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Abstract
Oxygen-containing mononuclear iron species—iron(III)–peroxo, iron(III)–hydroperoxo and
iron(IV)–oxo—are key intermediates in the catalytic activation of dioxygen by iron-containing
metalloenzymes1–7. It has been difficult to generate synthetic analogues of these three active iron–
oxygen species in identical host complexes, which is necessary to elucidate changes to the
structure of the iron centre during catalysis and the factors that control their chemical reactivities
with substrates. Here we report the high-resolution crystal structure of a mononuclear non-haem
side-on iron(III)–peroxo complex, [Fe(III)(TMC)(OO)]+. We also report a series of chemical
reactions in which this iron(III)–peroxo complex is cleanly converted to the iron(III)–hydroperoxo
complex, [Fe(III)(TMC)(OOH)]2+, via a short-lived intermediate on protonation. This iron(III)–
hydroperoxo complex then cleanly converts to the ferryl complex, [Fe(IV)(TMC)(O)]2+, via
homolytic O–O bond cleavage of the iron(III)–hydroperoxo species. All three of these iron species
—the three most biologically relevant iron–oxygen intermediates—have been spectroscopically
characterized; we note that they have been obtained using a simple macrocyclic ligand. We have
performed relative reactivity studies on these three iron species which reveal that the iron(III)–
hydroperoxo complex is the most reactive of the three in the deformylation of aldehydes and that it
has a similar reactivity to the iron(IV)–oxo complex in C–H bond activation of alkylaromatics.
These reactivity results demonstrate that iron(III)–hydroperoxo species are viable oxidants in both
nucleophilic and electrophilic reactions by iron-containing enzymes.
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TMC (1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane) is a macrocyclic ligand of
remarkable versatility in the field of biomimetic chemistry of dioxygen activation by metal
complexes. A variety of metal complexes of superoxo, peroxo and oxo ligands showing a
wide range of properties have been recently synthesized and characterized using the TMC
ligand8–11. In the case of iron, TMC complexes of oxo and peroxo ligands are known11,12;
however, neither the structure of the latter nor that of any other iron(III)–peroxo complexes
have been reported before this study. We report here the X-ray crystal structure of a high-
spin iron(III)–peroxo complex bearing the TMC ligand, [Fe(III)(TMC)(OO)]+ (1; Fig. 1).

The iron(III)–peroxo complex, prepared by reacting [Fe(II)(TMC)(CF3SO3)2] with 5 equiv.
H2O2 in the presence of 2 equiv. triethylamine in CF3CH2OH at 0 °C (ref. 12), was
characterized with ultraviolet–visible absorption spectroscopy (Fig. 2a), electrospray
ionization mass spectrometry (Supplementary Fig. 1), and electron paramagnetic resonance
(EPR) spectroscopy (Supplementary Fig. 2), as reported previously12, as well as resonance
Raman spectroscopy (Supplementary Fig. 3) and X-ray absorption spectroscopy/extended
X-ray absorption fine structure (XAS/EXAFS) (Fig. 2b, c). The X-ray crystal structure of 1–
(ClO4) revealed the mononuclear side-on 1:1 iron complex with O2; the Fe is in a distorted
octahedral geometry, which arises from the triangular FeOO moiety with a small O–Fe–O
(‘bite’) angle of 45.03(17)° (Fig. 1; Supplementary Tables 1 and 2). The FeOO geometry is
similar to the crystallographically characterized structure of naphthalene dioxygenase, where
dioxygen binds side-on close to the mononuclear iron at the active site (1.75 Å resolution,
O–O distance ~1.45 Å)6. The structurally determined O–O bond length of 1.463(6) Å in our
complex is indicative of peroxo character of the OO group13, as supported by resonance
Raman data14,15 (Supplementary Figs 3 and 4). It is worth noting that both the O–O bond
length and the average Fe–O bond length (1.910 Å) of 1 are longer than those of other
metal(III)–peroxo complexes bearing a series of TMC ligands8–10. The structure of 1 was
further supported by EXAFS analysis (Fig. 2c), which identifies a 2:4 split first shell, with
two short Fe–O paths at 1.92 Å and four longer Fe–N TMC paths at ~2.22 Å
(Supplementary Table 3, fit 1–3; Supplementary Table 4).

From the structure of 1 (Fig. 1), all four N-methyl groups point to the same side of the
peroxo moiety, as observed in other metal(III)–peroxo complexes8–10. In the case of an
iron(IV)–oxo complex bearing the TMC ligand, the N-methyl groups of a Sc3+-bound
[Fe(IV)(TMC)(O)]2+ complex are also syn to the oxo ligand16, whereas those in [Fe(IV)
(TMC)(O)(CH3CN)]2+ are anti to the oxo ligand11. In addition, no axial ligand binds to the
iron ion trans to the peroxo ligand in 1, which is different from the [Fe(IV)(TMC)(O)
(CH3CN)]2+ complex11 but similar to other metal(III)–peroxo complexes8–10 as well as the
Sc3+-bound [Fe(IV)(TMC)(O)]2+ complex16.

