projection rays are represented by the vectors

(42)

The total projection samples are represented by the vector

(43)

Thus, a set of I · K equations can be written as

(44)

where

(45)

(46)
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(47)

This gives

(48)

or

(49)

where

(50)

To determine estimates of the model parameter vectors λ and μ, the background constant
factor g and the input parameters β, the weighted sum of squares is minimized,

(52)

where p̃ are the measured projection data and the matrix W contains the weighting factors.
Typically, W is either the inverse of the covariance matrix for the residual vector p̃ − R(λ, μ,
g)β or an identity matrix (for an unweighted least-squares fit).

Previously, efficient estimates of dynamic cardiac SPECT kinetic parameters of a one-
compartment cardiac perfusion model were obtained using weighted least-squares estimates
of dynamic reconstructions that were obtained from the inversion of the Fisher information
matrix (Gullberg et al 1999, Kadrmas et al 1999). Each reconstruction in the dynamic
sequence was implemented using matrix inverse reconstruction. The reconstruction was a
solution to a weighted least-squares optimization problem (where the weights were equal to
the measured projections assuming these to be the variances of a Poisson distribution),
which provided a weighted least-squares estimate of the reconstructed values and estimates
of the covariances between the reconstructed values. These estimates were used to generate
time–activity curves for (1) activity in a blood region inside the left ventricle and a cardiac
tissue region, (2) the variance of the two estimates of the sums in the two regions and (3) the
covariance between the two ROI estimates. The weighted least-squares estimates and
covariances for the reconstructed time–activity curves were fitted to a one-compartment
perfusion model to obtain weighted least-squares estimates of the kinetic model parameters
(wash-in, wash-out and fractional blood volume). It was shown that the weighted least-
squares estimates of the kinetic model parameters gave lower variance than the unweighted
least-squares estimates. Typically, the image matrices are large and, therefore, it is difficult
to invert the Fisher information matrix to obtain a weighted least-squares estimate of the
reconstruction and the covariance matrix. Typically, the sequence of reconstructions is
obtained using ML (Lange and Carson 1984) or MAP (Levitan and Herman 1987) iterative
algorithms, which properly model the Poisson statistics and the physics of the data
acquisition. Work by Barrett et al (1994), Fessler (1996), Wang and Gindi (1997), Qi and
Leahy (2000), Stayman and Fessler (2000) and Qi (2003) has developed formulas for
estimating the errors in the reconstructions obtained from iterative reconstruction
algorithms.
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The appealing thing about estimating the kinetic parameters from projections is that the
weighting matrix in equation (52) is directly related to the measurement errors, which are
often assumed to be independent Poisson random variables with variance equal to the
measured data provided the manufacturer has not preprocessed the data.

If the input function is known, then the least-squares problem can be simplified (Huesman et
al 1998, Gullberg et al 1999). It has been shown that, if there is no wash-out from the
compartment, that is, , the estimation from projections can be reduced to a linear
estimation problem (Vanzi et al 2004).

In some cases, the wash-out parameters  associated with a one-compartment model may
be known then the multiplicative parameters associated with the model can be estimated
directly using linear estimation methods. Compartmental modeling imposes constraints on
the relationship between blood and tissue time–activity curves. For example, if the tracer or
radiopharmaceutical is a physical or a chemical microsphere that is trapped in blood
capillaries, within the cell or on a surface membrane protein, then it would be natural to let

 be zero. With agents such as 123I-iodorotenone and 99mTc-sestamibi, the wash-out is very
slow and in the early phase of the study it can be assumed that the wash-out parameter is
zero. This is the case when the data acquisition may not be extended long enough to acquire
the wash-out phase of the tracer.

4.3. 4D maximum a posteriori reconstruction of dynamic data (one-compartment model for
every voxel)

In the previous section, segmentation was performed to obtain like tissue regions for fitting a
compartment model from projections. This was done to reduce the dimensionality of the
problem. Another approach is to allow each voxel to be a separate tissue region that is
constrained to fit a compartment model. Every voxel can be constrained to fit a compartment
model given in equation (4). If the voxel is in the intraventricular cavity, for example, then fv
in equation (4) will be 1.00. This approach significantly increases the dimensionality of the
problem from that of the previous section.

The activity distribution in each voxel m is represented by spatiotemporal basis functions

(53)

(54)

The projection equations are

(55)

where the pi (tk) are the modeled projections,  are the fraction of blood in tissue m,  are
the linear coefficients associated with the blood temporal basis functions Vn(t),  are
given in equation (36) and  are given in equation (37).
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As in section 4.2, the solution (a, fv, K1, k2) can be determined by minimizing the weighted
sum of squares function,

(56)

where p̃i (tk) are the measured projections, Wik are the weighting factors, I is the number of
projection rays per angle and K is the number of projection samples over all time. The
weighting factors are either unity for an unweighted fit or the reciprocal of the estimated
variances of the projections for a weighted fit.

Instead of solving equation (56), consider the application of Bayes’ theorem,

(57)

where the probability density function P (A(x, t)) is

(58)

and

(59)

is the activity at time tk in tissue type m for an assumed one-compartment model, μ̄mk is the
mean activity for tissue type m at time tk and  is the variance for the activity for tissue
type m at time tk. Equation (58) imposed an a priori constraint on the solution.

The likelihood function in equation (57) can be written as

(60)

where

(61)

Substituting equation (61) into the following expression for the a posteriori probability
distribution in equation (57),

(62)
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and taking the natural logarithm gives

(63)

The (âB, f̂v f̂1, k̂2)that maximizes equation (63) can be determined by directly maximizing
equation (63) using an optimization algorithm such as the conjugate gradient algorithm, or
using an ordered-subset implementation of the expectation-maximization approach to
maximizing the a posteriori probability distribution in equation (57) (Kadrmas and Gullberg
2001).

4.4. Spectral approach (multi-compartment model for every voxel)
Suppose the tissue region m satisfies a multi-compartment model instead of a one-
compartment model assumed in sections 4.2 and 4.3. One could specify the model for the
tissue region by specifying the number of compartments (Gunn et al 2001), or allow it to be
a spectrum of exponentially decaying factors (Cunningham and Jones 1993). This is a more
general parameterization of the kinetics, independent of any particular compartment model
architecture that allows for a series of exponential terms with linear coefficients. The
spectral analysis involves the estimation of the coefficients of these pre-selected exponential
functions. This approach allows convenient solutions via linear methods.

Suppose that each tissue region has a transfer function Hm(t). For a one-compartment model,
. For several compartments, the transfer function would be a sum of several

exponentials, Gunn et al (2001). Note that here we do not identify a λr
with a tissue region m but instead allow the coefficient  to give the appropriate weight to

the exponential with a decay constant λr. One could also write this as 
where the exponential basis functions change from tissue region to tissue region. The
coefficients  of the basis functions are all greater than or equal to , the decay
constants are bounded below by the decay constant λ of the radioisotope, , and R
is the maximum number of basis functions allowed in the model. The problem is
determining the values of  that best fit the measured data given predefined values for .

We know from Gunn et al (2001) that . In the case of a one-compartment
model,  provide a spectral representation of  in a particular region or voxel.

In the following formulation, it is assumed that each voxel or tissue region has a transfer
function specified by a series of exponentials. The tissue time–activity curve  for the
voxel m is modeled as a fraction  of the arterial blood time–activity function

 plus a linear combination of single exponential basis functions in time,
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convolved with the same arterial blood function B(t). The expression for uptake in voxel m
is

(64)

where γm and λm are vectors  and  and

(65)

Substituting , we obtain

(66)

where

(67)

The projection equations for activity accumulated over [tk − Δtk, tk ] are expressed as

(8)

(11)

For the activity in equation (64), the projection is

(68)

where  is given in equation (36) and

(69)

(70)

Rearranging terms in equation (68), we have
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(71)

The total projection samples are represented by the vector

(72)

Thus, a set of I · K equations can be written as

(73)

where

(74)

(75)

(76)

This gives the following expression

(77)

or

(78)

where

(79)

(80)
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This is the most general formulation for fitting a multi-compartment model for each voxel to
projection measurements.

The parameters λ, μ and β are solved by least-squares minimization. Constraints imposed are
 and . The spectral components for every pixel in the image are determined

directly from the projections by non-negative least squares technique. Computationally, this
can be a large problem. It can be broken up by first determining spectral components for
each projection sample (Meikle et al 1996, 1998). The spectral components for each pixel
can then be reconstructed from the spectral components of the ray sums. Alternatively, a
reduced-basis set can be formed and the Moore-Penrose pseudoinverse can be used to find
the coefficients of the basis (Maltz 2000a).

4.5. Summary
In Zeng et al (1995), the parameters of a one-compartment model were fitted directly from
the projection measurements. It was shown that biases in parameters estimated from the
time–activity curves generated from the reconstructions were eliminated by estimating the
parameters directly from the projections. The estimation from projections was performed by
(1) first estimating the multiplicative factors using a linear estimation technique and (2) then
estimating the exponential factors by reducing the nonlinear estimation problem to a linear
estimation problem by using linear time-invariant system theory. The estimation was
performed on the sum of the counts in a projection.

Later, the problem was formulated as a minimization of a weighted sum of squared
differences between the projection data and the model predicted values (Huesman et al
1998). A one-compartment model was assumed for the simulated myocardium tissue, and
the blood input function was assumed to be known. Simulated data were used to show that
unbiased kinetic parameter estimates for one-compartment models could be obtained
directly from parallel-beam and cone-beam SPECT projections with proper segmentation of
volumes encompassing the projected field-of-view. These simulations systematically
incorporated physical effects, such as attenuation, and led to the development of methods
that were used to analyze a dynamic 99mTc-teboroxime patient study (Reutter et al 1998b).
For this patient study, the blood input function was estimated directly from the projections,
and spatial models for the left ventricular myocardium blood pool, liver and background
tissue were determined (as shown in figure 11) by automatically segmenting a dynamic
volumetric image sequence reconstructed from the projection data.

