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Abstract

Diabetic nephropathy is a serious, long-term complication of diabetes and the leading cause of end-stage renal disease 

throughout the world. Although this disease is progressively imposing a heavier burden on the health care system, in 

many aspects it remains poorly understood. In addition to environmental influences, there is abundant evidence in sup-

port of genetic susceptibility to microvascular complications of nephropathy in diabetic patients. Familial clustering of 

phenotypes such as end-stage renal disease, albuminuria and kidney disease have been reported in large scale population 

studies throughout the world demonstrating strong contribution of inherited factors. Recent genome-wide linkage scans 

identified several chromosomal regions that are likely to contain diabetic nephropathy susceptibility genes, and associa-

tion analyses have evaluated positional candidate genes under linkage peaks. In this review we have extracted from the 

literature the most promising candidate genes thought to confer susceptibility to diabetic nephropathy and mapped them 

to affected pathways by using network-centric analysis. Several of the top susceptibility genes have been identified as 

network hubs and bottlenecks suggesting that they might be important agents in the onset of diabetic nephropathy.
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Diabetic nephropathy (DN), also known as Kimmelstiel-

Wilson syndrome, or nodular diabetic glomerulosclerosis 

and intercapillary glomerulonephritis, is a serious, long-term 

complication of diabetes and the leading cause of end-stage 

renal disease throughout the world1. Although this disease 

is progressively imposing a heavier burden on the health 

care system, it remains poorly understood in many aspects. 

The pathogenesis of DN is clearly multifactorial and sev-

eral genes, proteins and environmental factors are likely to 

contribute to its onset. Due to the growing disease burden of 

diabetes and its complications, and due to the fact that early 

detection has been associated with improved outcomes, it is 

important to identify DN predictors, in order to facilitate its 

diagnosis and treatment. Control of traditional danger fac-

tors (hypertension, hyperlipidemia, smoking, obesity) has 

had a modest effect in this regard, especially for the group of 

diabetic patients with nephropathy. In recent years, scientists 

have therefore focused on the genome and its role in DN2,3. 

In this review, we examine recent research efforts and dis-

cuss the most important genes which have been indentified 

as potential contributors to DN.

The renal lesions of DN are mainly related to the ac-

cumulation of extracellular matrix (ECM), including the 

thickening of the glomerular basement membrane (GMB) 

and later the tubular basement membrane, and the ex-

pansion of mesangium. This altered matrix composition 

seems to be an imbalance between ECM synthesis and its 

degradation4. Several metabolic, haemodynamic and in-

tracellular causes have been proposed to explain the link-

age between high glucose concentration and ECM accu-

mulation5. As a primary initiator of DN, high glucose lev-

els are associated with increased synthesis of cytokines 

and growth factors and with the diversion of glucose 

metabolism into at least three metabolic pathways, as 

shown in Figure 16. Thus, the key change in the onset of 

DN is accumulation of extracellular material. According 

to proposed mechanisms, hyperglycemia through several 

pathways induces the expression of transforming growth 

factor-beta (TGFβ) in the glomeruli. TGFβ probably is 

causative of cellular hypertrophy and increased synthesis 

of collagen, both being features that correlate well with 

the observed accumulation of extracellular material7.

It was previously thought that individuals who had 

diabetes and developed progressive diabetic nephropathy 

were simply victims of chronic diabetes with relatively 

poor glycemic control8. The concept that select individu-

als with diabetes were at differential risk for developing 

nephropathy was initially reported in 1989 but has only re-

cently gained broad acceptance among nephrologists and 

diabetologists9. Epidemiological studies indicate that the 

prevalence of diabetic nephropathy increases during the 

first 15-20 years after the onset of diabetes and then reach-

es a plateau, suggesting that only a subset of patients is 

susceptible to the development of kidney disease. Indeed, 
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Figure 1: Pathways operative in diabetic nephropathy.

only 20-40% of patients with microproteinuria go on to 

develop DN independent of treatment10. On the other hand, 

family studies show that diabetics with a family history 

with DN or hypertension or cardiovascular disease11,12 have 

a greater risk of developing kidney disease than those with 

no family history. Interestingly, the incidence of disease 

appears to be significantly influenced by the ethnic origin 

of patients with DN13. These findings suggest that genes 

play a role in the development of DN. 

