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ABSTRACT
An algorithm from the pattern recognition theory
'generalized portrait' was used to find a distinguishing
vector (scoring matrix) for E.colH promoters. We have
attempted to solve three closely linked problems: (i) the
selection of significant features of the signal; (ii)
subsequent multiple alignment and (iii) calculation of
the vector coordinates. Promoters with known strength
have been successfully ranked in the correct order
using this vector. We demonstrate the use of this
method in predicting the location of promoters. A
revised consensus promoter sequence is also
presented.

INTRODUCTION
Signal localization within DNA sequences is one of the most
important objectives in computer analysis of biological sequences.
Many approaches have been developed to solve the site
recognition problem, but all have inherent limitations. Common
to all of these approaches is the following optimistic proposition:
if the primary structure of several DNA fragments responsible
for the same function is known then one can deduce specific
features of this signal and recognize such signals in other
nucleotide sequences. Thus, previous attempts have been made
to recognize promoters [1-4], ribosome-binding sites (RBS's)
[5], intron-exon junctions [6], terminators [7] and many other
functional sites.

Approaches to recognition
Historically the first recognition site algorithm was designed to
search DNA sequences for similarity fragment homologous to
the consensus sequence. This method is usually applied when
we have little data for learning and provides, as a rule, unreliable
predictions. The exclusions are simple signals such as restriction
sites.
The increase in the volume of learning data permits us to

employ a statistical method for the analysis of functional sites.
It usually consists of the construction of a recognition matrix with
4n elements, where n is the number of considered nucleotides.
Each matrix element is based on the frequency of a certain
nucleotide at a certain position. The homogeneity of the data
makes the use of simpler statistical methods inappropriate.
Specifically, the occurrence of several identical sequences or of
very similar mutant derivatives is undesirable. Morover these
methods cannot solve the recognition matrix existence problem
(see below).

Previous attempts to apply the pattern recognition theory and
discrimination analysis seem quite promising. The specificity of
such algorithms is that they employ not only the compilation of
site sequences, but also a set of DNA sequences which are not
signals (non-sites). The first results of a well-known algorithm,
Perceptron, were obtained by Stormo [5] for RBS's. lida [6] has
used the discrimination theory for localizing splice junctions. We
report here the results of an application of the algorithm
'generalized portrait', originally developed by Vapnik et.al. [8],
for signal recognition, using E. coli promoters as an example.

RECOGNITION STRATEGY

We dissect the recognition problem into the following tasks:
1. Compilation of site;
2. Multiple alignment;
3. Choice of significant sign;
4. Calculation of the recognition matrix or discriminative vector.

Ideally, in compiling sites, all of them should have been
characterised by the same experimental method. Similarly for
the set of non-sites, all of them must be tested in the same
experiments.
The next three problems are closely associated and the order

of their solving is not strictly defined. In order to align the sites,
for instance, it is necessary to know the significance or the
'weight' of nucleotides within the site. On the other hand, these
weights are defined by the recognition matrix which depends on
the alignment. The iterative procedure, presented in Fig. 1
provides a possible way of solving this problem.

COMPILATION
E. coli promoters are well-investigated signals. Their most
conserved features comprise two boxes of six nucleotides
approximately 10 and 35 bases upstream from the transcription
origin. The spacer between the boxes varies in the range 15 to
21 nucleotides. The distance between the '-10' box and
transcription origin can range from 4 to 8, according to Hawley
and McClure [9], and from 4 to 12 according to Harley and
Reynolds [10].

All data were taken from compilations [9] and [10]. We did
not take promoters with undefined or multiple transcription
origins, neither those from compilation [10] which have a distance
between the -10 box and transcription origin of more than 8
or less then 4 nucleotides. Each promoter is represented by a
sequence of approximately 60 bases with the first transcribed
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COMPILATION AND INITIAL ALIGNMENT

> CHOICE OF SIGNS

> CALCULATION OF
DISTINGUISHING VECTOR

MULTIPLE ALIGNMENT

COMPARISON WITH OTHER SET OF SIGNS

Figure 1. The general algorithm for signal recognition.