Later on, a 4D maximum a posteriori (MAP) approach with a compartmental-model-based
temporal prior that constrains each voxel’s behavior in time to conform to a compartmental
model was developed for dynamic cardiac SPECT application (Kadrmas and Gullberg
2001). No a priori limitations on kinetic parameters were applied, but the parameter
estimates evolved as the algorithm iterated to a solution. The estimated parameters and
time–activity curves were used within the reconstruction algorithm to model changes in the
activity distribution as the camera rotates, avoiding artifacts that could result from
inconsistencies of data between projection views. The ordered-subsets maximum a
posteriori (OSMAP) algorithm resulted in images with better myocardial uniformity and
definition, yielded time–activity curves with reduced noise variations, and provided wash-in
parameter estimates with better accuracy and lower statistical uncertainty than those
obtained from conventional ordered-subsets expectation-maximization (OS-EM) processing
followed by compartment modeling. The algorithm removed the bias in K1 estimates that
can be caused by inconsistent projections from sampling schedules as slow as 60 s per time
frame. However, no improvement in wash-out parameter estimates was observed.
Incorporation of the compartmental relationship between blood and tissue activities into the
spatiotemporal model provides a temporal regularization. Such an approach is desirable for
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cameras with slow rotation protocols that result in poor temporal sampling and aggravate the
problems of data inconsistency. The temporal prior encourages the time behavior of the
image values to match a compartmental model. It also provides a means for modeling how
the distribution of the tracer changes as the camera rotates during the acquisition, thereby
addressing the problem of inconsistent projections. The framework is also well suited for
accepting spatially regularizing priors, and such priors could readily be applied to either
reconstructed voxel intensities or kinetic parameter estimates, as desired.

The 4D maximum a posteriori approach in section 4.3 assumes the time–activity curve for
each voxel is constrained by a one-compartment model. A generalization to multiple
compartments is presented in section 4.4, where it is assumed that the kinetics in each voxel
can be represented by a spectral decomposition of exponential terms. The solution can be
determined by least squares or by maximum a posteriori algorithms. However, the
computational effort increases significantly the more general the model.

In summary, the combination of camera gantry motion and the time-varying nature of the
radionuclide distribution being imaged results in inconsistent projection data sets. The
estimation of kinetic parameters from reconstructed time–activity curves results in biases.
Estimating the kinetic parameters directly from projections reduces these biases.

5. Estimation of kinetic model parameters from projections—semi-direct
methods

While the estimation of kinetic model parameters directly from projections can potentially
provide better variance and bias, it is more computationally demanding. Direct methods
involve solving a nonlinear estimation problem (Zeng et al 1995, Huesman et al 1998), and
the computational resources required for the straightforward solution of the embedded linear
least-squares subproblem grow linearly with the number of SPECT projection
measurements. These are nontrivial for typical patient datasets. To make matters worse, the
computational requirements for the straightforward solution increase quadratically with the
number of linear parameters. A more computationally efficient solution is to use semi-direct
methods in which spatiotemporal modeling of the kinetics of the radiopharmaceutical tracer
is implemented.

Semi-direct methods reduce the number of parameters and involve the process of solving a
linear problem before solving a nonlinear problem to determine the kinetic model
parameters. Semi-direct methods first estimate time–activity curves,

(7)

from projections

(9)

Then, the estimation of compartment model parameters is performed subsequent to direct
estimation of time–activity curves.

The following gives various examples of the formation of spatiotemporal basis functions.
First, splines are presented. These are used in many scientific applications to fit a continuous
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smooth function to discrete data. The estimation of spline coefficients is computationally
efficient; splines are free form and have finite support. Second, factors which are
physiological time–activity curves that are inherent in the data are presented. Then, time–
activity curves that rise to a maximum and then decrease monotonically (dSPECT method)
are presented.

5.1. Spline spatiotemporal basis functions
For the activity A(x, t) represented using splines as basis functions,

(16)

the projection equations can be expressed as

(81)

(82)

where

(10)

Integrating over the time interval Δtk yields

(11)

(12)

(83)

(84)

where pi (tk) are the modeled projections, amn are the linear coefficients associated with the
time integrals of the projections of the spatiotemporal basis functions, M is the number of
spatial basis functions and N is the number of temporal basis functions. The criterion that is
minimized by varying the linear coefficients amn associated with the time integrals of the
projections of the spatiotemporal basis functions is the weighted sum of squares function,

Gullberg et al. Page 40

Phys Med Biol. Author manuscript; available in PMC 2012 March 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(85)

where p̃i (tk) are the measured projections, Wik are the weighting factors usually taken to be
the reciprocal of the measurement errors, I is the number of projection rays per angle and K
is the number of projection samples in time.

Equation (84) can be rewritten in the matrix form as

(13)

and equation (85) in the form

(86)

respectively, where p̃ is an IK element column vector whose [i + (k − 1) I ]th element is pi
(tk), F is an I K × MN matrix whose {[i + (k − 1) I ], [m + (n − 1) M]}th element is fik(mn), a
is an MN element column vector whose [m + (n − 1) M]th element is amn, p̃ is an IK element
column vector whose [i + (k − 1) I ]th element is p̃i (tk) and W is an I K × I K diagonal
matrix whose [i + (k − 1) I ]th diagonal element is 1/Wik. The criterion χ2 is minimized by
the vector of spatiotemporal basis function coefficients,

(87)

The covariance matrix for the coefficients â is

(88)

where cov(p̃) is the covariance matrix for the measured projections. Given an estimate of
cov(p̃), estimates of the statistical uncertainties of the coefficients â are the square roots of
the diagonal elements of the covariance matrix given by Kimura et al (1990). In general, the
errors in the coefficients are correlated and the covariance matrix given by Kimura et al
(1990) has nonzero elements off the diagonal. If W = cov(p̃)−1,

(89)

A preliminary study reported on the biases that result from modeling various orders of
temporal continuity and using various time samplings when estimating time–activity curves
directly from dynamic cone-beam and parallel-beam SPECT projection data (Reutter et al
2000). Piecewise cubic, quadratic, linear and constant B-splines were used to model the
time–activity curves for the blood input, three myocardial volumes of interest, liver and
background tissue in simulated data. Segmented volumes encompassing the projected field-
of-view were modeled to contain spatially uniform activity concentrations. The effects of
spatial segmentation errors were also studied.

5.1.1. Comparison of conventional, semi-direct and direct methods using
computer simulations—Computer simulations were performed to compare a semi-direct
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method using splines with a direct method of estimating kinetic model parameters from
projections and with a conventional method of obtaining time–activity curves from a
sequence of dynamic reconstructions for a particular ROI. A dynamic version of the MCAT
phantom (Tsui et al 1993, Pretorius et al 1999) in figures 12(a) and (b) was created for the
simulations. A single 2D slice of the phantom was used for the experiment. The dynamic
phantom was constructed by summing each organ of the static phantom using weights
derived from the time–activity curves shown in figure 12(c) for each time frame. In this
way, a series of 2D phantoms were constructed, one for each time frame of the dynamic
acquisition. The time–activity curves shown in figure 12(c) were generated to mimic those
seen in patient studies. The myocardium time–activity curve was constructed using blood as
the input function while assuming a one-compartment model (figure 8) with wash-in and
wash-out rate constants and a blood fraction given in table 1. Each time–activity curve was
numerically integrated over the active acquisition time for each time frame. Projection data
were formed by projecting each time frame of the 64 × 64 dynamic phantom. A 15 min data
acquisition was simulated consisting of 15 revolutions of a single-head SPECT system,
acquiring 120 angles per revolution and 64 parallel projection samples per angle. The
simulated projections included the effects of attenuation and geometric point response, but
neither scatter nor noise. Dynamic sequences of 120 projections (complete revolution) every
60 s were reconstructed using a conjugate gradient algorithm to minimize an unweighted
least-squares criterion. Time–activity curves were generated from the reconstructed dynamic
sequence (conventional method). These data were submitted to RFIT (Huesman et al 1995)
to obtain the unweighted least-squares fit for the kinetic parameters. The regions selected for
the fit to the compartment model are shown in figure 12(a). From the known regions of the
intraventricular blood, myocardium and background, equations for the projections were
formulated using the reconstructed attenuation distribution to obtain expressions for the
attenuated projections. Using the system of projection equations for all regions, the kinetic
parameters for each region were simultaneously estimated directly from the projections
(direct method) (Reutter et al 1998a). Next, B-splines for time–activity curves were
estimated directly from projections using the same projection model (Reutter et al 2000),
and for these curves kinetic parameters were then estimated using RFIT (Huesman et al
1995) (semi-direct method). In each of the methods, the blood input function was assumed
to be known.

One can see in table 1 that the direct approach gives the best results, even though they are
only slightly better than those of the semi-direct method but significantly better than those of
the conventional method. The conventional method did poorly in the defect and did
reasonably well in the normal myocardium. The bias is primarily due to artifacts resulting
from inconsistent projection data and partial volume effects in the sampled ROI of the
reconstructed defect. Noise was purposely not included in the simulations. It was assumed
that the measured projections corresponded to the true mean and variance of a Poisson
random process. If noise had been added, assuming a Poisson distribution with mean and
variance equal to the random variable of the sampled projection, the results of an estimated
weighted least-squares reconstruction would have been biased.

5.1.2. Comparison of semi-direct and direct methods using data acquired from
a patient study—Data from a patient study were used to compare the estimation of kinetic
model parameters using semi-direct and direct methods for the estimation of kinetic model
parameters from projection measurements (Reutter et al 1998a, 1998b). Patient data were
acquired on a PRISM 3000XP SPECT system at the University of Utah using a fast data
acquisition protocol. First, a transmission scan was performed using a 153Gd line source as
the transmission source. The patient was stressed using adenosine. A dynamic acquisition
obtaining 120 projections over 360° every 10 s was initiated at the same time as the injection
of 925 MBq (25 mCi) of 99mTc-teboroxime. The attenuation map was reconstructed using
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20 iterations of the transmission ML-EM algorithm (Lange and Carson 1984). The
attenuation-corrected emission results were reconstructed using 20 iterations of the ML-EM
algorithm. A 4D second directional derivative operator was applied to the attenuation-
corrected dynamic image data set containing ninety 10 s frames to segment the regions of
the myocardial tissue, intraventricular blood, liver and background tissue. Figure 13 shows
the myocardial, liver and body surfaces extracted automatically at time frame 31
(corresponding to the interval 300–310 s).

