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Abstract
In the past decade, significant strides have been made in the area of cardiovascular
pharmacogenomic research, with the discovery of associations between certain genotypes and
drug-response phenotypes. While the motivations for personalized and predictive medicine are
promising for patient care and support a model of health system efficiency, the implementation of
pharmacogenomics for cardiovascular therapeutics on a population scale faces substantial
challenges. The greatest obstacle to clinical implementation of cardiovascular pharmacogenetics
may be the lack of both reproducibility and agreement about the validity and utility of the
findings. In this review, we present the scientific evidence in the literature for diagnostic variants
for the US FDA-labeled cardiovascular therapies, namely CYP2C19 and clopidogrel, CYP2C9/
VKORC1 and warfarin, and CYP2D6/ADRB1 and β-blockers. We also discuss the effect of
HMGCR/LDLR in decreasing the effectiveness of low-density lipoprotein cholesterol with statin
therapy, the SLCO1B1 genotype and simvastatin myotoxicity, and ADRB1/ADD1 for
antihypertensive response.
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drug-response phenotypes. These findings led the US FDA to add pharmacogenomic
biomarkers to drug labels of many commonly prescribed drugs. In the cardiovascular and
hematology therapeutic areas, these drugs include carvedilol, clopidogrel, isosorbide/
hydralazine, metoprolol, prasugrel, pravastatin, propafenone, propranolol, ticagrelor and
warfarin [101]. With the aim of aiding the healthcare provider in arriving at a well-informed
clinical decision, these labels include boxed warnings, dosage and administration
information, precautionary statements, drug interactions, clinical pharmacology information
or any combination thereof. While the motivations for personalized and predictive medicine
– reduction of serious adverse effects, moderation of variability in treatment efficacy, and
augmentation of therapy effectiveness based on individual genetic variation – are promising
for patient care and support a model of health system efficiency, the implementation of
pharmacogenomics for cardiovascular therapeutics on a population scale faces substantial
challenges.

One obvious hurdle is the required threshold of evidence for a particular variant prior to
clinical translation. Not only does the evidence for clinical utility have to be robust, an
increased value above and beyond current testing practices needs to be clearly demonstrated.
The pharmacokinetic or pharmacodynamic effect of a given genotype needs to result in a
predictable difference in drug efficacy, response or adverse effects. Given that a particular
variant reaches a significant level of evidence in a large clinical trial, the next obstacle
would be for the provider to act upon this knowledge with objective practice guidelines and
easy access to the genotype of the individual patient. Both the provider and patient would
need to have a positive perception and acceptance of genetic testing. The genotyping would
need to be of high standards and be performed in a Clinical Laboratory Improvement
Amendments (CLIA)-approved laboratory. For implementation at point-of-care, the
genomic information would already have to be part of the electronic medical record system,
which comes with its own ethical, privacy and security issues [1]. Finally, the compensation
for such testing would also need to be addressed.

The greatest obstacle to clinical implementation of cardiovascular pharmacogenetics may be
the lack of both reproducibility and agreement about the validity and utility of the findings.
In this review, we present the scientific evidence in the literature for diagnostic variants for
the FDA-labeled cardiovascular therapies, namely CYP2C19 and clopidogrel, CYP2C9/
VKORC1 and warfarin, and CYP2D6/ADRB1 and β-blockers (Table 1). We also discuss the
effect of HMGCR/LDLR in decreasing the effectiveness of low-density lipoprotein (LDL)-
cholesterol with statin therapy, the SLCO1B1 genotype and simvastatin myotoxicity, and
ADRB1/ADD1 for antihypertensive response. Even with the challenges facing the clinical
implementation of pharmacogenetics in cardiovascular therapeutics, personalized and
predictive medicine in this arena holds great promise, and in a few centers, such as
Vanderbilt University Medical Center (TN, USA) and others in the NIH Pharmacogenomics
Research Network (PGRN), it has already begun. The prospective findings from these
institutions that are pursuing clinical implementation will provide further insight into the
challenges and future direction for pharmacogenetics. There are also ongoing prospective
randomized clinical trials that will likely result in future revisions to guidelines.