Table 1. Features used for promoter recognition. Besides the two
boxes of 16 nucleotides, the spacer between them was considered.

Feature
number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

- 35 box T T G A C A

Feature
number 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

-10 box T A T A A T'

nucleotide marked. Since almost all promoters were located in
different experimental conditions it is incorrect to compare
different sequences with each other. Hence, the aim of learning
cannot be in finding such a recognition matrix for which any
promoter has a greater weight than that for all non-promoters.
Instead, finding the matrix which provides a maximum weight
for the promoter within the corresponding sequence from
compilation is a more correct aim. Regulated promoters were
included in the compilation since it was shown that the regulators
alter the promoter strength but do not change the transcription
origin [11].

Finally, the compilation consisted of 166 promoters, each
within a sequence of 50-60 nucleotides. All the other possible
meanings of the set of features (including complementary strand)
represented our non-promoter compilation. Thus each promoter
has its own non-promoter compilation of approximately 200 non-
sites. The total compilation was divided into two equal parts,
the learning and the control compilations.

CHOICE OF FEATURES

Firstly the learning was made with the standard set of features
consisting of two hexanucleotide boxes separated by 15-21
nucleotides. Then the boxes were expanded to 16 nucleotides
(Table 1) and the optimal set of features was found. One more
feature was the distance between these boxes, which has 7 values.
The set of features may be formed by different types of sequence
characteristics, such as the presence of secondary structure, G-C
content and so on. The algorithm of learning does not depend
on the set of features, only the sequence coding is changed.

Table 2. Dinucleotide features with the most significant x2
values. The value before the colon is the expected number of
dinucleotides where as the one after is the actual number.

Feature
number 22

A C G T

A 6: 8 8: 3 17:21 9:10
32 C 4: 6 5: 4 12:12 7: 9

G 6: 6 7:17 17: 8 9:10
T 5: 4 7: 5 15:22 8: 6

Feature
number 6

A C G T

A 12:19 8: 6 11: 5 11:15
20 C 9: 5 6:11 8:13 8: 3

G 9: 6 6: 4 8:11 8:12
T 11:13 8: 9 10: 9 10:10

Feature
number 23

A C G T

A 9:12 8: 5 10:11 13:13
31 C 9: 4 8:18 10: 6 13:13

G 6: 8 5: 6 7: 7 8: 7
T 9:10 8: 2 10:14 13:15

x2=24

x2=23

x2=22

Among other types of features only one was investigated -pairs
of nucleotides at certain positions in the -10 and -35 boxes.
This class of features characterizes the correlation of different
positions in boxes. The statistical analysis of independent
promoters was performed to reveal the significance of such
dinucleotide features. The quantitative measure of correlation
between features k and 1 was the following function:

X2 = r (n", -n)2/nS,
Iij

where ni1 is the number of promoters with the k-th feature
equaled i and the l-th one-j; ns is expected number of such
promoters: n5 = n' rn!/np, where np is the total number of
promoters. The degree of freedom equals 9. After all the mutant
derivatives were excluded, the compilation consisted of 151
promoters. The features that have significant correlation
(x2 > 20) are shown in Table 2. These results did not permit us
to conclude that dinucleotide features were correlated. We
therefore decided to ignore them during learning.
Encoding the sequences
Each feature has several sets of values: the nucleotide at a certain
position in the box can be A, C, G or T; the spacer between
boxes alters at defined intervals of natural numbers; energy of
the secondary structure has a continuous spectrum of real
numbers. Thus, the sequences may be encoded into an ordered
set of numbers or into a vector with coordinates corresponding
to features.