The spatial activity concentration within these volumes was modeled by indicator functions.
From the segmented results, equations for the projections were formulated using the
reconstructed attenuation distribution to obtain expressions for the attenuated projections.
Using these equations, the kinetic parameters for the patient study were estimated directly
from the projections (direct) (Reutter et al 1998a). B-splines of time–activity curves were
estimated directly from projections using the same model for the projection measurements
(Reutter et al 2000, 2002, 2004a). Compartment model parameters were then estimated
using RFIT (Huesman et al 1995) for these fitted time–activity curves (semi-direct). The
results are in table 2. Here it is difficult to make a statement as to which is better.

5.1.3. Dynamic SPECT image reconstruction of projections acquired with slow
rotation using multi-resolution spatiotemporal B-spline image representation
—In the previous example, the data were acquired with a relatively fast camera rotation.
This study was performed to see how well time–activity curves could be estimated from
projections acquired with a relatively slow camera rotation (Gullberg et al 2007a, Reutter et
al 2007a). Projection data were acquired in 1 s time frames with an angular step of 5° per
frame on a GE Millennium VH Hawkeye SPECT-CT scanner at UCSF. The acquisition was
started immediately at the time of the injection of 740 MBq (20 mCi) of 99mTc-sestamibi.
Attenuation and depth-dependent collimator response were modeled, but not scatter. The 4D
B-splines were piecewise trilinear in space and piecewise quadratic in time. The splines
were organized on a 3D spatial grid that provided uniform sampling of 17.7 mm in each
dimension, and on a 1D temporal grid that provided nonuniform sampling intervals of 0–4,
4–15, 15–48 and 48–144 s during the first two gantry rotations. The 4D spatiotemporal
distribution was reconstructed via direct matrix inversion to minimize a penalized least-
squares criterion. Figure 14 shows results of the blood in the right ventricle at 15 s (figure
14(a)), in the left ventricle at 45 s (figure 14(b)), and the summed image (figure 14(c)) for
one transaxial slice. The use of nonuniform time sampling with piecewise-quadratic splines
yielded smooth time–activity curves that captured the relatively fast rise and fall of tracer in
the right and left intraventricular blood chambers, as well as uptake and retention of tracer in
the left ventricular myocardium (figure 14(d)).

5.1.4. Estimation of kinetic parameters directly from projections provides
more efficient estimators—Computer simulations of a human dynamic 99mTc-
teboroxime cardiac SPECT study using the MCAT phantom (figure 12) showed that the
additional temporal regularization provided by jointly estimating compartmental model and
blood input function parameters directly from projections resulted in improved precision of
parameter estimates, as well as comparable or improved accuracy (Reutter et al 2005). Four
hundred realizations of cone-beam SPECT projection data having Poisson noise were
generated. The simulation consisted of a 15 min dynamic cardiac data acquisition by a
single-headed SPECT detector system with cone-beam collimator (70 cm focal length)
providing 120 angles per revolution and 15 revolutions. The projection data were generated
from a mathematical phantom that was composed of 128 contiguous 1.75 mm thick slices
and contained M = 6 volumes of interest of uniform activity: the blood pool, three
myocardial tissue volumes (normal myocardium, septal defect, lateral defect), liver and
background tissue. Attenuation and geometric point response were modeled but scatter was
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not modeled. The simulated time–activity curves shown in figure 12(c) mimicked the
kinetics of 99mTc-teboroxime (Narra et al 1992).

Initially, time–activity curve models for all six volumes were estimated directly from noisy
projection data with use of 16 B-spline basis functions spanning 15 time segments having
geometrically increasing length. Piecewise quadratic B-splines were used with an initial
time segment length of 10 s. For noiseless projections, the modeling error was less than 2%,
where the error was defined to be the root mean square (RMS) difference between the
simulated curve and the spline model, normalized by the RMS value of the simulated curve
(Reutter et al 2000). Compartmental models were then fitted to the curves for the three
myocardial tissue volumes and the liver. These semi-direct compartmental model fits were
used as starting points for direct joint estimation of refined compartmental models and B-
spline time–activity curves for the blood pool and background tissue. The results in table 3
show that using B-splines to model the input function and directly estimating compartmental
model parameters and blood input function can improve quantitation of dynamic SPECT by
reducing the standard deviation of uptake and wash-out parameters for the septal and lateral
defects by 17% to 41%, compared to semi-direct methods that estimate time–activity curves
first and then fit compartmental models to the curves. Of course, the accuracy of the model
depends upon appropriately modeling the effects of the physics (attenuation, scatter,
geometric response) of the imaging detection process and defining the appropriate
compartment model for each tissue type. This also has important implications for the
estimation of kinetic parameters using dynamic PET.

5.2. Factor basis functions—factor analysis of dynamic structures (FADS)
Factor basis functions are estimated automatically from the data. They correspond to curves
which are derived from the data that exhibit a direct physiological interpretation. In the
factor model, each image is built from groups of voxels that have similar temporal behavior
(Chua et al 1993). These groups may or may not overlap. Identification of these groups
(voxels highly correlated in space and time) provides a segmentation of the imaged
distribution into organs that have similar physiological behavior. This differs significantly
from that of the dSPECT method discussed in the next section where there is no assumed
temporal correlation between voxels, but only a spatial correlation imposed by tomography
(i.e. each voxel has a separate independent time–activity curve).

One of the limitations of this approach is that the number of factors (number of groups with
similar time behaviors) needs to be specified a priori. By limiting the number of these
factors (usually not more than four are used), an approximation is used that all voxels are a
linear combination of a limited number of temporal basis functions. Increasing the number
of factors is difficult and probably not feasible, largely due to effects of non-uniqueness
(Sitek et al 2000, 2002b), which are very hard to address. This is especially true when
estimating factors from projections where it is difficult to spatially restrict the region that is
analyzed because the entire volume is seen on projections and thus the number of factors
may have to be limited more than the number used for FADS analysis of reconstructed
images.

For the factor model in equation (21), the number of unknowns is equal to N(K + M), which
is substantially lower than the NMK unknowns for the complete inverse problem (K is the
number of time points (projections), M is the number of spatial basis functions and N is the
number of factors or temporal basis functions). For renal studies (Sitek et al 2001), N was
chosen to be equal to 2 or 3. Although the number of unknowns is reduced by introducing
the factor model, we will see that the objective function becomes nonlinear.
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The counts in the projection bin i taken at the time tk, pi (tk) are expressed by the following
projection equations,

(90)

where

(10)

(11)

(12)

(91)

(92)

(93)

Estimates for a and F can be determined by constructing and minimizing the weighted least-
squares objective function,

(94)

(95)

The value of p̃i (tk) is the experimental value of counts in the ith projection bin collected at
the projection taken at time tk. I is the number of bins in each projection and K is the number
of projections or the total number of time samples. The value of fik(mk) is an element of the
system matrix. The element fik(mk) is proportional to the probability that the photon emitted
from the support of the basis function Sm(x) pixel i at time tk is detected in bin i of the
projection taken at time tk. N is the number of factors and M is the number of basis functions
representing the spatial distribution of the image. The elements Wik are elements of the
weighting matrix W.
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To ensure the non-negativity of the resulting matrix a and F, non-negativity constraints are
imposed by adding the term fneg(a, F) to the objective function,

(96)

where

(97)

with α being a penalty constant.

In the above formulation, the non-uniqueness of the factor model (Sitek et al 2002b) was not
addressed. Even without this, the estimation of factors from projection measurements was
proven to be successful in renal studies (Sitek et al 2001). This approach also shows promise
for analyzing dynamic cardiac studies in rodents using pinhole collimators mounted on
patient SPECT systems with slow rotation (Hu et al 2005, 2008) (see next section).

5.2.1. Direct estimation of factors from projection measurements in small
animal studies—One of the greatest difficulties in applying kinetic modeling in small
animal studies is measuring the blood input function. The blood volume is small and thus it
is difficult to draw blood samples, and the resolution of the ventricular cavity is inadequate
for ROI sampling. The following demonstrates that, if factors and factor coefficients are
estimated directly from projections, a blood input function can be obtained even with a
slowly rotating camera. A dual-headed pinhole SPECT-CT system at LBNL (figure 15(a))
was used for imaging the distribution and kinetics of 123I-MIBG in the myocardium of
spontaneously hypertensive rats (SHR) and control Wistar Kyoto (WKY) rats to study the
function of the sympathetic nervous system in heart failure (Hu et al 2005, 2008). A
dynamic acquisition was performed by injecting 185 MBq (5 mCi) of 123I-MIBG into rats
immediately after initiating data acquisition. The detectors rotated, continuously traversing
360° every 90 s for a total acquisition time of 90 min. For the first 90 s rotation of the study,
factor analysis estimates of the time–activity curves for the blood pool were obtained
directly from the projections. This required the estimation of 1 024 180 unknowns. After the
first rotation, the blood input was measured every 90 s from the ROI in the left ventricular
blood volume of a contiguous sequence of dynamic tomographic reconstructions. The time
resolution was equal to 1 s for the first 90 s and equal to 90 s for the remainder of the 90 min
acquisition. By merging the blood input obtained over the first rotation with estimates of
blood and tissue curves estimated from the subsequent sequence of dynamic reconstructions,
compartmental model parameters were estimated. Figure 15 illustrates the resulting input
function for four rats calculated using factor analysis with two factors. For these particular
studies, there was no validation with blood samples. This is a semi-direct method in which
time–activity curves were first estimated for the blood and the myocardial tissue. Kinetic
parameters shown in table 4 were subsequently estimated by fitting the estimated time–
activity curves to a one-compartment model.

