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Abstract: Imaging of the human fetus using magnetic resonance (MR) is an essential tool for quantitative stud-
ies of normal as well as abnormal brain development in utero. However, because of fundamental differences in
tissue types, tissue properties and tissue distribution between the fetal and adult brain, automated tissue seg-
mentation techniques developed for adult brain anatomy are unsuitable for this data. In this paper, we describe
methodology for automatic atlas-based segmentation of individual tissue types in motion-corrected 3D volumes
reconstructed from clinical MR scans of the fetal brain. To generate anatomically correct automatic segmenta-
tions, we create a set of accurate manual delineations and build an in utero 3D statistical atlas of tissue distribu-
tion incorporating developing gray and white matter as well as transient tissue types such as the germinal
matrix. The probabilistic atlas is associated with an unbiased average shape and intensity template for registra-
tion of new subject images to the space of the atlas. Quantitative whole brain 3D validation of tissue labeling per-
formed on a set of 14 fetal MR scans (20.57–22.86 weeks gestational age) demonstrates that this atlas-based EM
segmentation approach achieves consistently high DSC performance for the main tissue types in the fetal brain.
This work indicates that reliable measures of brain development can be automatically derived from clinical MR
imaging and opens up possibility of further 3D volumetric and morphometric studies with multiple fetal sub-
jects.Hum Brain Mapp 31:1348–1358, 2010. VC 2010Wiley-Liss, Inc.
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INTRODUCTION

Imaging of the human fetus using magnetic resonance
(MR) has become an important tool for clinical evaluation
of pregnancy and early detection of various fetal abnormal-
ities, especially in the developing central nervous system
[Coakley et al., 2004; Glenn and Barkovich, 2006; Twickler
et al., 2003]. While ultrasonography still remains the pri-
mary tool for prenatal screening, MR imaging (MRI) offers
several advantages for fetal diagnostics including high spa-
tial resolution, generation of different tissue contrasts and
the ability to collect functional information [Brugger et al.,
2006; Prayer et al., 2006; Rutherford et al., 2008].
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Fetal MRI is also an essential tool for the study of nor-
mal as well as abnormal brain development in utero [Gi-
rard et al., 1995; Perkins et al., 2008; Prayer et al., 2006;
Rutherford et al., 2008]. Although anatomical details can
be usually visualized by prenatal ultrasound, layers of
developing brain tissues do not display enough impedance
difference to be delineated sonographically [Prayer et al.,
2006]. Fetal MRI is usually performed after 20 weeks ges-
tational age (GA) when the main steps of organogenesis
are completed. At this stage, the fetal brain consists of
seven layers that may be visualized in vitro [Kostovic
et al., 2002]. On in vivo images, however, due to contrast
limitations no more than four basic layers can be reliably
identified. These include the marginal zone and the corti-
cal plate that together give rise to cortical gray matter
(GM), the intermediate zone or fetal white matter (WM)
and the ventricular zone also known as the germinal matrix
(GMAT). The germinal matrix is a transient structure of
developing cells adjacent to ventricles (VENT) that is pres-
ent in the fetal brain between 8 and 28 weeks gestational
age [Kinoshita et al., 2001]. During embryology and early
fetal life, the germinal matrix is a site of production of both
neurons and glial cells which then migrate out to their final
locations [Prayer et al., 2006]. The volume of the germinal
matrix reaches its peak at about 23–26 weeks GA and
decreases subsequently [Battin et al., 1998; Kinoshita et al.,
2001]. Because of its high cell-packing density, the germinal
matrix appears hypointense on T2-weighted (T2w) MR
images used in clinical practice, with intensities very similar
to those of developing gray matter (see Fig. 1).

Segmentation and quantitative analysis of main tissue
types from clinical MR images of the fetal brain is essential
for modeling of the normal brain development process
and extracting rules to detect growth patterns that may be
related to abnormal outcomes. Manual segmentation, how-
ever, is both tedious and time consuming for larger imag-
ing studies. Although automatic segmentation of the fetal
brain is challenging due to evolving states of tissues and
how this is reflected on MR images, it is necessary for clin-
ical studies with many subjects.