Cardiovascular therapeutics & genomic variants
CYP2C19 & clopidogrel

Clopidogrel is indicated for patients at high risk for acute coronary syndrome without ST-
segment elevation, ST elevation myocardial infarction and prevention of vascular ischemic
events in patients with symptomatic atherosclerosis. Aspirin/clopidogrel combination
therapy is the standard of care for prevention of thrombosis after placement of intracoronary
stent, and clopidogrel is also an alternative antiplatelet drug to aspirin. In fact, in 2007,
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clopidogrel was the second most widely prescribed drug in the USA and worldwide sales
reached US$6.6 billion in 2009.

Clopidogrel is a thienopyridine prodrug, requiring CYP2C19 [2] and other enzymes in the
CYP450 superfamily to transform it to an active thiol derivative [3,4]. It is well recognized
that the interindividual variation to response of clopidogrel is heritable [5–11]. Several
studies have reproducibly shown that CYP2C19*2 allele (c.681G>A; rs4244285) carriers are
associated with a reduced ability to metabolize clopidogrel to form the active metabolite
(loss of function), a lower antiplatelet effect, and a higher risk for cardiovascular events [12–
27]. Meta-analyses have shown that CYP2C19*2 carriers treated with clopidogrel were
associated with higher rates of major adverse cardiovascular events and higher risk of stent
thrombosis compared with noncarriers [13,26]. There has also been an association with the
gain-of-function CYP2C19*17 variant (c.-806C>T; rs12248560) with increased drug
sensitivity and adverse bleeding side effects [11,28,29]. In terms of population genetics,
there appears to be a strong correlation with ancestry to the heritability of the alleles [11,29].
The loss-of-function CYP2C19*2 allele frequencies range from around 15% in European
and African ancestries versus 29% in east Asians [11]. Conversely, the gain-of-function
CYP2C19*17 alleles range from 16 to 21% in subjects of European and African ancestries
compared with 3% in east Asian subjects [29]. There is also some evidence of loss-of-
function *3 variant, contributing to poorer response in east Asians [11]. These results
suggest that CYP2C19 testing may be even more imperative in that region of the world;
however, there needs to be more education and awareness of pharmacogenomics before
implementation can be carried out on a widescale in these populations.

Despite the robust association between the CYP2C19*2 genotype with lower clopidogrel
response, large-scale studies with coronary artery disease subjects with lower risks for
thromboembolic events failed to show the same association [30]. Therefore, clinical utility
may be limited to only patients with high risk for recurrent events [31]. Nevertheless, the
FDA approved a boxed warning of clopidogrel in March 2010 (Table 2), advising that
alternative antiplatelet therapy be used in patients that are homozygous for the CYP2C19*2
allele [102]. Despite this warning, the FDA has not mandated genetic testing for CYP2C19
status before initiation of clopidogrel, leading to some confusion among healthcare
providers regarding clinical implementation and personalized therapy. Furthermore, the
American College of Cardiology Foundation and the American Heart Association have
recently suggested that in the absence of prospective randomized trials, the evidence is
insufficient to recommend genetic testing [32,33]. Recently, the ELEVATE-TIMI 56
(NCT01235351 [103]), a multicenter, randomized, double-blinded trial, showed that among
patients with stable cardiovascular disease, tripling the maintenance dose of clopidogrel to
225 mg daily in CYP2C19*2 heterozygotes achieved levels of platelet reactivity similar to
the standard 75 mg dose in noncarriers while in CYP2C19*2 homozygotes, even a 300 mg
daily dose was unlikely to result in optimal degree of platelet inhibition [34]. It will be years
before the data from other ongoing prospective randomized clinical trials of genotype-
directed antiplatelet therapy will become available. In the meantime, the NIH-funded
Clinical Pharmacogenetics Implementation Consortium (CPIC) of PGRN has published
guidelines to recommend use of genetic information to guide clopidogrel therapy, also
noting that the evidence is compelling for a relationship between CYP2C19 genotype and
clopidogrel response in acute coronary syndrome patients who have undergone percutaneous
coronary intervention [35].