5.3. dSPECT
The ‘dSPECT method’ fits time–activity curves for each voxel directly from projection
measurements. These may only be acquired over a single rotation (Farncombe et al 1999,
2000, 2001, Farncombe 2000, Celler et al 2001). The method does not involve any
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assumptions about the location of the dynamic regions. However, for the case of bimodal
time–activity curves that increase and then decrease, it requires prior knowledge of the time
frame in which the activity peaks in each particular image voxel (Farncombe et al 2001).
Otherwise, as we explain below, the peak is estimated as part of the optimization problem.
This is one approach of constraining the time–activity curves.

For the projections

the dSPECT method is formulated as the solution to the following optimization problem,

(98)

subject to

(99)

In different applications of the dSPECT method, the constraints have been formulated in
other ways. In the expression given in equation (99), the reconstructed (optimum) time–
activity curve monotonically increases to a maximum at time tp and then monotonically
decreases (Farncombe et al 2001). In some cases, the time–activity curve only decreases or
increases monotonically (Celler et al 2001).

5.4. Other methods
Most of the methods implemented for calculating kinetic parameters from dynamic data are
based on fitting a compartment model to the change in the tracer concentration in tissue
regions over time. Most of these methods demand dynamic data acquisition following the
tracer administration and then either a nonlinear or linear least-squares fitting to estimate the
kinetic parameters. Other methods have been proposed where a weighted-integration
technique is used instead to minimize the data processing time in generating functional maps
of cerebral blood flow and distribution volume for 15O water administration studies (Alpert
et al 1984, Carson et al 1986). In this technique, the dynamic images are integrated after
multiplication by two time-dependent weight functions, and two functional parameters are
calculated by means of a table look-up procedure for each image pixel. For example, once
the value of k2 is determined, then the value of K1 can be determined from linear equations.
This eliminates the need to collect and store dynamic data. The kinetic parameters are
calculated from the weighted integrals of the projection data, which are adequate for
measuring the time-varying activity changes during the projection sampling, provided that
the integrals are calculated with sufficient numerical accuracy.

This technique was extended to calculate up to six independent weighted-integrated
sinograms (Iida et al 1995a). Values from the weight-integrated sinograms are inserted into
operation equations to generate functional parameter images for H2

15O and 18FDG. The
two-compartment model of 18FDG uses three independent time-weighted integrated images
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that are inserted into the operation equations. The solution requires integration of the
acquired counts over time. The time points for the acquired samples need not be at the same
time for each projection, which accommodates the rotation of the camera head. The use of
weighted integration to solve kinetic equations is suitable for certain models.

Application of weighted integration has been explored in dynamic SPECT (Tan et al 1994).
The advantage of the weighted-integration approach is that it provides a straightforward
solution calculated directly from projections that, assuming adequate numerical integration,
are independent of the sampling limitations.

6. Discussion and future developments
This review has focused on special data processing techniques of dynamic SPECT
highlighting cardiac perfusion imaging. The mathematical methods presented here are
applicable to other dynamic imaging applications as well. Research continues in the
development of hardware, radiopharmaceuticals and data processing techniques which will
enable the realization of the full potential of dynamic SPECT.

6.1. Estimation from projections may produce less bias and variance and has potential
even for PET

The estimation of kinetic parameters from projections may produce less bias and less
variance than the conventional method of estimating kinetic parameters from time–activity
curves generated from reconstructed ROIs. This review presents some examples
demonstrating this fact. However, more work is needed to verify these results. Simulations
have demonstrated that the simultaneous estimation of the input function and parameters of
compartment models for tissue regions reduces variance and bias. A comparison of direct
with indirect methods must be done carefully in order to be sure that weighting of the
reconstructed data is done reasonably. However, this can be difficult because covariance
matrices of reconstructed images or time–activity curves can be difficult to obtain and this
requires a solution to an estimation problem with a large number of parameters. Models for
dynamic imaging should be constructed so that the parameters are fitted directly to the
original acquired data, not as a conventional two- or three-step process that first requires
reconstruction followed by time–activity curve generation and then model parameter
estimation. This should be accomplished for both consistent and inconsistent tomographic
data. The modeling of the time variation in the projection data attempts to remove the
inconsistency in the data of the inverse problem. It is also much easier to directly
incorporate weighting by the noise in the data in the estimation process. Moreover, it has
been demonstrated from simulations that direct estimation of model parameters produces
less variance and less bias than the conventional method mentioned above, and also less than
the two-step semi-direct methods in which the time–activity curves are estimated directly
from projections and then kinetic parameters are estimated from those time–activity curves.
This suggests that all kinetic parameters should be estimated directly from dynamic data. It
is anticipated that all the completely consistent tomographic data acquired with a stationary
SPECT detector system or a PET scanner will produce less bias and less variance than is
produced with a rotating SPECT camera.

6.2. Optimum spatiotemporal basis functions
For the models that represent the tracer activity variation directly using the projection data
for non-deforming media, the challenge is to determine optimal spatiotemporal basis
functions. Splines have been demonstrated to efficiently represent both spatial and temporal
variations in the data (Reutter et al 2000, 2002, 2004a, 2007a). There are various orders of
splines that can be used depending upon the frequency content of the data. Multigridding (a
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higher resolution representation used when necessary, and less so otherwise) is required to
reduce the number of unknowns so that the system of acquired projection data is not
underdetermined. This is especially important when developing models for slow camera
rotation. Spherical harmonics could also be used for spatial basis functions. It has also been
demonstrated that factors can provide excellent temporal basis functions. However, the
solution can require a large number of unknowns, and non-uniqueness is a problem that
must be considered (Hu et al 2005, 2008). Still another approach is to use a spectral method
for the temporal representation based upon exponential functions as a basis which requires
linear estimation of the parameters (Maltz 2000b, 2001, 2002).

6.3. Tomographic reconstruction of tracer kinetics in the heart using a spatiotemporal
mechanical model

In organs such as the heart, which deform while the intensity of the signal changes as a
result of radiotracer redistribution, both space and time need a parameterization that deforms
with the organ. It is necessary to consider these changes as data are taken in order to reduce
the bias and variance of model parameters. A generalized model for specifying time changes
of tracer activity and mechanics on a deforming differential manifold has been developed
(Gullberg et al 2007b). The proposed model is a large optimization problem that seeks to
find a number of optimum parameters by focusing on organs, such as the heart, that have
rapid simultaneously changing tracer concentrations and organ configurations. The spatial
parameterization can be accomplished using smooth functions relative to the Euler frame
that can easily be transformed to the differential manifold of the deforming heart. The
temporal parameterization can be accomplished using appropriate parameterization of the
spatial deformation as a function of time. The temporal basis functions could be splines
(Reutter et al 2000), factors of dynamic structures (Sitek et al 2002b) or time–activity curves
of a compartment model (Kadrmas and Gullberg 2001). The spatial parameterization can
also involve a multi-resolution approach, where inside the organ boundaries the changing
tracer kinetics are modeled with high resolution and outside the boundaries the distribution
is modeled with a more coarse resolution (Boutchko et al 2006b, Reutter et al 2006, 2007b,
Sitek et al 2006). This has been shown to actually reduce the number of parameters of the
tomographic problem (Reutter et al 2004a). The accuracy of the model depends upon
appropriately modeling the effects of the physics of the imaging detection process
(attenuation, scatter, geometric response). The accuracy also depends on the use of
appropriate models for the physiology of the tracer kinetics and for the mechanical
properties of the heart.

The proposed method involves simultaneous segmentation and estimation of the dynamic
parameters. It is assumed that the data are acquired dynamically with cardiac phase
information, either by list mode acquisition or by framing into gated dynamic frames over
the cardiac cycle. The differential manifold of the heart deforms according to a mechanical
model (Sitek et al 2002c, Veress et al 2005, Sitek et al 2005) and incorporates methods
(Feng et al 2003b, Shi and Karl 2003, 2004) for determining the boundary of the heart. It
also includes a dynamically changing organ boundary and intensity represented by
spatiotemporal basis functions within the boundary, defined by a deforming manifold. The
organ boundaries are determined using level set methodology, which was devised as a
simple method for computing and analyzing motion of a surface in two or three dimensions
(Osher and Sethian 1988, Sethian 1996, Osher and Fedkiw 1999). The body within the
surface is defined in an Euler reference frame using either Cartesian or curvilinear
coordinates. The body within the surface is a differential manifold that is allowed to deform
based on a mechanical model. Therefore, the surface is specified as the zero level set of a
smooth function, where the spatial parameters are either Cartesian or curvilinear coordinates
defined in the deformed space. This approach imposes constraints based upon a mechanical
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model, and it simultaneously segments the boundary of the organ and estimates model
parameters of changing activity.

6.4. Estimation of scatter from dynamic imaging data
Dynamic imaging may help in estimating the physical properties of the imaging detection
process, such as scatter, by using the different kinetics of the tracer in different organs to
model scatter. Most software-based methods need a transmission image (not an emission
image) to simulate scatter (Welch et al 1995a, Zeng et al 1999, Bai et al 2000, Laurette et al
2000, Floyd et al 1985, Liang et al 1992, Frey and Tsui 1993, Meikle et al 1994, Beekman
et al 1996, 2002, Kadrmas et al 1998). Methods have been developed to understand the
nature of scatter (Reutter et al 2003), to segment scatter from primary photons using
principal component analysis (Toennies et al 2003), to identify and remove scatter artifacts
(Toennies et al 2004) and to model scatter based upon the temporal information in dynamic
SPECT data (Toennies et al 2003, Reutter et al 2004b). Two methods (Reutter et al 2004b)
have also been proposed for modeling and estimating scatter jointly with tracer kinetic
models. These methods exploit the fact that the scatter distribution from a volume of interest
is spatially smooth, and has the same temporal kinetics as unscattered events from the
volume. The first method treated scattered events as if they originated from scatter sites
distributed in image space. For each volume of interest, the distribution of scatter sites was
modeled with a smooth spatial function, and events from this effective scatter source
distribution (ESSD) (Frey and Tsui 1997, Kadrmas et al 1998) were forward-projected along
with unscattered events from the volume. The second method bypasses modeling an ESSD
in image space and simply models the spatial projection of scatter to be a smooth function in
projection space. Computer simulations of a dynamic 99mTc-teboroxime cardiac SPECT
scan showed that unscattered and scattered events from the blood pool, myocardium and
liver have distinct spatiotemporal signatures and that it is feasible to jointly estimate scatter
amplitudes and time–activity curves for volumes of interest directly from projection data.
This suggested that joint estimation of scatter, blood input function and compartmental
model parameters is a well-posed problem and can lead to reduced bias in kinetic parameter
estimates.