Addition of a slight excess of HClO4 (for example, 3 equiv. to 1) to a solution of 1 in
acetone/CF3CH2OH (3:1) at −40 °C immediately generated a violet intermediate (2) with an
electronic absorption band at λmax = 526 nm, followed by a conversion (t1/2 ≈ 60 min) from
2 to the corresponding iron(IV)–oxo complex, [Fe(IV)(TMC)(O)]2+ (3), with an isosbestic
point at 735 nm (Fig. 2a; also see Supplementary Fig. 5 for the electrospray ionization mass
spectrometry of 3). (Here λmax is the wavelength of maximum absorption, and t1/2 is the
half-life.) Intermediate 2 rapidly reverts back to 1 on addition of 3 equiv.
tetramethylammonium hydroxide, suggesting that 1 and 2 are interconverted through the
previously reported acid-base chemistry between iron(III)–peroxo and iron(III)–
hydroperoxo species14,17,18.

Because the interconversions were fast, the reactions were followed using a stopped-flow
spectrometer. On addition of 3 equiv. HClO4 to 1 in acetone/CF3CH2OH (3:1) at −40 °C,
the absorption band of 1 at λmax = 782 nm disappeared immediately (<2 ms), but the
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absorption band of 2 at λmax = 526 nm appeared gradually. The full formation of 2 took
~100 ms with an observed rate (kobs) of 93 s−1 at −40 °C (Supplementary Fig. 6). These
spectral changes indicate that another intermediate (2') exists in the conversion of 1 to 2,
with an extremely fast conversion of 1 to 2' followed by the relatively slow (that is, ~100
ms) conversion of 2' to 2 (Fig. 3 and Supplementary Fig. 7). 2' is likely to be a side-on
iron(III)–hydroperoxo species (Fig. 3 and Supplementary Fig. 7), although we have been
unable to characterize spectroscopically owing to its extremely short lifetime. The reverse
reaction, which is the conversion of 2 to 1, was also investigated using stopped-flow
methods. Addition of 3 equiv. of tetramethylammonium hydroxide to a solution of 2 at −80
°C resulted in the formation of 1 with a clear isosbestic point at 635 nm and a kobs of 19 s−1

(Supplementary Fig. 8; see Fig. 3 for reaction pathways).

Intermediate 2 was characterized using a variety of spectroscopic techniques, including
EPR, XAS/EXAFS and resonance Raman. The EPR spectrum of a frozen acetone/
CF3CH2OH (3:1) solution measured at 10 K exhibits signals at g = 6.8, 5.2 and 1.96
(Supplementary Fig. 9), which are indicative of a high-spin (S = 5/2) Fe(III) species18,19.
The EXAFS data for 2, compared to 1 (Fig. 2c), also exhibit a distinct shift in the
coordination environment, from a 2:4 O:N split first shell in 1 to only a single Fe–O path at
a distance of 1.85 Å in 2 (Supplementary Table 3, fit 2-2). This conversion is evident, as a
2:4 split first shell for 2 produces unreasonable bond variances (Supplementary Table 3, fit
2-1). In addition, the remaining Fe–N paths of the TMC ligand have contracted to an
average distance of 2.17 Å, reflecting a decrease in ligation. The Fe K-edge of 2
energetically overlays well with that of 1 (Fig. 2b), consistent with the assignment of 2 as a
high-spin Fe(III) system. The 1s→3d Fe K pre-edge feature of 2 exhibits an increase in pre-
edge intensity from 17.5 to 25.6 units, 1 to 2, respectively (Supplementary Table 5). A pre-
edge intensity of 25.6 units is substantially larger then those of other six-coordinate or even
five-coordinate complexes20, thus favouring a five-coordinate structure for 2
(Supplementary Fig. 10).