CYP2C9, VKORC1 & warfarin
Warfarin is the most widely prescribed oral anticoagulant drug in North America and
probably the world. It is indicated for the prophylaxis or treatment of venous thrombosis and
pulmonary embolism. It is also indicated for the prophylaxis or treatment of
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thromboembolic complications associated with atrial fibrillation, cardiac valve replacement
and myocardial infarction. In patients with atrial fibrillation, anticoagulation with warfarin is
over twice as effective in secondary prevention of stroke as any other alternatives, including
other antithrombotic drugs [36] or surgical intervention [37]. Despite its effectiveness,
warfarin interacts with many commonly used medications (simvastatin, metronidazole,
macrolides and other broad-spectrum antibiotics), alcohol and some foods (particularly fresh
plant-based foods containing vitamin K) resulting in either reduced effectiveness or
increased toxicity.

Patients on this drug are monitored by a trial and error approach for safety and narrow
therapeutic index based on the International Normalized Ratio. The wide interpatient
variability in dosing requirement suggests a highly genetic contribution to the
pharmacokinetics and pharmacodynamics of the drug [38]. The association of higher risk of
bleeding as well as the under- or over-anticoagulation with certain genotypes prompted the
FDA to place a warning label on the drug (Table 2) in August 2007 to include information
on CYP2C9 and VKORC1 genotypes as predictors of dose response, and in January 2010,
the FDA further revised the warning to include specific dosage recommendations for these
genotypes [104,105]. However, as with clopidogrel, the agency stopped short of mandating
pharmacogenetic testing.

Warfarin is a synthetic derivative of dicoumarol, which is a derivative from coumarin. The
related 4-hydroxycoumarin-containing molecules decrease blood coagulation by inhibiting
VKORC1, an enzyme that recycles the epoxide and quinine form of oxidized vitamin K to its
reduced nonoxidized form after it has participated in the carboxylation of several blood
coagulation proteins, mainly prothrombin and factor VII. The onset of effect requires
approximately a day before clotting factors being normally made by the liver have time to
naturally disappear in metabolism, and the duration of action of a single dose of racemic
warfarin is 2–5 days. Multiple linked variants in VKORC1 (−1639G>A; rs99232318 and
1173C>T; rs9934438) have been associated with variability in gene expression, increased
sensitivity to warfarin, and reduction in dose requirement [39–43]. However, only the
VKORC1 −1639G>A is a functional variant [44]. Additional identification of variants in
CYP2C9*2 (p.Arg144Cys; rs1799853) and *3 (p.Ile359Leu; rs1057910) alleles are
associated with 40–70% reduction in (S)-warfarin clearance and approximately 20–40%
lower warfarin dose requirement, respectively [45–48]. As in the case of clopidogrel, there
are population and racial differences in minor allele frequencies of important variants as
well as sensitivity to warfarin dosage requirement [40,49,50]. The CYP2C9*2 and *3 alleles
and VKORC1 −1639G>A genotype explain approximately 50–60% of the variability in
dosage in Caucasians but only approximately 20–25% of variability in African–Americans
[40,48,51–54]. The VKORC1 genotype has also been shown to be the strongest predictor of
warfarin dosage in Japanese subjects [43,55]. Whether VKORC1 and CYP2C9 variants are
the primary contributors to the drug response in African–Americans remains to be seen in
studies currently in progress.