6.5. Dynamic information in a well-isolated bolus during the input phase
In general, the dynamic temporal/spatial distribution of tracers is complex and varies
between different organs of the body. However, at the beginning of a study, soon after
administration of the pharmaceutical, the activity is confined to major vessels, including the
vena cava, right ventricle, pulmonary artery and vein, left ventricle and aortic arch. This
may simplify the modeling of the initial dynamic uptake considerably. For example, the
regions of the heart may be treated as compartments during that period, as in the approach
described in section 5.3.1 or in Sitek et al (2001) and Hu et al (2008). More complex
approaches that model bolus propagation can also be employed in which the bolus is
modeled as a delta function propagated over time and confined to these major vessels. This
considerably reduces ambiguity caused by insufficient angular sampling in tomographic
reconstruction of these studies.

Computer simulations (Herrero et al 1989) have demonstrated that the compartment
modeling approach is more sensitive to timing discrepancies—especially discrepancies
between the arterial input function and the tissue time–activity curve—than it is to most
physical sources of error. Computer simulations have also been employed to investigate the
necessary timing resolution and input function shape required to minimize bias and variance
of estimated kinetic parameters (Ross et al 1997b).

Gullberg et al. Page 50

Phys Med Biol. Author manuscript; available in PMC 2012 March 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



6.6. Potential for improved temporal sampling resolution with new fast dedicated cardiac
SPECT systems

While dedicated brain SPECT cameras have existed for some time, results with new
dedicated cardiac SPECT systems are showing improved image quality, higher signal-to-
noise ratios and improved energy resolution. The GE dedicated cardiac SPECT camera
(Volokh et al 2008, Garcia et al 2008, Esteves et al 2008, Buechel et al 2010) uses a
stationary detector that views the myocardium from multiple directions with multiple
modular cameras, each collimated with a single pinhole (see figure 3(b)). The GE system
has no moving parts but requires reconstruction of pinhole data, whereas the Spectrum
Dynamics system (Sharir et al 2007, 2008, Berman 2007, Gambhir et al 2009, Erlandsson et
al 2009) (see figure 4) has parallel geometry with individual collimator–detector modules
rotating axially. The GE and Spectrum Dynamics designs offer significant advantages in
comparison to conventional SPECT systems with parallel-hole collimators that capture the
heart on only a small fraction of the available active detector area. These systems have the
option to be placed in tandem with volumetric CT (VCT) scanners for attenuation correction
and correlated diagnostic information. The GE and Spectrum Dynamics cameras use new
CdZnTe (CZT) technology (Barber et al 1993, 1994, James et al 1995, Darambara and
Todd-Pokropek 2002, Feichtinger et al 2004, Verger et al 2004, Brzymialkiewicz et al 2005,
Luke and Amman 2007). This development has the potential to lessen scatter acceptance
and improve contrast. Despite the advances in CZT fabrication technology, a CZT detector
is still very expensive and the availability of large-volume and large-area (>2 cm2) CZT
detectors continues to be limited.

6.7. Need for developing methods to analyze dynamic data for molecular imaging
applications

Small-animal imaging studies associated with molecular imaging are rapidly expanding
(Weissleder and Mahmod 2001, Massoud and Gambhir 2003). Dynamic SPECT has been
used to evaluate myocardial fatty acid metabolism in rodents with hypertrophic
cardiomyopathy (Hirai et al 2001, Hu et al 2005, 2008). For reviews of small animal
imaging of single photon tracers, see Weber and Ivanovic (1999), Budinger (2002),
Peremans et al (2005) and Beekman and van der Have (2007). The development of models,
algorithms and data processing methods will become increasingly important. It has been
demonstrated that SPECT imaging of small animals can be performed on commercial
clinical imaging systems with specially designed pinhole collimators (Hirai et al 2001,
Metzler et al 2005, Zhou et al 2005, Acton et al 2006, Forrer et al 2006, Hu et al 2008).
This differs from dedicated small animal SPECT/CT systems (Furenlid et al 2004, Zeniya et
al 2006, Vastenhouw and Beekman 2007). Molecular imaging facilitates the study of
mechanisms and treatment of human diseases in animal models and permits longitudinal
investigations that track physiologic changes over time in the same animal. The evaluation
of radiopharmaceuticals in small animals is a major step in the process of the translational
development of clinical radiotracers and requires new techniques of data acquisition and
new algorithms for processing imaging data.

6.8. Advancements in patient care
The role of SPECT in radionuclide procedures for diagnosis and therapeutic planning
continues to grow. Clinically, dynamic SPECT has been used for brain applications with
specialized, dedicated brain scanners. However, the application of SPECT to imaging
dynamic processes in the heart has not been fully realized. Dynamic SPECT has the
potential to improve diagnostic accuracy over conventional SPECT with little, if any,
increased cost. Continuing developments of mathematical and clinical tools, coupled with
the developments of new agents and cameras, will make dynamic cardiac SPECT imaging
clinically viable.
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Glossary
18F Fluorine-18 is a radioisotope of fluorine that emits a positron with a

half-life of 109 min and is tagged to pharmaceuticals for PET imaging
18FDG 2-Fluoro-2-deoxy-d-glucose (FDG) is a glucose analog used for

metabolic imaging of brain function, heart metabolism and tumor
growth

18F-DOPA Fluorine-18-l-dihydroxyphenylalanine (18F-DOPA) is a PET tracer
that is important in the diagnosis of motor disorders

H215O Radioactive water is used to measure perfusion of the brain and heart
123I Iodine-123 is a radioisotope of iodine with a predominant gamma

emission of 159 keV (half-life of 13.22 h) and is tagged to
pharmaceuticals for SPECT imaging

123I-ADAM [123I] [2-((2-((dimethylamino)methyl)phenyl)thio)-5-iodophenylamine
(ADAM)] is a very promising imaging ligand for the detection of
serotonin transporters (SERT) in human brain because of its high
specificity for SERT

123I-altropane 2Beta-carbomethoxy-3beta-(4-fluorophenyl)-n-(1-iodoprop-1-en-3-yl)
nortropane (IACFT, Altropane) is a cocaine analog with high affinity
and selectivity for dopamine transporter (DAT) sites in the striatum.
Dopamine transporter density declines in Parkinson’s disease

123I-beta-CIT [123I]beta-CIT is a sensitive marker of dopaminergic degeneration, and
the degree of striatal binding reduction in Parkinson’s disease
correlates with disease severity

123I-BMIPP 123I-β-methyl-p-iodophenyl-pentadecanoic acid (BMIPP) is a modified
long-chain fatty acid used for imaging metabolism in the myocardium.
A methyl group on the β position of the carbon chain limits the
complete oxidation of 123I-BMIPP

123I-FP-CIT 123I is labeled to N-o–fluoropropyl-2,f-carbomethoxy-3,B(4-
iodophenyl) tropane to produce a radioligand with fast kinetics used
for imaging of the dopamine transporter in brain disorders (such as
Parkinson’s disease) with SPECT

123I-hippuran I-131-sodium 2-[(2-iodobenzoyl)amino]acetate (hippuran) is a
radioactive iodine compound used in diagnostic studies of renal
function

123I-MIBG [123I]metaiodobenzyl guanidine ([123I]MIBG) enables the
quantification of postganglionic sympathetic cardiac innervation
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123I-IMP N-Isopropyl-4-[123I]iodoamphetamine is a lipophilic compound
utilized for CBF measurements with SPECT

123I-
iodorotenone

Novel radiolabeled rotenone analogs (labeled with tritium, carbon-11,
fluorine-18 and iodine-123, -125) display efficient myocardial uptake
and adequate myocardial retention for clinical evaluation of
myocardial blood flow. Rotenone binds to complex I of the
mitochondrial electron transport chain

123I-Iomazenil [123I]Iomazenil ([123I]IMZ) is a ligand displaying high affinity for
central-type benzodiazepine receptors, with high brain uptake and little
nonspecific binding

123IPPA Iodine-123-phenylpentadecanoic acid (123IPPA) is a synthetic long-
chain fatty acid used for imaging fatty acid metabolism in the
myocardium

13N Nitrogen-13 is a radioisotope of nitrogen that emits a positron with a
half-life of just under 10 min and is tagged to pharmaceuticals for PET
imaging

13NH3 13N-labeled ammonia is used to measure perfusion of organs such as
the heart and brain

15O Oxygen-15 is a radioisotope of oxygen that emits a positron with a
half-life of 2.25 min and is tagged to pharmaceuticals for PET imaging

99mTc Technetium-99m is a metastable nuclear isomer of technetium-99 that
decays to 99Tc, emitting a gamma ray of 140 keV with a half-life of 6
h, and is tagged to pharmaceuticals for SPECT imaging

99mTc-ECD Technetium-99m ethyl cysteinate dimer (99mTc ECD) is used to image
regional cerebral blood flow in patients

99mTc-HMPAO Technetium-99m-labeled hexamethylpropyleneamineoxime (99mTc-
HMPAO) is a gamma-emitting radionuclide imaging agent useful in
the evaluation of regional cerebral blood flow. It has also been used to
label leukocytes in the investigation of inflammatory bowel diseases

99mTc-MAG3 99mTc-Mercaptoacetyltriglycine (99mTc-MAG3) is a technetium-
labeled radiopharmaceutical used in diagnostic studies of renal
function