On 531-nm excitation at 77 K, the resonance Raman spectrum of 16O-labelled 2 in d6-
acetone shows two isotopically sensitive bands at 658 and 868 cm−1 (Supplementary Fig.
11). The peak at 658 cm−1 shifts to 633 cm−1 on 18O-substitution, and is the Fe–O stretch.
The peak at 868 cm−1 shifts to 820 cm−1 on 18O-substitution, and is the O–O stretch. The
O–O stretch of 2 is higher than those of other high-spin Fe(III)–OOH(R) complexes (for
example, 830 cm−1 for [Fe(H2bppa)(OOH)]2+)19 and is much higher than those of low-spin
Fe(III)–OOH(R) complexes (for example, 790 cm−1 for [Fe(N4Py)(OOH)]2+)21, consistent
with the conclusion that 2 is a high-spin Fe(III)–OOH complex. In addition, the Fe–O
stretch of 2 is higher than those of six-coordinate high-spin Fe(III)–OOH(R) complexes (for
example, 621 cm−1 for [Fe(H2bppa)(OOH)]2+)19, indicating a stronger Fe–O bond that
would be consistent with the absence of a trans-axial ligand in 2. This observation is also
consistent with the above XAS results suggesting a five-coordinate model for 2. These
spectroscopic results are further supported by density functional theory calculations that
indicate that a high-spin [Fe(III)(TMC)(OOH)]2+ complex with its methyl groups oriented
syn to the OOH− ligand does not bind a trans-axial ligand (Supplementary Fig. 12).

Knowing that an iron(IV)–oxo complex, [Fe(IV)(TMC)(O)]2+ (3), is formed as the decay
product of 2 (Fig. 2; Supplementary Figs 5 and 13), two possible mechanisms of
hydroperoxide O–O bond cleavage of 2 are considered: one is the heterolytic O–O bond
cleavage of the hydroperoxide ligand of 2, which would generate an Fe(V)–oxo species,
followed by one-electron reduction of the Fe(V)–oxo species that results in the generation of
3 (pathways A and B in Supplementary Fig. 14). The other possibility is the hemolytic
hydroperoxide O–O bond cleavage of 2, affording 3 and a hydroxyl radical (pathway C in
Supplementary Fig. 14). Recently, the former mechanism has been proposed22, based on the
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observation that the formation rate of 3 from 2 was accelerated by increasing the proton
concentration in CH3CN solution. However, under different solvent conditions, we found no
proton concentration effect on the rate of the hydroperoxo O–O bond cleavage of 2. In fact,
the formation rates were essentially the same irrespective of the proton concentration in
acetone/CF3CH2OH (3:1) and other solvents except CH3CN (Supplementary Table 6).

Additional evidence that argues against the formation of an iron(V)–oxo species via O–O
bond heterolysis was obtained by carrying out reactions in the presence and absence of
substrates (Supplementary Fig. 15). If 3 were in fact the product of the one-electron
reduction of an iron(V)–oxo species, then the amount of 3 formed in the presence of the
substrates should decrease due to fast reactions between the highly reactive iron(V)–oxo
species and the substrates (pathways A and D in Supplementary Fig. 14). However, the
amounts of 3 formed in the presence and absence of substrates were the same, implying that
an iron(V)–oxo species was not generated via an O–O bond heterolysis mechanism in the
course of the formation of 3 from 2. It is also significant that this chemistry, in which a high-
spin iron(III)–hydroperoxo species undergoes O–O bond homolysis, has not been reported
previously for other high-spin iron(III)–hydroperoxo species21,23. A possible reason is that
the Fe(IV)=O product in our reaction is an intermediate-spin, six-coordinate complex. Thus,
changes along the reaction coordinate in spin state and coordination number could
contribute to the energetics of this O–O bond cleavage.

The detailed reactivities of the three intermediates, iron(III)–peroxo (1), iron(III)–
hydroperoxo (2), and iron(IV)–oxo (3), have been investigated in both nucleophilic and
electrophilic reactions (Fig. 3). The nucleophilic characters of all three intermediates were
tested in aldehyde deformylation reactions24. On addition of 2-phenylpropionaldehyde (2-
PPA) to 1 and 3 in acetone/CF3CH2OH (3:1) at −40 °C, the intermediates remained intact
without any spectral change (Supplementary Fig. 16). These results indicate that 1 and 3 are
relatively unreactive in nucleophilic oxidative reactions at −40 °C, although 1 showed a
reactivity with the aldehyde at high temperature (for example, 15 °C)12. In contrast,
intermediate 2 reacted rapidly with 2-PPA at −40 °C, resulting in the disappearance of its
characteristic ultraviolet–visible band. This follows a first-order decay profile and forms 3
with an isosbestic point at 735 nm (Fig. 4a; see Supplementary Fig. 17 for aldehyde
concentration effect). The high reactivity of 2 in nucleophilic reactions, compared to the
side-on iron(III)–peroxo analogue 1, is ascribed to the end-on binding mode of the
hydroperoxo ligand24,25 and supported by density functional theory calculations
(Supplementary Fig. 18). The reactivity of 2 was further investigated using primary (1°-
CHO), secondary (2°-CHO), and tertiary (3°-CHO) aldehydes (Fig. 4b), and the observed
reactivity order of 1°-CHO > 2°-CHO > 3°-CHO supports the nucleophilic character of 2
(Supplementary Fig. 19 shows additional evidence for the nucleophilic character of 2).