Genetic and genomic approaches to finding suscepti-

bility genes for DN

The persistence of diabetic complications, including 

nephropathy especially in individuals who have undergone 

treatment for diabetes, could be due to genetic susceptibil-

ity to complications that cannot be prevented by improved 

glycemic control. Familial studies of diabetic families in 

Sweden and in the US have demonstrated that in fami-

lies with two or more siblings, the presence of clinically 

defined diabetic nephropathy in one sibling is associated 

with a fourfold increase in the risk of other siblings to de-

velop diabetic nephropathy14. Several studies have sought 

to discover alleles that contribute to genetic susceptibility 

by using gene linkage analysis and single nucleotide poly-

morphism discovery within or close to particular genes of 

interest, such as angiotensin converting-enzyme (ACE) or 

angiotensinogen (AGT) genes 15. Less biased strategies 

include the discovery of single nucleotide polymorphisms 

within the genome and the identification of haplotypes as-

sociated with disease-associated alleles16. In spite of these 

efforts, genetic approaches have failed to find a disease-

associated haplotype that confers a greater than threefold 

risk of kidney disease either in, or between different ethnic 

groups with diabetes.

The development of genomic and proteomic meth-

ods has expanded our ability to analyze predisposition 

to various human diseases and to form plausible hypoth-

eses based on familial histories. The use of PCR and of 

genome-wide expression analysis such as microarrays of 

nucleic acids and proteins along with the ability to identify 

and characterize single nucleotide polymorphisms allows 

us to not only characterize gene alterations on a genomic 

scale but also, and perhaps more importantly, it permits the 

association of patterns of genomic  changes with clinical 

entities whose etiology is driven by subtle gene variations. 

Two strategies have been employed in the identification 

of chromosomal and gene regions that may confer suscep-

tibility to DN: Linkage analysis on familial genetic dis-

eases and Genome Wide Association Studies (comparing 

groups of unrelated DN patients with healthy controls). 

Identification of the genes involved in a complex disease 

can be facilitated by initially focusing on familial forms of 

the disease. This approach can take the form of linkage or 

association analysis. The advantages and disadvantages of 

these studies are summarized in Table 117.

In general, linkage studies are more suitable for iden-

tifying rare gene variants that have a large effect on dis-

ease susceptibility. Markers that are distributed across 

the genome are genotyped in large family pedigrees. The 

frequencies of alleles transmitted or not transmitted to af-

fected children are then compared. This method requires 

the availability of genetic material from large families, 

which is often a significant limitation. Nevertheless, more 

recent studies derived from cohorts in the Pima Indians 

and African-American ethnic group, who statistically 

show high percentage not only of diabetes but also to 

DN, have revealed four genetic loci (18q22-23, 7q35-36, 

7q15, 10q26) thought to confer predisposition to DN18,19.

Significant effort has also been directed at Genome Wide 

Association Studies that compare the frequencies of poly-

morphisms/SNPs between a population of unrelated, affect-

ed individuals and a control population. The genes identified 

are subsequently studied with regard to their position in the 

genome, their function and how their products may mediate 

the pathogenesis of DN20. Through this analysis, much at-

tention has been focused on  genes involved in the synthesis 

and degradation of glomerular basement membranes and 

mesangial matrix components. In addition genes involved 

in components of metabolic pathways affecting glucose me-

tabolism, transport genes affecting blood pressure regulation 

and the renin-angiotensin system. Also genes encoding cy-

tokines, growth factors, signaling molecules, and transcrip-

tion factors and finally genes involved in advanced glyca-

tion processes. Genetic analyses of DN are complicated 

due to several factors. First, DN has late onset and therefore 

long-term follow-up is necessary and  second, even within 

afflicted families, it is impossible to predict which family 

members are likely to develop diabetes.  