It is more convenient to deal with binary features, i.e. features
with two possible values-0 and 1. Any feature with k values
can be changed by k binary features. In the class of features
'nucleotide at certain position' each nucleotide is encoded by four
binary features and the feature 'spacer between boxes', by
-maxAmin+I binary ones, where Imax and Imin are the maximal
and minimal distance between boxes.
As a result each sequence is encoded by a binary vector. For

example, subsequence CTGT corresponds to vector (0100 0001
0010 0001). Nucleotides are ordered alphabetically so the first
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Figure 2. There are some different hyperplanes that discriminate the sets of sites
and non-sites. The algorithm 'generalized portrait' provides the maximum distance,
r, between the two sets.

number at every group of four features corresponds to A, second
to C, third to G and the fourth to T.

Positing the problem
Now we can formulate the recognition problem more strictly.
We say that two sets X and Y are distinguishable, if there exists
vector f and the real number r such that for all xeX and yeY
(x f) > r, (y * f) < r. To solve the recognition problem one must
find distinguishing vector, f. Just now the problem is the same
as formulated in [5]. Note that the terms recognition matrix and
distinguishing vector are equal.

CALCULATION OF THE DISTINGUISHING VECTOR
Geometry interpretation
Many ideas of the recognition theory may be illustrated
geometrically. By encoding the sequence into a vector we can
represent it as a point in the feature space. If sites are shown
as crosses and non-sites as circles then we will obtain a pattern
as shown on Fig.2. The problem is to find a hyperplane which
distinguishes the two sets.
The distinguishing vector is directed perpendicular to the

hyperplane and defines its orientation in the feature space, and
the discriminating number r defines its position. Any point z of
the distinguishing hyperplane satisfies the equation: (z -f) =r. As
shown on the figure there are several distinguishing planes.
PERCEPTRON [ 1,5] finds one of these planes and some of its
disadvantages stem from the small value of distance r between
the sets. We have used the algorithm 'generalized portrait' to
find the distinguishing plane which provides the maximum value
of r.

Algorithm 'generalized portrait'
This algorithm, described by Vapnik et.al. [8], required minor
modification for solving our problem. Let the discrimination
number, r, be equal 1. It is needed only for normalization and
does not change the recognition problem. The distinguishing
conditions can then be written as:

(fx)21 (1)
(f y) c k, where k<1

The generalized portrait is the minimal module of all possible
distinguishing vectors, f, which provides the maximum of

Table 3. The distinguishing vector obtained with algorithm
generalized portrait'. Feature 33 corresponds to the box spacer

Feature
number

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

A C G T

0 0
0 0
0.497 -0.587
0 0
0 0
0 0

-0.283 -1.139
0 0
0 0

-1.690 -0.285
-1.976 -0.289
-2.971 0.252
2.126 -0.938
0.818 0.826
0.672 -0.565

-0.942 0.153
0 0
0 0
0.579 -0.315
0 0

-0.445 0.380
0 0
0 0

-0.048 -0.143
3.409 -1.320
0 0
1.651 -0.832
0.605 0.218

-1.476 -0.638
0 0
0 0
0 0

0 0
0 0
1.163 -0.074
0 0
0 0
0 0
0.489 0.933
0 0
0 0
0.065 1.910
-0.469 2.734
3.209 -0.489
-1.351 0.163
-0.885 -0.759
0.444 -0.550
-0.163 0.953
0 0
0 0
-0.527 0.264
0

-0.813
0
0

-1. 122
-1.490
0
0.103

-1.227
0.000
0
0
0

"Pribnow" and
"Gilbert" boxes

T
T
G
A
C
A

1.878

1.314
-0.598
0

-0.923
0.403
2.114
0
0
U

T
A
T
A
A
T

L 15 16 17 18 19 20 21

33 -0.221 -0.214 1.714 1.400 -0.044 -1.955 -0.678

distance, r. Let us create set Z=Izij=xi-yj , where i and j run
independently all possible values. The finding of the generalized
portrait equals to definition of the module minimum vector f0,
satisfying condition (zij * fo) 2 1 =, for all zijEZ. It is possible to
prove that f0 is represented as the sum:

fo= EEzij - aii
and aij(zij * fo-1)=0; aij2 0.