Previous studies on automatic segmentation of develop-
ing human brain focused mainly on premature and term
neonates [Huppi et al., 1998; Inder et al., 2005; Prastawa
et al., 2005; Xue et al., 2007] and young children [Matsu-
zawa et al., 2001; Murgasova et al., 2007]. Among recent
studies, Prastawa et al. [2005] developed an algorithm for
automatic segmentation of brain tissues from T1w and
T2w MR images of the newborn brain. The proposed
three-step procedure included estimation of initial inten-
sity distribution parameters using graph clustering, auto-
matic bias correction, and final refinement of segmentation
with particular focus on identification of myelinated and
non-myelinated white matter regions. Murgasova et al.
[2007] presented an atlas-based approach for automatic
segmentation of infant brain MRI where delineation of
developing tissues is challenging due to ongoing process
of white matter myelination. In another neonatal study,

Xue et al. [2007] did not attempt to segment subcortical
brain structures, but rather focused on precise automatic
segmentation and reconstruction of the cortex from T2w
MR images. The proposed atlas-based method specifically
targeted mislabeled partial volume voxels at the interface
of gray matter and the cerebrospinal fluid. To address in-
tensity variability in developing white matter, the global
segmentation results were locally refined after splitting the
brain volume into several regions.

Automatic analysis of MR images of the fetal brain has
been so far restricted to processing of 2D slices. Claude
et al. [2004] presented an approach to segmentation and
biometric analysis of the posterior fossa from midline
sagittal cross-sections. A semi-automatic method based on
region growing was used to segment various components
of the posterior fossa such as the brain stem or vermis and
calculate biometric markers that may be indicative of fetal
cerebellar growth. Grossman et al. [2006] performed quan-
titative measurements of the fetal brain from in utero MR
images. As automatic segmentation was found inapplica-
ble, cerebral, cerebellar, and ventricular regions were
traced manually on axial 2D MR slices. Approximate pat-
terns of normal brain growth were then estimated through
volumetric analysis of MR scans of 56 fetuses with gesta-
tional ages ranging from 25 to 41 weeks. Recently devel-
oped methods for reconstruction of motion-corrected 3D
volumes from in utero MR scans [Jiang et al., 2007; Kim
et al., in press; Rousseau et al., 2005, 2006] have opened
up the possibility of applying advanced image analysis
methods to study the developing human brain in utero.

In this article, we describe an approach to automatic
segmentation of individual tissues from motion-corrected

Figure 1.

A coronal view from an average shape and intensity MR T2w

image of the young fetal brain. In addition to developing cortical

gray matter (GM) and white matter (WM), a layer of the germi-

nal matrix (GMAT) is located around ventricles (VENT).
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3D MR images of the fetal brain. The method is aimed at
extracting key brain regions, including developing gray
and white matter as well as transient tissue types such as
the germinal matrix. Because of substantial intensity over-
lap between various developing tissues (see Fig. 2), some
form of spatial context is necessary to achieve meaningful
segmentation. For example, the almost complete intensity
overlap between developing gray matter and the germinal
matrix makes the interpretation of the latter mostly de-
pendent on its location around ventricles. To address this
issue and spatially constrain the segmentation process, we
first create a probabilistic atlas of tissue distribution in the
fetal brain from multiple manual delineations of recon-
structed MR volumes. Then, we apply an atlas-based
segmentation methodology to achieve feasible and ana-
tomically correct segmentation of the developing tissues in
new MRI scans. Quantitative validation indicates that
automatic segmentation of the fetal brain produces reliable
and reproducible results that may be used for further vol-
umetric and morphometric analysis of the developing
human brain in utero.

METHODS

EM Segmentation Framework

Expectation-Maximization (EM) is a general technique
for finding maximum likelihood estimates of model pa-
rameters in problems with missing data. In the context of
brain MRI segmentation [Van Leemput et al., 1999b; Wells
et al., 1996], the observed data are intensities y ¼ {y(x1),

y(x2), : : : , y(xN)} of voxels xi (i ¼ 1, 2, : : : , N), the missing
data are voxel labels c ¼ {c(x1), c(x2), : : : , c(xN)} (image
segmentation), and the model parameters are K class-con-
ditional intensity distribution parameters y ¼ {y1, y2, : : : ,
yK}. The EM algorithm maximizes the likelihood of the
observed data

p yjhð Þ ¼
Y

i

p y xið Þjhð Þ (1)

by interleaving the expectation step (E-step) which per-
forms statistical classification of the observed data into K
classes and the maximization step (M-step) which updates
the current parameter estimation.