Gene Ontology (GO) Analysis

Development of DN is associated with progressive 

functional and structural changes in affected nephrons that 

result from hemodynamic and metabolic pathway interac-

tions that appear to contribute equally to the appearance 

of DN. While  hemodynamic alterations due to complex 

interactions between mediators, such as prostanoids, NO, 

ROS, VEGF, TGFβ1 and RAAS, allow increased filtration 

of albumin at the glomerular level, metabolic changes due 
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to growth factors and cytokines, such as PKC, MAPK, NF-

κB and those mediated by high glucose, ACEs and ROS 

lead to renal hypertrophy and accumulation of extracel-

lular matrix components5,6. Although these processes are 

interlinked, it remains unclear how they are connected and, 

especially, how mutations in many different genes lead to 

signalling that contributes to DN. 

We have mined from the PubMed and AceView da-

tabases (AceView database: http://www.ncbi.nlm.nih.gov/

IEB/Research/Acembly/index.html) (Table 2 and in Sup-

plementary file see sheet titled GeneList for DN) several 

different putative DN susceptibility genes, and the process-

es that they influence. The chief criterion used for selecting 

genes as candidates was specific and definitive association 

(p<0.05) of these genes with DN development or inhibi-

tion. For example it has been reported that use of angi-

otensin-converting-enzyme (ACE) inhibitors is associated 

with reduced risk of progression to end-stage renal disease. 

Also, Angiotensin-II-receptor blockers (ARBs) are reno-

protective (but not cardioprotective) in patients with type 

2 diabetes, overt nephropathy or microalbumenemia15 (For 

example, see Tables 4 and 5 within ref. 15). The prοducts 

of these genes affect different pathways whose deregula-

tion might be critical for DN onset, however, it remains 

unknown how they interact and how known risk factors 

influence their functions. This imposes serious obstacles 

that hinder the identification of key regulators of onset and 

prompted us to seek different approaches in order to evalu-

ate candidate genes and the interacting pathways that might 

be instrumental in orchestrating the onset of DN in diabetic 

patients. These genes have been classified in at least eight 

different groups (Table 2). Group 1 contains genes which 

encode products such as MMP9, a metalloproteinase, 

NPHS1, nephrin and HSPG2, a glucosaminoglycan. These 

products affect the glomerular basement membrane and its 

function which constitutes a key event in the development 

of DN. Group 2 contains genes that affect blood pressure 

and group 3 genes that mediate glycation products. The 

other groups contain genes whose products affect signal-

ing pathways that influence structural and permeability 

properties of the glomerular basement membrane medi-

ated by genes in groups 1 and 2. 

 In order to reduce their functional complexity we re-an-

alyzed these gene groups by extracting their gene ontology 

(GO) classification enrichment using the GATHER web-

site21. GATHER uses a Bayes approach in order to evalu-

ate the statistical significance of enriched functional terms 

associated with the gene list of interest using functional GO 

categories listed in the GO site (http://amigo.geneontology.

org/cgi-bin/amigo/go.cgi), KEGG pathways, MeSH, tran-

scription factor binding sites etc, combined with evolution-

ary homolog and network-predicted annotations for proteins 

related through literature or protein interactions. A p value 

and a Bayes number are used to indicate significance. The 

larger the (positive) Bayes value the higher the probability 

that the GO term is associated with the gene.

GO enrichment analysis employs a controlled vocabu-

lary to compare a gene list, for example the DN suscep-

tibility genes, with random lists of genes in order to find 

the most enriched functional annotations for the former 

list. Three general levels of annotations are used for each 

gene/gene product: a) Biological function, b) molecular/

biochemical function and c) sub-cellular localization. 

Functional annotation enrichment (reduction of function-

al complexity to statistically a few top terms) within the 

GATHER site provides clues for novel functions of gene 

groups by also using annotation information derived from 

evolutionary homologs of the putative DN susceptibility 

genes. The GATHER algorithm, which uses a Bayes ap-

proach, compares a list of genes that share measures of 

METHODS ADVANTAGES LIMITATIONS

DNA 

microarrays

Gene expression 

profiling on a 

genomic scale.

Not hypothesis 

driven.

Can yield a 

limited number of 

candidates.

Complex statistical 

analysis. required, 

interpretation often 

difficult.

Different clustering 

criteria used.