Vectors Zij, for which Zij fo= 1 are called informative, and xi
and yj that form Zij are called boundary. Thus the generalized
portrait may be represented as a linear combination of boundary
vectors. It deduces the hyperplane building problem to
maximization of quadratic form Q(a)=EEaij-l/2(f f). The
distance between sets will be r(f) 21 =I/(2Q(ao)). If the volume
Q(a) becomes greater then the a priory given Qo it will mean
that the distance between two sets is less than the given ro value.
This criterion permits us to make a conclusion on the
undiscriminatability of sets.
The maximum point Q(a) can be found by the following

procedures. Choose an initial group of vectors Zij, build a
quadratic form Q(a) on it, find its maximum point by the
conjugated gradient method and find the corresponding vector
f01. Then find vectors xm and ym which provide extreme values
of the scale product:

Xm foI = min(x *f01)
Ym * foI =max(yj * f01)

If discriminating condition (1) is not performed, create vector
Zm=Xm-ym, add it to the selected group and make new
iteration. Continue until condition (1) will be performed or until
discrimination will be impossible (Q(a) > Q).
Upon solving the site recognition problem we build the non-

site set Yi for each element xieX. This set contain all vectors
formed from i-th sequence, apart- from xi. If long sequence

32 1
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Figure 3. The significant features of E. coli promoter signal as derived from this study. A dashed line indicates a single nucleotide.

contains two or more promoters we do not include other
promoters and regions surrounding them (±4 100 bp) because of
possible crypt signals. Thus we make the discriminating value
r different for each sequence. The latter being more correct
because the experimental methods used for identifying the
promoters were not identical for all sequences.

Strength of sites
Set Z is significantly expanded if we use information about the
relative efficiency (strength) of sites.If site xi is stronger then
site xj, we include all elements of set Yj and xj in set Y1. The
identity of experimental conditions is very important here.

Exclusion of ambiguous experimental data
The possibility that incorrect data are included in the learning
set always exists. The probability of mistakes is especially large
within the set of sites because of the large spectrum of methods
involved and their complexity. Our algorithm can exclude
ambiguous data. We choose the sequences most difficult for
distinguishing and then excluded them when discrimination
became impossible. If the total number of excluded sequences

will be greater than 50 we decided that the separation is
impossible.

Optimal set of features
Unessential features can be excluded by our program. We ordered
features according to sum: Ki=E(f1t)2, where fit corresponds to
the t-th gradation of the i-th feature. In our case t changes from
1 to 4 or from 'A' to 'T'. We excluded features with the
lowermost values of Ki until the discrimination became
impossible.

6

5

4

3

2

1 2 3 4 5 6 ln(S)

Figure 4. Correlation between promoter 'weight' w=(f x) and log(s), where
s is the promoter strength measured in bla units [ 12,13]. White circles correspond
to promoters in learning set. T5 phage promoters (encircled) are separated from
the rest.

Multiple alignment
We used an iterative algorithm to choose the box positions. Initial
alignments were formed by the statistical vector found in [2].
The following iterations were obtained using 'generalized
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Figure 5. Distribution of the promoter-like sites along DNA sequences. a) plasmid
pBR322, EcoR1-digested; known promoters are marked with arrows. b) phage
lambda. The two graphs for each sequence represent each strand.

portrait'. New alignments were built until the positions of -10
and -35 boxes became fixed. The algorithm is similar to the
one described by Bains (alignment by consensus) [12]. This
method seems sufficient if the distinguishing vector is
approximately known. The general scheme of the algorithm is
shown on Fig. 1.