99mTc-N-NOET 99mTc-N-Ethoxy-N-ethyl-dithiocarbamato-nitrido is a neutral
lipophilic 99mTc-labeled myocardial perfusion agent with a high first-
pass extraction fraction

99mTc-sestamibi
(99mTc-MIBI)

99mTc-hexakis-2-methoxy isobutyl isonitrile (99mTc-MIBI) is a
synthetic molecule of the isonitrile family that diffuses through cell
membranes and may preferentially accumulate within mitochondria
(complex I). 99mTc-sestamibi is used for cardiac and tumor imaging

99mTc-
teboroxime

99mTc-tris(1,2-bis(dimethoxyphosphino)ethane) is used for myocardial
perfusion studies

99mTc-
tetrofosmin

99mTc-tetrofosmin is a cardiac imaging agent useful in the diagnosis
and localization of regions of reversible myocardial ischemia. 2-[bis(2-
ethoxyethyl)phosphanyl]ethyl-bis(2-ethoxyethyl)phosphane
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(tetrofosmin) forms a complex with 99mTc to obtain the imaging
agent 99mTc-tetrofosmin

99mTc-TRODAT This is a 99mTc-labeled tropane derivative that binds to a dopamine
transporter with high selectivity. Its chemical composition is [2-[[2-
[[[3-(4-chlorophenyl)-8-methyl-8-azabicyclo[3,2,1]oct-2-yl]methyl](2-
mercaptoethyl)amino]ethyl]amino] ethanethiolato(3-)-
N2,N2′,S2,S2′]oxo-[1R-(exo-exo)] (TRODAT-1)

201Tl Thallium-201 (half-life 73 h) is a radioisotope of thallium that decays
by electron capture, emitting Hg x-rays (~70–80 keV) and photons of
135 and 167 keV in lesser abundance. Tl-20l is used to image the heart
and behaves similarly to potassium in transport across cell membranes

133Xe Xenon-133 is a radioisotope of xenon with a gamma emission of 81
keV and a half-life of 5.2 days. It is used in the study of pulmonary
function and blood flow in organs such as the brain

133Xe-rCBF Xenon regional cerebral blood flow (rCBF) is a method that uses the
clearance of xenon-133 (133Xe) to quantify rCBF data

Adenosine A nucleoside composed of a molecule of adenine attached to a ribose
sugar molecule. Adenosine is used as a vascular dilator in nuclear
cardiac rest/stress studies. It is used to mimic vascular dilation
experienced under cardiac stress

B-spline A function that has minimal support with respect to a given degree,
smoothness and domain partition

Blind estimation The estimation of kinetic model parameters for an organ without
knowledge of the input function by assuming that the input function is
identical for all tissue regions

Blood
compartment

The blood compartment contains plasma and blood cells. Throughout
this review, it has been assumed that this is one compartment with
rapid exchange between plasma and blood cells

Compartment A compartment is a volume where the tracer is uniformly distributed.
The compartment may be a physical space, such as an organ, or may
represent a metabolic or bound state of the tracer

Compartment
model

A compartment model is a mathematical description (usually
represented by a system of differential equations) of the
interrelationships for the rate of exchange of a tracer between various
compartments. The amount of tracer leaving a compartment is usually
assumed to be proportional to the total amount in the compartment and
the rate constant is the fraction of that compartment that leaves per unit
time

Coronary flow
reserve

The ratio of coronary flow under maximal drug-induced coronary
vasodilation to coronary flow under resting conditions

Detector A detector in the context of this review paper is most often a gamma
ray detector optimally designed for imaging 140 keV photons. The
detector consists of a lead collimator, a NaI(Tl) scintillator,
photomultiplier tubes, and electronics for forming a picture of the
emitting photons from the patient
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Diamox Acetazolamide, sold under the trade name Diamox, is a carbonic
anhydrase inhibitor that is used, among other things, to vasodilate the
cerebral vascular system in order to evaluate brain blood circulation
integrity

Direct method
of estimating
kinetic model
parameters

The kinetic model parameters are estimated directly from the
projection data using a model that relates the kinetic compartment
model to the projection data

Distribution
volume

See volume of distribution

Extraction
fraction

The extraction fraction is the fraction of a tracer that is extracted as
blood flows through a tissue. It is the arterial concentration minus the
venous concentration divided by the arterial concentration

Extravascular
compartment

The extravascular compartment contains intracellular and extracellular
components (interstitial) that are physically outside vessels

Factor See factor basis function

Factor analysis See factor analysis of dynamic structures

Factor analysis
of dynamic
structures

This is a method of estimation of factors and factor coefficients from a
dynamic sequence

Factor basis
function

A factor basis function is a discrete temporal function describing the
time course of activity concentration for a particular organ or tissue in
the image. This time course has physiological interpretation so
elements of the factor curves have to be non-negative

Factor
coefficients

These are coefficients of the linear combination of factors in the factor
model. These coefficients have physiological interpretation and must
be non-negative

Factor model In a factor model of the dynamic data it is assumed that the time
course of each volume element (e.g. voxel) is a linear combination of
usually not more than three or four factor basis functions

5D Five-dimensional tomography accounts for the dimension of motion in
addition to 3D space and time (e.g. lung and heart)

Flow extraction
product (flow
times
extraction)

Flow extraction product is the wash-in rate constant K1 in the one-
compartment perfusion model. It corresponds to the flow times
extraction of the tracer from the plasma

Hyperemia Hyperemia is the increase in blood flow to body tissues in response to
the presence of metabolites and oxygen demand

Interictal Interictal is the period of time between epilepsy seizures

Ischemia Ischemia is a restriction in blood supply with probable resultant
damage or dysfunction of body tissues

Kinetic model
parameters

Kinetic model parameters are the rate constants expressing the rate of
exchange between compartments. For linear kinetics, the parameters
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are the linear coefficients in the system of differential equations that
model the kinetics of the physiological process

Level set
method

The level set method is a numerical technique for tracking interfaces
and involves numerical computations of curves and surfaces on a fixed
Cartesian grid without their having to be parameterized

Microsphere A microsphere is a particle with a diameter in the micrometer range
(typically 1 μm to 1000 μm (1 mm)). Microspheres can be
manufactured from various natural and synthetic materials: glass,
polymers and ceramics. In nuclear medicine, microspheres are labeled
with various isotopes: 95Nb, 113Sn, 103Ru and 46Sc are common.
Microspheres are generally used in animal studies. They are
administered intraarterially and are trapped in the small capillaries of
the tissue. The tissue of interest is counted later, typically in a well
counter, to quantify absolute blood follow to that particular tissue of
interest

Multi-resolution The spatial parameterization can involve multi-resolution (also
referred to as multigridding in this review). This refers to a spatial
parameterization where inside an organ boundary of interest the image
intensity (tracer concentration) is represented by high-resolution
voxels, and outside the organ the distribution is modeled with a coarser
resolution

Partition
coefficient

The partition coefficient is the ratio of concentrations of a tracer in the
blood to the concentration of the tracer in the tissue

Positron
emission
tomography
(PET)

This is a nuclear medicine imaging technique that produces a 3D
image or picture of functional processes in the body. The imaging
system detects pairs of gamma rays emitted at 180° from one another
by a positron-emitting radionuclide (tracer), which is introduced into
the body on a biologically active molecule

Rate constant In biochemical kinetics, a rate constant quantifies the speed of a
biochemical reaction. In the present work, the rate constant times the
concentration of a tracer in a compartment is equal to the rate of
change of the concentration of the tracer from one compartment to
another compartment (see compartment model)

Redistribution This is the process of a radiopharmaceutical changing its concentration
distribution in different regions of an organ over time due to
differences in wash-in and wash-out between regions

Ring detector
system versus
system of
multiple-gamma
camera heads

A ring detector refers to a nuclear imaging system where the
scintillation detectors are arranged in a ring surrounding the patient. A
system of multiple-gamma camera heads refers to a SPECT system
with multiple planar gamma cameras surrounding the patient. The
cameras are rotated to obtain projection data

Scintillation
detector

A scintillation detector containing material such as NaI(Tl) emits
photons when incoming gamma rays interact with the scintillation
material. The emitted photons are converted into electronic signals
usually by photomultiplier tubes

Semi-conductor
detector

A semi-conductor detector converts gamma rays directly to electronic
signal using materials such as CdZnTe
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Semi-direct
method of
estimation of
kinetic model
parameters

Here, the time–activity curves for the blood and tissue are first
estimated from the projection data. Then the kinetic model parameters
are estimated from the estimated time–activity curves for the blood
and tissue

Single photon
emission
computed
tomography
(SPECT)

A nuclear medicine imaging technique that produces a 3D image or
picture of functional processes in the body. The imaging system differs
from PET in that it detects single gamma rays emitted by a
radionuclide (tracer), which is introduced into the body on a
biologically active molecule

Sinogram A sinogram is the distribution of projection data displayed as image
intensity values with one Cartesian coordinate corresponding to the
projection bin and the other to the angle of the projection

Sinotimogram A sinotimogram is a sinogram of a time-varying distribution
corresponding to projection data represented by three coordinates—the
angle, the projection bin and the time

Slow versus fast
camera rotation

Slow camera rotation refers to a SPECT system with a camera gantry
rotation of approximately 5°s−1 versus a fast camera rotation of 24°s−1

Time–activity
curve

A time–activity curve is multiple data points at different times
generated from a region of interest from the 3D distribution of the
radiotracer

Tracer A tracer in the context of this review is a substance containing a
radioisotope that is used for tracking the in vivo biochemical and
physiological process

Volume of
distribution

The volume of distribution (VD), also known as distribution volume, is
a term used to quantify the distribution of a tracer between the blood
and the extravascular tissue in the body. It is defined as the volume of
the extravascular space that would give the same tracer concentration
as that in the blood. It is usually considered the same as the partition
coefficient and is calculated from K1/k2

List of variables

B(t) activity concentration in the blood
(Bq/cc)