Despite the plethora of information from multiple genome-wide association studies, the
strong support from the International Warfarin Pharmacogenetics Consortium (IWPC) and
CPIC, in addition to the FDA warning labels and the availability of several FDA-approved
platforms for warfarin genotyping, the clinical implementation of genetic testing for
warfarin dosing has not only been disappointing in practice, but also the current consensus
guidelines by the American College of Chest Physicians actually warn against the routine
use of genetic data to guide dosing [38]. Similarly, the American College of Medical
Genetics endorses testing only in cases of unusual warfarin response [56]. These conclusions
have generally cited the suboptimal predictive value of the pharmacogenetic test over large
populations [57]. There is a lack of evidence from large-scale prospective randomized trials,
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but such studies are currently under way – COAG (NCT00839657 [106]), GIFT
(NCT01006733 [107]) and EU-PACT (NCT01119300 [108]) trials. Randomized clinical
trials thus far have found the benefit of a genotype-guided dosing algorithm as a predictor of
final stable dose compared with the clinical-only algorithm; however, the studies have not
demonstrated a clear advantage of pharmacogenetic dosing on anticoagulation control
[40,51,58,59]. By contrast, two prospective studies show a relationship between reduced
hospitalization and better prediction of maintenance dose with the healthcare provider
having knowledge of warfarin genetic information [45,60].

The clinical evidence shows that there is clinical and analytical validity of warfarin
pharmacogenetics for Caucasians and possibly for other racial groups. However, whether the
clinical utility of genetic testing for warfarin has been unequivocally established is still
debatable. Even if the evidence is favorable for testing from prospective randomized trials
and the guidelines are modified to reflect that, the challenge still remains in obtaining
quality (CLIA-approved) clinical laboratory genotyping with quick turnaround time,
compared with the turnaround time for international normalized ratio, if not eventually
necessitating pre-emptive genotyping information in the medical electronic system for point-
of-care access.

CYP2D6, ADRB1 & β-blockers
Clinicians have long known about the relationship of ancestry and drug response, especially
in the case of heart failure, exemplified by the improvement in survival in African–
Americans treated with hydralazine and nitrate, in addition to standard therapy. Three
commonly prescribed β-blockers for heart failure (metoprolol, carvedilol and propranolol)
have FDA labeling regarding the CYP2D6 polymorphisms [109–111]. However, the
evidence for pharmaco-kinetic effect of this genotype does not appear to translate into
differences in efficacy, response or adverse effects, where dose titration is based on clinical
surrogates such as blood pressure and heart rate.

In heart failure therapeutic pharmaco-genomics, the most robust evidence concerns the
association of ADRB1 variants (two common nonsynonymous polymorphisms Ser49Gly;
rs1801252 and Arg389Gly; rs1801253) and left ventricular ejection fraction or clinical
outcomes mediated by β-blockade [61–63]. The BEST (NCT00000560) suggested that
Arg389Arg patients had significant benefits from bucindolol, whereas Gly389 carriers had
no significant benefit [61]. This has led to probably the first case of pharmacogenomically
guided drug development for the treatment of cardiovascular disease. The pharmaceutical
company plans to launch a superiority trial in 3200 ADRB1 Arg389Arg patients randomized
to metoprolol or bucindolol. Other studies, however, have not documented an association
between Arg389Gly genotype and improved outcome with β-blockade [64,65]. There are
also studies suggesting association of β-blockers for heart failure with ADRB2, ADRA2C and
GRK5 [66–68]. Thus, the literature suggests that while some subjects with heart failure may
derive little benefit from β-blockade, in other patients, genetic variability in the adrenergic
signaling pathway may have an important influence on the benefits of the drug.
Nevertheless, it is difficult to clinically implement testing based on the consensus guideline
use of β-blockers in patients with heart failure with the suggestion to withhold therapy
without providing an alternative therapeutic option.

ADRB1, ADD1 & antihypertensives
As with heart failure and β-blockade, there are consistent data in several clinical studies
showing association in differential blood pressure lowering levels with polymorphisms of
the ADRB1 gene, namely Ser49Gly and Arg389Gly [63,69–71]. In atenolol-treated patients
with hypertension, the Ser49/Arg389 haplotype was associated with improved outcome,
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especially in lower death rate, in comparison with verapamil [71]. It may be that these
variants demonstrate enhanced agonist-induced adenylyl cyclase activation by Gly49
compared with Ser49 and by Arg389 compared with Gly389 as shown in vitro. There has
been equivocal data regarding the association of Gly460Trp variant in the α-adducin gene
ADD1 with response to thiazide [71–76]. This polymorphism in ADD1 has also been
associated with increased risk of myocardial infarction or stroke during thiazide diuretic
treatment [77]. But analyses in both the ALLHAT (NCT00000542 [112]) and the INVEST
(NCT00133692 [113]) studies were unable to replicate this finding [78,79]. Nevertheless,
this association led to the development of a novel antihypertensive drug class targeting
adducin, namely ouabain, which has shown impressive Phase II data regarding blood
pressure lowering efficacy [80,81].