Linkage 

analysis

Used to identify 

a gene or genetic 

region that has 

a large effect on 

phenotype

Requires rare 

families, findings 

might not aply to 

nonfamilial disease 

variants

Association 

analysis

Suitable for study of 

complex diseases, 

relatively easy 

to recruit study 

participants(no 

family required)

Large number of 

participants needed 

unlessgenetic factor 

has very strong 

influence

Table 1: Advantages and limitations of genetic tools for 

identifying susceptible genes.

Table 2: DN Candidate genes.

1. Glomerular basement 

membrane and mesangial 

matrix components, 

adhesion molecules

ΜΜΡ9, NPHS1, HSPG2, 

SELL, CNDP1, LAMNA, 

ELMO1

2. Blood pressure regulation 

and the renin-angiotensin 

system

ACE, ANP, AGT

3. Advanced glycation 

processes

AKR1B1, GFPT2, 

SLC2A1, ΑGE

4. Cytokines,growth factors, 

signaling molecules

CCR5, IL1, IL6, IL1RN, 

TGFBR, RANTES

5. Lipid metabolism APOE

6.Protein-amino acid-nucleic 

acid metabolism

NOS3, ENPP1, MnSOD

7. Transcription factors PPARG, TSC22, PRKCB, 

BDKRB2

8. Electron transportation P22phox, SLC12A3
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Figure 2: DN network reconstructed as described in text: 

Major modules and pathways.

KEGG Pathway p Value Bayes 

Factor

# Genes Genes 

path:hsa04060: Cytokine-cytokine receptor 

interaction 

< 0.0001 64 105 CCR5, IL1A, IL6, TGFB1, BLR1

path:hsa04630: Jak-STAT signaling pathway 0.004 21 55 IL6, AKT1, BCL2L1, CISH, CNTF

path:mmu04060: Cytokine-cytokine receptor 

interaction 

0.006 18 39 Ccr5,Il1a, Il6, Tgfb1, Ccl2

Table 3: Top GO categories enrichmed for DN susceptibility candidate genes shown in Table 2.

similarity, for example genes that are co-regulated or are 

candidates for DN predisposition, with a random list of 

genes in the genome and allows the retrieval of gene ontol-

ogy classification for the former group using the aforemen-

tioned controlled vocabulary in the gene ontology (GO) 

database (http://www.geneontology.org), pathway terms 

in the KEGG database (http://www.genome.jp/kegg/path-

way.html) and MeSH terms in the MeSH database (http://

www.nlm.nih.gov/mesh/). We have confirmed the GATH-

ER enrichment by performing a hyper-geometric distribu-

tion of annotations associated with DN susceptibility gene 

list within the GENECODIS site (http://genecodis.dacya.

ucm.es/). The hypergeometric approach is a discrete prob-

ability distribution that describes the number of successes 

in a sequence of n draws from a finite population with-

out replacement. For example, if “n” functional terms are 

drawn without replacement from a list (GO, KEGG etc) 

containing “N” genes in total, “m” of which have function 

n, the hypergeometric distribution describes the distribu-

tion of the number n drawn from the list. Based on this it 

then calculates a p value for each category (Table 3). The 

top functional categories that might contribute to a patho-

logical condition can thus be identified and the genes that 

are highly associated (low p value or high Bayes number 

from GATHER) with them can be further analyzed com-

putationally.  Therefore, in order to reduce the gene list in 

Table 2 to the top three, most represented functional cat-

egories that are enriched in DN susceptibility and to asso-

ciate these genes with pathways involved in DN, we have 

used the GATHER algorithm to retrieve their top GO path-

ways. As shown in Table 3, the top gene candidates for DN 

susceptibility in table 2 are enriched for two pathways: The 

cytokine-cytokine receptor interaction signalling pathways 

(groups 1 and 3 with p values 0.0001 and 0.006 respective-

ly) which contain genes such as CCR5, Il1a and TGFβ1 

and the Jak-Stat pathway with a p value of 0.004.  We 

therefore hypothesized that genetic and functional interac-

tions between genes belonging to the cytokine-cytokine 

and Jak-Stat pathways and derived from subtle alterations 

in genes that function in these pathways might play a cru-

cial role for DN onset in diabetes. DN susceptibility might 

be increased by signalling that leads to altered remodelling 

of the ECM in the glomerulus, thus influencing blood pres-

sure and eventually leading to nephropathy. Alternatively, 

high blood pressure in collaboration with altered glucose 

sensitivity might facilitate ECM remodelling leading to 

subtle alterations in the glomerulus. How these pathways 

interact with abnormal glucose metabolism is unknown 

and remains an interesting and crucial question to be an-

swered experimentally. 