CEV(t) activity concentration in some
extravascular space

VEV volume of the extravascular space
(compartment)

P1 permeability coefficient for flux out
of the capillary (cm min−1)

P2 permeability coefficient for flux
into the capillary (cm min−1)

S surface area of the capillary in the
sampled voxel (cm2)
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K1 rate of exchange from blood into
the extravascular compartment
(units of min−1—volume per
minute per extravascular volume
VEV)

k2 rate of exchange from extravascular
compartment into blood (units of
min−1—volume per minute per
extravascular volume VEV)

VD = λVEV apparent distribution volume

λ = CEV(∞)/B(∞) partition coefficient (ratio of the
tracer concentration in the tissue to
that in the blood at equilibrium)

AT = fv B(t) + (1 − fv )CEV(t) model of the measured myocardial
tissue activity concentration at time
t in some region of interest (ROI)

fv vascular fraction of blood in the
tissue

(1 − fv) fractional volume of the
extravascular space

intermediate function for a one-
compartment model, where CEV(t)
= K1C(t)

A(x, t) = Σm,n amnSm(x)Vmn(t) activity concentration distribution
as a function of space and time

Sm(x) spatial basis functions m = 1, …, M

V mn(t) temporal basis functions n = 1, …,
N; m = 1, …, M

amn coefficients of the basis functions
Sm(t)Vmn(t)

P(d(t), t) = ∫χF[x, d(t)]A(x, t) dx projection of the tracer distribution
written as a function of the detector
position d(t) and time t

F [x, d(t)] fraction of activity A(x, t) at spatial
position x and time t that projects
into the detector bin at position d(t)

Um(d(t), t) = ∫χF[x, d(t)]Sm(x) dx projection of the spatial basis
function Sm(x) at the detector
sampling position d(t)

projection of activity acquired over
the time tk − Δtk to tk for the
detector bin positions di (t)

I number of projection rays per
projection angle
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K number of time samples

p = Fa column vector of IK elements of
projection data values

F system matrix with dimensions (IK)
× (MN), where I is the total number
of projection measurements, K is
the number of time samples, M is
the number of spatial basis
functions and N is the number of
temporal basis functions

elements of the system matrix F

a column vector with MN elements of
basis coefficients

Vmn(t) = Vn(t) the temporal representation is
independent of the spatial index m

A(x, t) = Σm,n amnSm(x)Vn(t) spatiotemporal representation of the
activity where the temporal basis
function Vn(t) is independent of the
spatial basis function Sm(t)

temporal basis function for where
the tissue region m is represented as
a one-compartment model

assuming 

spatiotemporal representation of
activity assuming a one-
compartment model for each tissue
region m

intermediate function for a one-
compartment model, where

intermediate function for a one-
compartment model, where

 assuming

temporal basis representation for
the factor model where the
temporal representation is
independent of the spatial index n
and for each index n there is a
factor Fnk (k = 1, …, K)
independent of the index m and χk
(t) is a characteristic function with
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χk (t) = 1 for tk − Δtk ≤ t ≤ tk and 0
otherwise

A(x, t) = Σm,n,k amnFnk Sm(x) χk (t) spatiotemporal representation of the
activity for the factor model

χB (x) characteristic function of the
segmented blood input

χG(x) characteristic function of the
segmented background

χm(x) characteristic function of the
myocardial tissue region m

g ratio of the concentration in the
blood to the concentration in the
background tissue

blood input function expressed as a
function of a set of temporal basis
functions Vn(t).

one-compartment model for activity
in the tissue-type m

rate of exchange from blood to
extravascular compartment for
tissue-type m

fraction of vasculature blood in
tissue-type m

θ(t) projection angle sampled at
precisely the time t

UB(d(t), t) = ∫χχB (x)F[d(t), x] dx fraction of segmented blood that
projects at detector position d(t)

Um(d(t), t) = ∫χχm(x)F[d(t), x] dx fraction of segmented tissue-type m
that projects at detector position
d(t)

UG(d(t), t) = ∫χχG(x)F[d(t), x] dx fraction of segmented background
that projects at detector position
d(t)

fraction of blood activity acquired
over a time period Δtk for detector
bin at positions di (t)

fraction of background activity
acquired over a time period Δtk for
detector bin at positions di (t)

fraction of activity from segmented
tissue-type m acquired over a time
period Δtk for detector bin i at
positions di (t)
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fraction of activity of the
extravascular response to a unit
basis input function Vn(t) for tissue-
type m acquired over a time period
Δtk for detector bin at positions di
(t)
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Figure 1.
SPECT/CT camera manufactured by GE Healthcare (Haifa, Israel) (image from GE
Healthcare with permission). (a) The system is composed of two large field-of-view gamma
ray detectors and (b) an x-ray CT system. Photons that should be counted by the detector but
are not (due to scatter or absorption by the tissue) are stated to be attenuated. Photons that
travel further through tissue will have a higher likelihood of being attenuated. Information
from the CT image is used to correct for the attenuation and to provide information about
scatter to obtain a better estimate of the quantitative distribution of the injected radioisotope.
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Figure 2.
The CERASPECT dedicated brain system was manufactured by DSI, Inc. (Waltham, MA).
(a) Picture of the scanner with patient bed. (b) Drawing illustrating the collimator,
scintillator, and PMTs (from figure 1 of Komatani et al (2004), with permission). (c)
Diagram of camera detector redrawn to better illustrate the arrangement of the collimator
holes in the rotating collimator.
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Figure 3.
(a) Triple-headed SPECT system manufactured by Picker (Cleveland, OH). The system
consists of an external line source of radioactivity (153Gd) used to obtain a transmission
image used for attenuation correction. (b) Dedicated cardiac SPECT system manufactured
by GE Healthcare (Discovery NM 530c, GE Healthcare, Haifa, Israel) (image from GE
Healthcare with permission). The system consists of a half ring of CZT detectors.
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Figure 4.
(a) Dedicated cardiac SPECT camera manufactured by Spectrum Dynamics (Caesarea,
Israel) (image from Spectrum Dynamics with permission). (b) The camera consists of nine
pixellated cadmium zinc telluride (CZT) detector arrays mounted in a vertical column, each
rotating in synchrony and acquiring at multiple angles as the detectors are swept through the
imaging field of view (image from figure 1 of Erlandsson et al (2009) with permission). (c)
Each detector column consists of an array of 16 × 64 CZT semi-conductor elements (2.46 ×
2.46 × 5 mm), collimated by a parallel-hole tungsten collimator with a hole size of 2.46 ×
2.46 mm, the same as a detector element (Patton et al 2007). The collimator hole length is
shorter than the LEHR collimator with a significant gain in sensitivity. The cadmium zinc
telluride provides improved energy resolution and image contrast. The improved geometric
sensitivity allows for myocardial perfusion imaging studies of 2 min stress and 4 min rest
acquisition times. Reconstruction is performed with a proprietary version of an OSEM-
based reconstruction software package developed and implemented by Spectrum Dynamics
(image from Spectrum Dynamics with permission).
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Figure 5.
Intravascular blood and extravascular compartments. The intravascular blood compartment
is the arteries and capillaries, and the extravascular compartment contains the physical space
occupied by myocytes and interstitial space. The blood compartment contains plasma and
blood cells. The models presented in this review assume that the tracers exchange between
the extravascular spaces and the plasma in the blood in the arteries and capillaries. The
models also assume in most cases that the tracers in the blood are in equilibrium between the
plasma and the blood cells (see section 2.3).

Gullberg et al. Page 80

Phys Med Biol. Author manuscript; available in PMC 2012 March 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 6.
Distribution volume. The distribution volume VD is the volume of the extravascular space
that would give the same tracer concentration as that in the blood. The partition coefficient λ
is the ratio of the concentration in the blood to that in the extravascular space at equilibrium.
The distribution volume is generally given the same value as the partition coefficient, as K1/
k2. (The figure is adapted from figure 20-2 of Cherry et al (2003) with permission.)
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Figure 7.
(a) Concept of dynamic cardiac SPECT imaging using a fast-rotating detector system. Here,
projections are acquired rapidly in order to reconstruct a dynamic sequence of 3D data
acquisitions, each one acquired for 5 s. Regions of interest (ROIs) in the 3D reconstructed
images are identified for blood and tissue, and curves for these regions are extracted. These
curves are fitted to a one-compartment model. (b) Actual time activity curves generated
from a dynamic sequence of 5 s reconstructions (Budinger et al 1991). The plot on the left is
for an ROI in the left ventricle and the plot on the right is for an ROI in the atrium.
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Figure 8.
One-compartment model. The blood is not a separate compartment because it is assumed to
be a known quantity. K1 is the wash-in rate constant (flow times extraction) and k2 is the
wash-out rate constant.
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Figure 9.
The SPECT detector head is assumed to rotate continuously so that the detector coordinate
d(t) has a particular angle θ(t) and spatial coordinate ξ(t). The projection measurements pi
(tk) are the activity acquired over a time period tk − Δtk to tk for the detector bin di (t).
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Figure 10.
Examples of piecewise (a) constant, (b) linear, (c) quadratic and (d) cubic B-spline basis
functions. Sixteen splines were used to span 15 time segments that have geometrically
increasing lengths. The 13th spline is shown as a solid curve. The initial time segment length
for the splines shown here is 10 s.
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Figure 11.
Segmentation of heart, blood pool (red), liver and torso from a dynamic cardiac SPECT
study using 99mTc-teboroxime (Reutter et al 1998b). Attenuation-corrected emission results
were reconstructed using 20 iterations of the ML-EM algorithm. A 4D second directional
derivative operator was applied to the attenuation-corrected dynamic image data set
containing ninety 10 s frames to segment the regions of the myocardial tissue,
intraventricular blood and background tissue. Shown here is the segmentation at time frame
31 (corresponding to the interval 300–310 s) after injection.
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Figure 12.
Phantom and time–activity curves used in computer simulations comparing conventional,
semi-direct and direct methods of estimation of kinetic parameters. (a) The MCAT emission
phantom shown with lateral and septal defects. (b) The attenuator assumed in generating the
projection data. (c) Time–activity curves used to generate the dynamic emission data for
different organs. The myocardial tissue curves were generated assuming a one-compartment
model (figure 8).