HMGCR, LDLR, SLCO1B1 & statins
Another class of widely prescribed drugs for the prevention of cardiovascular events in
coronary artery disease is the HMGCR inhibitors. The mechanism by which these inhibitors
lower plasma LDL-cholesterol is via attenuation of endogenous production of cholesterol by
increasing expression of the LDLR [82]. The H7 haplotype involves three intronic
polymorphisms – rs17244841, rs3846662, rs17238540 – in the HMGCR and has been
associated with 11–19% decreased reduction in LDL-cholesterol in both ethnically diverse
and multiple independent populations [72,83–88]. Other haplotypes – HMGCR H2 and
LDLR L5 [86–88], have also been associated with decreased attenuation of LDL-cholesterol.
Additional studies have shown association with variability in statin efficacy with variants in
CYP3A4 [89,90]. The FDA recently recommended that the higher dose of 80 mg/day of
simvastatin be restricted to patients taking the medication for 12 months or longer [114].
Most patients who are at risk for developing myopathy or fatal rhabdomyolysis would most
likely show clinical symptoms of adverse side effects within a few weeks of treatment. The
FDA recommendation was based on the finding from the SEARCH (NCT00124072 [115])
consortium, where patients homozygous or heterozygous for a variant (rs4363657) in the
SLCO1B1 gene were found to have a 16.9- and 4.5-fold increase, respectively, in developing
myopathy or rhabdomyolysis at the 80 mg/day higher dose [91]. SLCO1B1 encodes the
uptake transporter organic anion-transporting polypeptide 1B1 [92]. The identified
polymorphism tags a known nonsynonymous variant SLCO1B1*5 (p.Val174Ala;
rs4149056), which has been replicated in a separate cohort in the original study [91] and
subsequently in two other studies [93,94]. Another study also showed that Val174Ala
predicted the discontinuation of another popular statin drug, atorvastatin, due to adverse side
effects [93]. Cerivastatin-associated rhabdomyolysis has also been associated with this
variant in SLCO1B1 [95]. These studies demonstrate how dosage and duration of therapy
interact with genetics to produce a drug response phenotype. However, it also appears that a
biomarker that can modulate risk may not necessarily be of high clinical utility because of
low predictive value (<20% for developing myopathy in patients homozygous for the
Val174Ala allele). The SLCO1B1 genotype may predict a large effect on risk of simvastatin-
associated myotoxicity in some settings and not in others. Current studies are exploring
whether genomic markers have predictive value in identifying subjects with developing
coronary events while on statin therapy.

Future perspective
With the ‘$1000’ whole-genome sequencing within reach in the next few years, it will not
be the cost of genotyping or sequencing that will deter the progress of personalized and
predictive medicine. The greatest obstacle to clinical implementation of cardiovascular
pharmaco-genetics may be the lack of both reproducibility and agreement about the validity
and utility of the findings. Once the scientific and medical communities are in agreement as
to the clinical validity and utility of these pharmacogenetic tests, objective practice
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guidelines may be developed. Instantaneous access to the genotype information for point-of-
care treatment of the individual patient may also be a great obstacle as the genomic
information needs to be in the electronic medical record system pre-emptively, which raises
its own ethical, legal and social issues. In the end, clinical implementation of
pharmacogenetics in the cardiovascular field or any other therapeutic arena on a population-
wide scale across cultures, nations and ethnicities may very well be limited by the social
acceptance and public perception of genetic testing.
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Executive summary

Background

• Significant advances in cardiovascular pharmacogenomic research with
discovery of association between genotype and drug response phenotype.