Assuming that each voxel intensity y(xi) is selected at
random from one of K classes and each class k is modeled
by a Gaussian distribution G with mean lk and variance
rk [Wells et al., 1996], the probability density that class k
generated voxel value y(xi) is

p y xið Þjkð Þ ¼ Grk
y xið Þ � lkð Þ (2)

and the class posterior probability p(k|xi) computed in the
E-step is

p kjxið Þ ¼ p y xið Þjkð ÞP kð ÞP
k p y xið Þjkð ÞP kð Þ (3)

where P(k) is a prior probability of tissue class k. The esti-
mation of class distribution parameters yk ¼ {lk, rk} is per-
formed in the M-step according to

lk ¼
P

i p kjxið Þy xið ÞP
i p kjxið Þ and r2

k ¼
P

i p kjxið Þ y xið Þ � lkð Þ2P
i p kjxið Þ (4)

and the intermediate segmentation of the image is given
by voxel labels c(xi) assigned using the maximum posterior
probability rule.

c xið Þ ¼ argmax
k

p kjxið Þ (5)

Bias Correction

In MR imaging of the fetal brain, phased-array coils are
usually preferred over body coils as they can be placed
much closer to the anatomy of interest [Levine et al., 2003;
Prayer et al., 2004]. However, signal intensity in phased-
array MR images is not uniform and drops off quickly
with the distance from the array. This is particularly an
issue when the fetal head is positioned very close to the
abdominal wall of the mother. Substantial intensity inho-
mogeneity, together with the bias field effect, can make
the images difficult to interpret for a human reader and
also cause tissue mislabeling in automated image
segmentation.

Figure 2.

Distribution of voxel intensities in MR T2w image from Figure 1

modeled by fitted Gaussian probability density functions. Note

large intensity variability and substantial intensity overlap

between brain tissues, especially between developing gray matter

(GM) and the germinal matrix (GMAT).
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Assuming a multiplicative bias model [Van Leemput
et al., 1999a], intensity inhomogeneity b(xi) is approxi-
mated by a linear combination of spatially smooth basis
functions /j(xi).

b xið Þ ¼
X

j

aj/j xið Þ (6)

The coefficients aj are recalculated in each iteration of
the EM algorithm as the least-squares fit to the difference
between log-transformed measured intensities y(xi) and
predicted intensities

~y xið Þ ¼
P

k
p kjxið Þ
r2
k

lk
P

k
p kjxið Þ
r2
k

(7)

calculated from intermediate estimates of class distribution
parameters [Van Leemput et al., 1999a]. The bias-corrected
intensities yc(xi) ¼ y(xi) 2 b(xi) replace the log-transformed
measured intensities y(xi) in Eqs. (3) and (4) during the
next iteration of the EM algorithm.

Probabilistic Atlas

The independent segmentation model from Eqs. (3) and
(4) performs labeling of MRI voxels based solely on their
intensities y(xi) and assumes that different brain tissues
are well separated in the intensity space. This, however, is
not the case for clinical MR imaging of the fetal brain
where the overlap of intensities between different tissue
types is substantial, especially for developing cortical gray
matter and the germinal matrix as shown in Figures 1 and
2. Moreover, the tissue labeling resulting from an inten-
sity-based segmentation of the fetal brain may not be ana-
tomically feasible. To address these issues, a statistical
atlas can be used as a source of spatial information to
guide the local tissue labeling [Van Leemput et al., 1999b].