RESULTS AND DISCUSSION
Distinguishing vector
The distinguishing vector was first calculated using only canonical
features of E. coli promoters. They comprise two hexanucleotide
sequences separated by 15-21 bases. The number of binary
features equals N=4*6+4*6+7=55. The result of learning
revealed that the discrimination with such a set of features was

impossible. To solve the problem we included new features
by increasing the box sizes. The size of each box became
16 nucleotides. The number of binary features-

N=4 16+4 16+7=135. This set of features permitted us to
calculate the distinguishing vector which precisely discriminated
sets of promoters and nonpromoters in the 166 sequences tested.
The control of distinguishing vector was achieved by formation

of two random compilations of promoter sequences. One was
used for learning and the other for control. The control of learning
should be performed for sequences which belong to defined
classes: promoters or nonpromoters. It is wrong to test the
distinguishing vector for example with the pBR322 sequence
because of stringent transcriptional analysis deficiency. In all
sequences from the compilation we know only the transcription
initiation point. We suppose that the distance between the -10
and -35 boxes can have seven values and between the -10 box
and the first transcribed nucleotide-five. So 35 different positions
of the boxes correspond to the known initiation point. We suppose
the promoter to be found correctly if the scalar multiplication
(f x) reaches maximum at one of the 35 possible positions of
-10 and -35 boxes. The number of all positions of boxes equals
200. The probability of the correct promoter localization with
the random vector equals 0.2.
To perform complete discrimination, it was necessary to

exclude the following promoter sequences from the compilation
(as named in ref. 9): tyrT/6, ompR, micF, TnSOlmerR, Pori-r;
the proposed positions of the -10 & -35 boxes of these
sequences are not within acceptable distances from the
transcription initiation point. More precise determination of the
transcription start point may be required for these promoters.
According to the recognition theory the probability of the right

classification of control objects after learning increases with the
growth of the learning set and decreases with the growth of the
number of features. By eliminating unimportant features we did
indeed decrease the number of errors in the control set.

So, upon learning with the set of 83 sequences, the
distinguishing vector was obtained. The vector gives three errors
in the learning set of sequences. Testing with the control set of
the other 83 sequences revealed 12 errors. For example, the
statistical vector from reference [2] gives 19 errors in the first
set and 15 in the second. Table 3 presents the vector, obtained
from the learning set of 83 promoter sequences and pBR322.
From the initial set of features consisting of 32 nucleotides, only
16 were chosen as the most important (Fig.3). The number of
binary features becomes 71, versus 127 for the statistical vector.

Previous studies [13,14] have provided data on actual promoter
strengths. We used only qualitative relations between promoters,
such as: lac promoter is stronger than the bla promoter.
Nevertheless the quantitative relations are in good agreement with
experimental data. We used six sequences for learning, the
predicted strength is shown on Fig.4. There is a logarithmic
dependence between weight and promoter strength. The strength
of phage T5 promoters have bad agreement with the predicted
value probably due to the fact that some important features for
T5 promoters were not included in our set [15]. The
discrimination of the total compilation with strength arrangement
is impossible even when an extended set of 32 features is
employed.
Promoter localization within DNA sequences
For localizing E. coli promoters the program LOCSUN was
written for IBM PC compatible computers. The program is
included in the DNASUN package [16]. Examples of the use

of this program are presented in Fig.5. The same analysis was

made earlier using a statistical vector [17]. In spite of similarity
between the distinguishing vectors the patterns of promoter
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localization differ significantly. This difference is seen clearly
when using random sequences (data not shown). It is surprising
but the true sites as a rule give similar peaks for different vectors.

CONCLUSION
There are certain advantages for employing the algorithm
'generalized portrait', rather than the statistical methods or the
simple algorithm PERCEPTRON. In particular, the former
permits us to give an answer on the possibility to discriminate
sets of sites and non-sites; to chose the optimal orientation of
the discriminating hyperplane and the optimal set of site features.
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