• Challenges include the required threshold of evidence for a particular variant
prior to clinical translation, increased value above and beyond current testing
practices, genotype predictability in drug efficacy, response, adverse effects,
objective practice guidelines, point-of-care access to patient genomic
information, compensation and reimbursement, and ethical, legal, privacy and
security issues.

Cardiovascular & genomic variants

• Clopidogrel and CYP2C19:

– Association of loss-of-function *2 allele carriers with a reduced ability
to metabolize clopidogrel to form the active metabolite, a lower
antiplatelet effect, and a higher risk for cardiovascular events.

– Association of the gain-of-function *17 variant with increased drug
sensitivity and adverse bleeding side effects.

– Strong correlation of ancestry to the heritability of the alleles.

– Some evidence of loss-of-function *3 variant contributing to poorer
response in east Asians.

– Despite the robust association between the CYP2C19*2 genotype and
lower clopidogrel response, large-scale studies with coronary artery
disease subjects with lower risks for thromboembolic events failed to
show the same association. Therefore, clinical utility may be limited to
only patients with high risk for recurrent events.

– Despite the boxed warning, the US FDA has not mandated genetic
testing for CYP2C19 status before initiation of clopidogrel, leading to
some confusion among healthcare providers regarding clinical
implementation.

– The American College of Cardiology Foundation and the American
Heart Association have recently suggested that in the absence of
prospective randomized trials, the evidence is insufficient to
recommend genetic testing.

– Recently, the ELEVATE-TIMI 56 (NCT01235351), a multicenter,
randomized, double-blinded trial, showed that among patients with
stable cardiovascular disease, tripling the maintenance dose of
clopidogrel to 225 mg daily in CYP2C19*2 heterozygotes achieved
levels of platelet reactivity similar to the standard 75 mg dose in
noncarriers while in CYP2C19*2 homozygotes, even a 300 mg daily
dose was unlikely to result in optimal degree of platelet inhibition.

• Warfarin and CYP2C9 and VKORC1:

– Multiple linked variants in VKORC1 have been associated with
variability in gene expression, increased sensitivity to warfarin and
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reduction in dose requirement. However, only VKORC1 −1639G>A is
a functional variant.

– Additional identification of variants in CYP2C9*2 and *3 alleles are
associated with 40–70% reduction in (S)-warfarin clearance and
approximately 20–40% lower warfarin dose requirement.

– Despite the plethora of information from multiple genome-wide
association studies, the strong support from the International Warfarin
Pharmacogenetics Consortium (IWPC) and Clinical Pharmacogenetics
Implementation Consortium (CPIC), in addition to the FDA warning
labels and the availability of several FDA-approved platforms for
warfarin genotyping, the clinical implementation of genetic testing for
warfarin dosing has been disappointing in practice.

– The current consensus guidelines by the American College of Chest
Physicians actually warn against the routine use of genetic data to
guide dosing. Similarly, the American College of Medical Genetics
endorses testing only in cases of unusual warfarin response.

– There is a lack of evidence from large-scale prospective randomized
trials, but current such studies are underway.

• β-blockers and CYP2D6 and ADRB1:

– In heart failure therapeutic pharmacogenomics, the most robust
evidence concerns the association of ADRB1 variants (two common
nonsynonymous polymorphisms Ser49Gly; rs1801252 and Arg389Gly;
rs1801253) and left ventricular ejection fraction or clinical outcomes
mediated by β-blockade.

• Antihypertensives and ADRB1 and ADD1:

– There are consistent data in several clinical studies showing association
of differential blood pressure lowering levels with polymorphisms of
the ADRB1 gene, namely Ser49Gly and Arg389Gly.

• Statins and HMGCR, LDLR and SLCO1B1:

– The H7 haplotype in the HMGCR has been associated with 11–19%
decreased reduction in low-density lipoprotein cholesterol in both
ethnically diverse and multiple independent populations; HMGCR H2
and LDLR L5, have also been associated with decreased attenuation of
low-density lipoprotein cholesterol.