The electrophilic characters of 1, 2 and 3 were also investigated in the oxidation of
alkylaromatic compounds with weak C–H bonds, such as xanthene (75.5 kcal mol−1) and
9,10-dihydroanthracene (DHA, 77 kcal mol−1). 1 did not show any significant spectral
change on addition of substrates in acetone/CF3CH2OH (3:1) at −20 °C (Supplementary Fig.
20a). In contrast, 2 and 3 reacted with DHA under the same conditions (Supplementary Figs
20b and 21a), showing that both 2 and 3 are capable of abstracting a hydrogen atom from
DHA and that 2 has a similar reactivity to 3 in this C–H bond activation reaction. Second-
order rate constants of 8.1 × 10−1 and 2.4 × 10−2 M−1 s−1 were determined in the oxidation
of xanthene and DHA, respectively, by 2 at −20 °C (Supplementary Fig. 21b). On the basis
of the above observations—that the reaction rates are dependent on the substrate
concentration and the bond dissociation energies of the substrates (Supplementary Fig.
21b)26,27—we conclude that 2 is the active oxidant in abstracting an H atom from the
substrates.
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In conclusion, iron(III)–hydroperoxo intermediates have been proposed as active oxidants in
cytochrome P450-catalysed deformylation of aldehydes28,29 and activated bleomycin-
mediated DNA cleavage via H-atom abstraction21,30. We have provided here direct
experimental evidence that a high-spin iron(III)–hydroperoxo species is capable of acting as
an active oxidant in both nucleophilic and electrophilic reactions.

METHODS SUMMARY
The iron(III)–peroxo complex, [Fe(III)(TMC)(OO)]+ (1), was prepared by reacting [Fe(II)
(TMC)(CF3SO3)2] with 5 equiv. H2O2 in the presence of 2 equiv. triethylamine in
CF3CH2OH at 0 °C. Unlike the highly unstable nature of 1 in CH3CN (refs 12, 22), 1
prepared in CFSCH2OH persisted for several hours at 0 °C, and this greater thermal stability
of 1 in alcoholic solvents allowed for the isolation of crystals with ~80% yield, which were
used for spectroscopic characterization and reactivity studies. Crystals suitable for structural
analysis were obtained from CH3OH/diethyl ether with excess NaClO4 at −40 °C. See
experimental section in Supplementary Information for detailed experimental conditions and
procedures, spectroscopic and kinetics analyses, and computational calculations.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. X-ray crystal structure of 1
Structure of [Fe(TMC)(OO)]+ (1), with thermal ellipsoids drawn at the 30% probability
level, produced using ORTEP software. Hydrogen atoms are omitted for clarity. Selected
bond lengths (Å): Fe–O1 1.906(4), Fe–O2 1.914(4), Fe–N1 2.192(4), Fe–N2 2.256(5), Fe–
N3 2.180(5), Fe–N4 2.273(4), O1–O2 1.463(6). Selected angles (°): O1–Fe–O2 45.03(17),
Fe–O1–O2 67.8(2), Fe–O2–O1 67.2(2).
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Figure 2. Ultraviolet–visible spectra and XAS data of 1, 2 and 3
In a–c, data for 1, 2 and 3 are shown respectively in blue, red and green. a, Ultraviolet–
visible spectra of 1, 2 and 3; arrows indicate spectral changes for the conversion of 2 to 3 in
the reaction of 1 (1 mM) and 3 equiv. HClO4 in acetone/CF3CH2OH (3:1) at −40 °C. b,
Main panel, Fe K-edge XAS data; inset, expanded pre-edge region. Dotted black line shows
starting material, high-spin [Fe(II)(TMC)]2+, for reference. c, Main panel, Fourier transform
of EXAFS data (k = 2-16); inset, EXAFS data (solid lines) with final fits (dashed lines).
These data show striking differences across the series, most of which are the result of
changes to the first coordination sphere.
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Figure 3. Iron–oxygen intermediates
Generation, structural and spectroscopic characterization, and reactivities of mononuclear
non-haem iron–oxygen intermediates detected in the reactivity studies of 1.
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Figure 4. Reactivity studies of 2 with aldehydes
a, Ultraviolet–visible spectral changes showing the decay of 2 (1 mM) and formation of 3 on
addition of 2-PPA (50 mM). Inset, time courses of the absorbance change of 2 at 526 nm for
the reaction with 2-PPA (filled circles) and for the natural decay (open circles). b, Second-
order rate constants determined in the reactions of 2 with pentanal (1°-CHO; triangles), 2-
methylbutanal (2°-CHO; circles), and pivalaldehyde (3°-CHO; squares). Standard deviation
is <10% of the data used in the plot.
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