A network-based approach to analyze DN susceptibility 

In order to gain a deeper understanding of the interac-

tions between these pathways and to map key candidate 

genes in Table 2 onto network modules of interacting path-

ways, we applied a network-centric approach in order to 1) 

identify the top hubs in the DN network and 2) to evaluate 

top network modules that regulate DN via these pathways 

by re-constructing a DN network. The reconstruction of bio-

logical networks, many of which are scale-free, permits the 

analysis of data within the context of a specific disease net-

work and helps to evaluate specific genes and gene products 

by taking into account all interactions and interrelationships 

between candidate genes22. In scale-free biological networks 

a few nodes (hubs) have many connections to other nodes 

but most nodes possess few connections (Figure 2). Hubs 

typically organize networks in sub-networks and in func-

tional modules whose member genes might code for pro-

teins that can be co-complexed in intracellular complexes. 

Other proteins or genes that are called bottlenecks may act 

as links between functional network modules and they may 

facilitate signaling. Moreover, proteins that share a large 

number of neighbors in a genetic-physical interaction net-

work tend to be in the same complex and similarly, proteins 

that are functional in the same complex will tend to be co-

expressed, to be network neighbors and found in network 

motifs. We therefore were interested in identifying top hubs 

and bottlenecks and how they organized the DN network.

Using as queries the genes in Table 2, we mined 1) 
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* KEGG Pathway p Value

A 1. path:hsa04060: Cytokine-cytokine receptor interaction 0.0003 

 2. path:mmu04060: Cytokine-cytokine receptor interaction 0.001 

 3. path:mmu04010: MAPK signaling pathway 0.002 

 4. path:mmu00190: Oxidative phosphorylation 0.002 

 5. path:hsa00190: Oxidative phosphorylation 0.003 

B 1. path:hsa04060: Cytokine-cytokine receptor interaction 0.0004 

 2. path:mmu04060: Cytokine-cytokine receptor interaction 0.002 

 3. path:hsa04010: MAPK signaling pathway 0.004 

 4. path:mmu04010: MAPK signaling pathway 0.005 

 5. path:mmu00190: Oxidative phosphorylation 0.005 

C 1. path:hsa04060: Cytokine-cytokine receptor interaction 0.0002 

 2. path:mmu04060: Cytokine-cytokine receptor interaction 0.0003 

 3. path:mmu04210: Apoptosis 0.006 

D 1. path:hsa04540: Gap junction < 0.0001 

 2. path:hsa04110: Cell cycle < 0.0001 

 3. path:hsa04510: Focal adhesion < 0.0001 

 4. path:hsa04520: Adherens junction < 0.0001 

E 1. path:hsa04060: Cytokine-cytokine receptor interaction < 0.0001 

 2. path:mmu04060: Cytokine-cytokine receptor interaction < 0.0001 

 3. path:hsa04630: Jak-STAT signaling pathway 0.002 

 4. path:rno04060: Cytokine-cytokine receptor interaction 0.003 

F 1. path:hsa04060: Cytokine-cytokine receptor interaction < 0.0001 

 2. path:mmu04060: Cytokine-cytokine receptor interaction 0.0003 

 3. path:hsa04010: MAPK signaling pathway 0.001 

 4. path:rno04010: MAPK signaling pathway 0.002 

G 1. path:hsa04910: Insulin signaling pathway 0.001 

 2. path:hsa04630: Jak-STAT signaling pathway 0.002 

 3. path:hsa00860: Porphyrin and chlorophyll metabolism 0.01 

Figure 3: Top hubs and bottlenecks in the DN network. Top 
hubs and bottlenecks were identified as described in the text 
and listed by rank. Except for Ace and Sod1, all bottlenecks 
also are hubs (in red), suggesting that they play important 
roles in DN network structure.

Table 4: Major enriched modules identified with network analysis for DN network and their gene ontology associations. 