– The FDA recommendation that the higher dose of 80 mg/day of
simvastatin be restricted to patients taking the medication for 12
months or longer was based on the finding where patients homozygous
or heterozygous for a variant (rs4363657) in the SLCO1B1 gene were
found to have a 16.9- and 4.5-fold increase, respectively, in developing
myopathy or rhabdomyolysis at the 80 mg/day higher dose. The
identified polymorphism tags a known nonsynonymous variant
SLCO1B1*5.

– Other studies have shown that variants in SLCO1B1 predict adverse
side effects to atorvastatin and cerivastatin-associated rhabdomyolysis.
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– A biomarker that can modulate risk may not necessarily be of high
clinical utility because of low predictive value (<20% for developing
myopathy in patients homozygous for the Val174Ala allele).

Future perspective

• The greatest obstacle to clinical implementation of cardiovascular
pharmacogenetics may be the lack of both reproducibility and agreement about
the clinical validity and utility of the findings.

• Population-wide implementation across cultures, nations and ethnicities may be
limited by the social acceptance and public perception of genetic testing as well
as ethical, legal and social issues.
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Table 1

Cardiovascular therapeutics, associated genes and gene variants, associated allele effect and minor allele
frequency in different populations.

Drug Associated gene(s) Associated gene variant(s) Associated allele effect

Minor allele frequency
in different
populations†

Clopidogrel CYP2C19 CYP2C19*2 (c.681G>A; rs4244285) Loss-of-function, lower
antiplatelet effect, higher risk
of cardiovascular events

CEU 14%; YRI/ASW
14%; CHB/JPT 26–28%

CYP2C19*17 (c.-806C>T; rs12248560) Gain-of-function, increased
drug sensitivity, increased
adverse bleeding side effect

CEU 23%; YRI/ASW
29%; CHB/JPT 0–2%

Warfarin VKORC1/CYP2C9 VKORC1 (−1639G>A; rs9923231) Increased drug sensitivity,
reduced dose requirement

CEU 40%; YRI/ASW 3–
10%; CHB/JPT 91–95%

CYP2C9*2 (p.Arg144Cys; rs1799853) Reduced drug clearance,
reduced dose requirement

CEU 10%; YRI/ASW
0%; CHB/JPT 0%

CYP2C9*3 (p.Ile359Leu; rs1057910) Reduced drug clearance,
reduced dose requirement

CEU 6%; YRI/ASW 0–
3%; CHB/JPT 2–4%

β-blockers ADRB1 ADRB1 (p.Ser49Gly; rs1801252) More optimal blood pressure
control, increased left
ventricular ejection fraction

CEU data not available;
YRI/ASW 1%; CHB/JPT
0%

ADRB1 (p.Arg389Gly; rs1801253) More optimal blood pressure
control, increased left
ventricular ejection fraction

CEU 31%; YRI/ASW
42%; CHB/JPT 15–25%

Statins HMGCR/SLCO1B1 HMGCR H7 (c.451-174A>T;
rs17244841)

Decreased reduction in LDL-
cholesterol

Data not available

HMGCR H7 (c.1564--106A>G;
rs3846662)

Decreased reduction in LDL-
cholesterol

CEU 43%; YRI/ASW
88–95%; CHB/JPT 54%

HMGCR H7 (c.2298+117T>G;
rs17238540)

Decreased reduction in LDL-
cholesterol

Data not available

SLCO1B1*5 (p.Val174Ala; rs4149056) Increased risk of developing
myopathy or rhabdomyolysis

CEU 15%; YRI/ASW 1–
5%; CHB/JPT 12–14%

†
Data from International HapMap Project Data Rel 28 Phases II and III, August 2010 [116], on NCBI B36 assembly, dbSNP b126.

ASW: African ancestry in southwestern USA; CEU: Utah residents with northern and western European ancestry from the CEPH collection; CHB:
Han Chinese in Beijing, China; JPT: Japanese in Tokyo, Japan; LDL: Low-density lipoprotein; YRI: Yoruban in Ibadan, Nigeria.