Gullberg et al. Page 87

Phys Med Biol. Author manuscript; available in PMC 2012 March 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 13.
Segmentation of a patient study (fast rotation) used in modeling the projection data for
estimating the dynamic parameters directly from projections. The image on the left shows
the boundaries of the liver (left) and the myocardium (right) resulting from the automatic
segmentation of the attenuation-corrected reconstruction at time frame 31 of the sequence of
dynamic reconstructions. The image on the right shows anatomical surfaces of the dome of
the liver (upper) and myocardium (lower), which were constructed by linking together zero-
crossings of the second directional derivative (Reutter et al 1998b).
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Figure 14.
Estimation of time–activity curves from projections acquired with slow camera rotation
(patient study, slow rotation). Reconstructed images and time–activity curves for a human
dynamic Tc-99m-sestamibi cardiac SPECT study. Kinetics of tracer in blood and
myocardium are evident in fully 4D reconstructed dynamic images sampled at (a) 15 s and
(b) 45 s; (c) in late summed image and (d) in directly estimated quadratic B-spline time–
activity curves. Black crosses in (a)–(c) denote spatial positions at which time–activity
curves were obtained (Reutter et al 2007a).

Gullberg et al. Page 89

Phys Med Biol. Author manuscript; available in PMC 2012 March 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Gullberg et al. Page 90

Phys Med Biol. Author manuscript; available in PMC 2012 March 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 15.
Input functions of factors estimated from projections (rat study, slow rotation). (a) Pinhole
collimators (tungsten insert with 1.5 mm aperture, 25 cm focal length with a magnification
of approximately 5) mounted on the GE Millennium VG3 Hawkeye SPECT-CT system used
in the rat studies. The camera rotated continuously with a pinhole to rotation axis distance of
between 5.5 and 5.8 cm. (b) Sequence of dynamic reconstructions and reconstruction of the
sum of all of the projections after the first 180 s for one transaxial slice of a rat study. (c)
Input functions estimated by factor analysis for four 123I-MIBG studies in rats using two
factors. The curves are the convolution of the input injection (5 s) with the circulation
function. The double peaks are due to a fast recirculation time of 6–8 s (Hu et al 2008).

Gullberg et al. Page 91

Phys Med Biol. Author manuscript; available in PMC 2012 March 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Gullberg et al. Page 92

Ta
bl

e 
1

Es
tim

at
es

 o
f m

yo
ca

rd
ia

l u
pt

ak
e 

an
d 

w
as

h-
ou

t p
ar

am
et

er
s a

nd
 v

ol
um

e 
fr

ac
tio

n 
f v 

of
 b

lo
od

 in
 th

e 
tis

su
e 

ob
ta

in
ed

 u
si

ng
 c

on
ve

nt
io

na
l a

nd
 d

ire
ct

co
m

pa
rtm

en
ta

l m
od

el
 p

ar
am

et
er

 e
st

im
at

io
n 

fr
om

 p
ro

je
ct

io
ns

, a
s w

el
l a

s r
es

ul
ts

 o
f f

itt
in

g 
co

m
pa

rtm
en

ta
l m

od
el

s t
o 

di
re

ct
ly

 e
st

im
at

ed
 sp

lin
e 

tim
e–

ac
tiv

ity
cu

rv
es

 (t
he

 se
m

i-d
ire

ct
 m

et
ho

d)
. T

he
se

 a
re

 c
om

pa
re

d 
w

ith
 th

e 
tru

th
 u

se
d 

in
 th

e 
si

m
ul

at
io

ns
 (R

eu
tte

r e
t a

l 1
99

8a
, 2

00
0)

.

Pa
ra

m
et

er
T

ru
th

C
on

ve
nt

io
na

l
D

ir
ec

t
Se

m
i-d

ir
ec

t

N
or

m
al

 m
yo

ca
rd

iu
m

K
1

0.
70

0
0.

66
5

0.
70

0
0.

70
0

k 2
0.

15
0

0.
14

9
0.

15
0

0.
15

0

f v
0.

15
0

0.
16

0
0.

15
0

0.
15

1

La
te

ra
l d

ef
ec

t
K

1
0.

50
0

0.
21

8
0.

50
0

0.
50

7

k 2
0.

60
0

0.
24

7
0.

60
0

0.
60

7

f v
0.

10
0

0.
27

8
0.

10
0

0.
09

2

U
ni

ts
 fo

r K
1 

an
d 

k 2
 a

re
 in

 m
in
−

1 ;
 f v

 is
 d

im
en

si
on

le
ss

.

Phys Med Biol. Author manuscript; available in PMC 2012 March 16.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Gullberg et al. Page 93

Ta
bl

e 
2

Es
tim

at
es

 o
f m

yo
ca

rd
ia

l u
pt

ak
e 

an
d 

w
as

h-
ou

t p
ar

am
et

er
s a

nd
 th

ei
r u

nc
er

ta
in

tie
s o

bt
ai

ne
d 

us
in

g 
di

re
ct

 c
om

pa
rtm

en
ta

l m
od

el
 p

ar
am

et
er

 e
st

im
at

io
n 

fr
om

pr
oj

ec
tio

ns
, a

s w
el

l a
s r

es
ul

ts
 o

f f
itt

in
g 

co
m

pa
rtm

en
ta

l m
od

el
s t

o 
di

re
ct

ly
 e

st
im

at
ed

 sp
lin

e 
tim

e–
ac

tiv
ity

 c
ur

ve
s (

th
e 

se
m

i-d
ire

ct
 m

et
ho

d)
 (R

eu
tte

r e
t a

l
19

98
b)

.

Pa
ra

m
et

er
D

ir
ec

t
E

rr
or

Se
m

i-d
ir

ec
t

E
rr

or
a

M
yo

ca
rd

iu
m

K
1

0.
83

5
0.

05
5

0.
85

2
–

k 2
0.

17
8

0.
00

2
0.

17
2

–

U
ni

ts
 a

re
 in

 m
in
−

1 .
 T

he
 e

rr
or

s f
or

 th
e 

di
re

ct
 m

et
ho

d 
w

er
e 

es
tim

at
ed

 a
s t

w
ic

e 
th

e 
in

ve
rs

e 
of

 th
e 

H
es

si
an

 m
at

rix
 a

ss
oc

ia
te

d 
w

ith
 th

e 
ch

i-s
qu

ar
e 

cr
ite

rio
n 

in
 e

qu
at

io
n 

(5
2)

, w
he

re
 th

e 
w

ei
gh

ts
 w

er
e 

as
su

m
ed

 to
be

 th
e 

re
ci

pr
oc

al
 o

f t
he

 m
ea

su
re

d 
pr

oj
ec

tio
ns

.

a Th
e 

is
su

e 
of

 e
st

im
at

in
g 

er
ro

rs
 u

si
ng

 sp
lin

e 
cu

rv
es

 is
 c

om
pl

ic
at

ed
 b

ec
au

se
 th

e 
cu

rv
es

 a
re

 c
or

re
la

te
d 

in
 ti

m
e,

 so
 th

is
 re

m
ai

ns
 a

n 
un

so
lv

ed
 p

ro
bl

em
. T

hi
s e

xa
m

pl
e 

ill
us

tra
te

s w
hy

 d
ire

ct
 e

st
im

at
io

n 
of

 k
in

et
ic

co
m

pa
rtm

en
t m

od
el

 p
ar

am
et

er
s i

s m
uc

h 
m

or
e 

de
si

ra
bl

e.

Phys Med Biol. Author manuscript; available in PMC 2012 March 16.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Gullberg et al. Page 94

Table 3

Comparison of sample means and sample standard deviations of compartmental model parameters estimated
semi-directly and directly with joint estimation of the blood input function. The means and standard deviations
were estimated from 400 noise realizations. The standard error of the sample mean is approximately 0.05
times the sample standard deviation. Units for the wash-in rate  and wash-out rate  are min−1; the
vascular fraction  is dimensionless (Reutter et al 2005).

Parameter Truth Semi-direct (mean ± SD) Direct joint (mean ± SD)

Normal myocardium 0.7 0.7001 ± 0.0061 0.6998 ± 0.0056

0.15 0.1500 ± 0.0016 0.1499 ± 0.0016

0.15 0.1501 ± 0.0121 0.1511 ± 0.0097

Septal defect 0.3 0.314 ± 0.077 0.312 ± 0.061

0.3 0.311 ± 0.064 0.310 ± 0.053

0.1 0.100 ± 0.119 0.097 ± 0.081

Lateral defect 0.5 0.554 ± 0.222 0.514 ± 0.132

0.6 0.639 ± 0.172 0.616 ± 0.120

0.1 0.075 ± 0.162 0.100 ± 0.102

Liver 0.9 0.9001 ± 0.0050 0.9001 ± 0.0049

0.002 0.0020 ± 0.0004 0.0020 ± 0.0004

0.2 0.2001 ± 0.0046 0.2002 ± 0.0036
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Table 4

Estimates of the kinetic model parameters for a one-compartment model using the input functions in figure
15(c). The data were acquired on 29 November 2005 (Hu et al 2008).

Animal identifier Kinetic parameters Mean Standard deviation

G1 normal K1 (s−1) 7.15 × 10−3 6.37 × 10−4

k2 (s−1) 2.64 × 10−3 2.53 × 10−4

G1 hypertensive K1 (s−1) 6.74 × 10−3 7.24 × 10−4

k2 (s−1) 3.44 × 10−3 3.92 × 10−4

G2 normal K1 (s−1) 7.41 × 10−3 7.21 × 10−4

k2 (s−1) 2.48 × 10−3 2.60 × 10−4

G2 hypertensive K1 (s−1) 5.52 × 10−3 5.55 × 10−4

k2 (s−1) 2.96 × 10−3 2.78 × 10−4
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