*A-G refer to network modules with respective hubs as indicated in Figure 2.

their interactors from the human reference (HPRD, http://

www.hprd.org/) and the STRING (http://www.bork.embl-

heidelberg.de/STRING/) databases and 2) all interrelation-

ships between them using text-mining within the CONRAD 

database (http://conrad.licr.org/). We then re-constructed a 

DN network (Supplementary file 1*) using the Cytoscape 

(http://www.cytoscape.org/) and Hubba programs (http://

hub.iis.sinica.edu.tw/Hubba/) (Figure 2) and analyzed 

the network by identifying top hubs and bottleneck nodes 

(genes/proteins). Hubs are genes and gene products that 

possess the highest number of connections (interactions/

interrelationships) and are therefore likely to control over-

all biological network functions, and top bottlenecks are 

genes/gene products that link functional network modules 

and are critical for inter-module communication and are 

therefore critical for pathway communications23. 

Using this analysis we have identified several of the can-

didate genes in Table 2 as top hubs and bottlenecks in the DN 

network (Figures 2 and 3) and mapped them to major network 

modules and pathways that appear to be operative in DN onset 

(Table 4). The reconstructed DN network is scale-free (Figure 

2) and several of the literature-identified genes, such as Il6, 

Agt, Mmp9, Ccr5 and ApoE, are top hubs and bottlenecks.  

The most prominent network module is represented by the 

cytokine-cytokine pathway having as hubs IL6, AGT, ACE/

ApoE, CCR5 and MMP9 (Figure 2). Also, these genes are top 

bottlenecks (Figure 3) suggesting that they play major roles 

in DN susceptibility. Two more network modules and inter-
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connected pathways, which were not apparently represented 

by member genes in the literature-derived DN susceptibility 

genes, appear to be important. They are the gap junction/cell 

cycle/focal adhesion and insulin signalling pathways (Figure 

2). These pathways contain genes whose products are likely 

to be functional in ECM remodelling seen in DN onset. The 

oxidative phosphorylation pathway is also enriched in rep-

resentative genes in module B (Figure 2 and Table 4) and 

probably accounts for the role of the reported ACE and SOD 

genes in DN susceptibility. The cytokine Il6 which is the top 

hub in module A (Figure 2 and Table 4) and AGT belong to 

modules A and B which are enriched in genes that function in 

the cytokine-cytokine, MAPK and oxidative phosphorylation 

pathways, suggesting that signalling activated by changes in 

these genes are critical for DN onset resulting from interac-

tions between these pathways. Notably also, DN network 

modules A and B are linked with module G which is enriched 

in genes functioning in insulin signalling (Figure 2 and Ta-

ble 4) thus linking elevated glucose and therefore activated 

insulin signalling to cytokine signalling. Integration of these 

pathways with cell cycle/focal adhesion events (module D) 

probably contributes to ECM in the glomerulus thus account-

ing for the structural changes seen in diabetic kidneys with 

DN. MMP9 (module G in Figure 2) is a likely contributor to 

ECM remodelling and structural changes in the glomerulus.

Conclusion

Earlier investigations that focused on genetic mapping 

and analysis of specific candidate genes provided the founda-

tion for current studies that target linkage peaks and specific 

genes on a genomic scale. In this work we suggest that while 

single candidate gene analysis in theory allows for the study 

of both major and minor gene effects, in practice it gener-

ally yields conflicting results primarily because, like several 

other human diseases or syndromes, DN can develop form 

the interactions between several hundred genes that, alone, 

would have no effect but which when subtly altered could 

predispose to DN. Additionally, observed discrepancies 

can be partly explained by the relatively small size of study 

cohorts. Nevertheless, the use of genome wide association 

studies and SNP analysis of complex disease phenotypes re-

mains a promising approach, especially as microarrays are 

now used to identify up-regulated and down-regulated gene 

groups that distinguish between diabetic yet healthy kidneys 

and diabetic kidneys with DN. As our understanding of DN 

increases, the sophistication of our approaches, and the size 

and cost of association studies is also likely to increase. 

Combining network analysis to identify top hubs that con-

trol network behaviour and more classical approaches might 

reveal key genes and gene products that predispose to DN 

development. At the moment, no single gene with a large 

effect has been identified in the emergence, progression and/

or severity of DN. 
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