Pharmacogenomics. Author manuscript; available in PMC 2013 March 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Ong et al. Page 18

Ta
bl

e 
2

U
S 

FD
A

 w
ar

ni
ng

 la
be

l f
or

 c
lo

pi
do

gr
el

 a
nd

 w
ar

fa
rin

 a
nd

 F
D

A
-a

pp
ro

ve
d 

te
st

in
g 

pl
at

fo
rm

s a
nd

 a
ss

ay
s f

or
 th

e 
an

al
yt

e(
s)

.

D
ru

g
B

io
m

ar
ke

r(
s)

L
ab

el
 se

ct
io

ns
†

D
at

e 
of

 F
D

A
 w

ar
ni

ng
†

FD
A

-a
pp

ro
ve

d 
ph

ar
m

ac
og

en
et

ic
 te

st
in

g 
pl

at
fo

rm
s a

nd
 a

ss
ay

s‡
E

ffe
ct

iv
e 

da
te

‡

C
lo

pi
do

gr
el

C
YP

2C
19

B
ox

ed
 w

ar
ni

ng
W

ar
ni

ng
s a

nd
 P

re
ca

ut
io

ns
D

os
ag

e 
an

d 
A

dm
in

is
tra

tio
n

M
ar

ch
 2

01
0

A
ff

ym
et

rix
 G

en
eC

hi
p 

Sy
st

em
 3

00
0D

X
 (R

oc
he

 A
m

pl
iC

hi
p®

 C
YP

45
0 

Te
st

)
Ja

nu
ar

y 
20

05

A
ut

oG
en

om
ic

s I
nf

in
iti

™
 A

na
ly

ze
r

N
ov

em
be

r 2
01

0

W
ar

fa
rin

C
YP

2C
9

VK
O

RC
1

Pr
ec

au
tio

ns
D

os
ag

e 
an

d 
A

dm
in

is
tra

tio
n

A
ug

us
t 2

00
7,

 u
pd

at
ed

 Ja
nu

ar
y 

20
10

V
er

ig
en

e®
 S

ys
te

m
Se

pt
em

be
r 2

00
7

A
ut

oG
en

om
ic

s I
nf

in
iti

 A
na

ly
ze

r
Ja

nu
ar

y 
20

08

C
ep

he
id

 S
m

ar
tC

yc
le

r®
 D

x 
Sy

st
em

 (P
ar

ag
on

D
x 

R
ap

id
 G

en
ot

yp
in

g 
A

ss
ay

 –
C

YP
2C

9 
an

d 
VK

O
RC

1)
A

pr
il 

20
08

O
sm

et
ec

h 
M

ol
ec

ul
ar

 S
ys

te
m

s e
Se

ns
or

®
 X

T-
8 

Sy
st

em
Ju

ly
 2

00
8

R
oc

he
 D

ia
gn

os
tic

s L
ig

ht
C

yc
le

r®
 V

er
1.

2 
(T

rim
G

en
 C

or
po

ra
tio

n 
eQ

-P
C

R
™

 L
C

W
ar

fa
rin

 G
en

ot
yp

in
g 

K
it)

Fe
br

ua
ry

 2
00

9

G
en

M
ar

k 
D

ia
gn

os
tic

s e
Se

ns
or

®
 X

T-
8 

Sy
st

em
 (D

N
A

 G
en

ot
ek

 O
ra

ge
ne

-D
x

co
lle

ct
io

n 
de

vi
ce

)
D

ec
em

be
r 2

01
1

† U
S 

FD
A

 d
ru

g 
la

be
l.

‡ U
S 

FD
A

 C
en

te
r f

or
 D

ev
ic

es
 a

nd
 R

ad
io

lo
gi

ca
l H

ea
lth

 C
lin

ic
al

 L
ab

or
at

or
y 

Im
pr

ov
em

en
t A

m
en

dm
en

ts
 d

at
ab

as
e.

Pharmacogenomics. Author manuscript; available in PMC 2013 March 1.