To create a statistical atlas of tissue distribution and a
corresponding reference anatomy, an average shape and
intensity image is first constructed from motion-corrected
MR volumes with normalized intensities. Using one
subject as an initial reference (Fig. 3A), MR images are
spatially normalized using a sequence of global linear
registrations driven by maximization of normalized mu-
tual information [Studholme et al., 1999] followed by mul-
tiple elastic deformations driven by maximization of
mutual information [Viola and Wells, 1997] within a fixed
reference region. An average shape model is obtained by
averaging spatial transformations between the reference
and each of the subject images (Fig. 3B). The subject
images with normalized intensities are then transformed
to the average shape space (Fig. 3C) and averaged to form
a high quality average intensity image (Fig. 3D). These
steps can be performed iteratively, each time using the av-
erage shape and intensity image as a new reference
[Guimond et al., 2000].

After convergence of this procedure, tissue label maps
obtained from manual segmentation of the subject images
are transformed to the average shape space and normal-
ized to form a probabilistic atlas. The atlas serves as a
source of spatially varying tissue prior Pa(k|xi) and repla-
ces the location invariant P(k) during calculation of class
posterior probabilities p(k|xi) in Eq. (4) [Van Leemput
et al., 1999b]. The average shape and intensity image is
used as a high quality template for registration of new
subject images to the space of the probabilistic atlas.

Neighborhood Constraints

A tissue label map resulting from the above segmenta-
tion scheme may be noisy or not anatomically feasible. It
may, for example, contain an isolated voxel of one tissue
surrounded by voxels of another tissue type. To eliminate
such infeasible voxel label configurations, the segmenta-
tion process can be further constrained by introduction of
neighborhood dependencies where the probability that a
voxel belongs to a particular tissue depends on the tissue
type of its neighbors. Using a simplified hidden Markov
Random Field model [Zhang, 1992; Bach Cuadra et al.,
2005], the prior probability of tissue type k at location xi
can be expressed as

Pn kjxið Þ ¼ Pn kjNið Þ ¼ exp U kjNið Þð Þ
Z xið Þ (8)

where Ni is the neighborhood of voxel xi and U(k|Ni) is
the energy function dependent on the number of voxels
from neighborhood Ni assigned to class k. This configura-
tion encourages the voxel to be classified like the majority
of its neighbors and promotes connected clusters of voxels
from the same class. The normalizing factor Z(xi) is used
to ensure legitimate probability values of priors Pn(k|xi).
This optional neighborhood-based prior can be combined
with the prior Pa(k|xi) derived from the probabilistic atlas
to form one spatially varying prior

P kjxið Þ ¼ Pa kjxið ÞPn kjxið ÞP
k Pa kjxið ÞPn kjxið Þ (9)

for estimation of tissue class probabilities.

RESULTS

Fetal Subjects

The following experiments were performed using clini-
cal MR scans of 14 fetal subjects at gestational ages rang-
ing from 20.57 to 22.86 weeks (see Fig. 4). These subjects
were selected for manual tissue tracing from a larger pool
collected at our institution over a period of five years. The
mothers were referred for fetal MRI due to questionable
abnormalities on prenatal ultrasound or a prior abnormal
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Figure 4.

Axial views of rigidly aligned reconstructed MR T2w images of 14 fetal subjects (20.57–22.86

weeks GA) demonstrating variability in brain size and shape.

Figure 3.

Building of the average shape and intensity model. Reconstructed and motion-corrected subject

images are warped to a reference image (A). The average shape model is obtained by averaging

the spatial transformations between the subject images and the reference (B). The subject

images with normalized intensities are transformed to the average shape space (C) and averaged

to form an average intensity image (D). This image becomes a reference for the next iteration

of the procedure (A).



pregnancy. All women had normal fetal MRI and all new-
borns have had normal postnatal neurodevelopment.

MR Image Acquisition and Processing

Clinical MR imaging was performed on a 1.5T scanner
(GE Healthcare, Milwaukee, WI) using an eight-channel
torso phased-array coil. For each subject, the position of
the fetal head was first determined based on a low-resolu-
tion three-plane localizer sequence. Then, multiple stacks
of single-shot fast spin-echo (SSFSE) T2w slice images (in
plane resolution 0.469 mm � 0.469 mm, thickness �3 mm,
no gap) were obtained in the approximately axial, sagittal
and coronal planes with respect to the fetal brain. All slice
images were acquired in an interleaved manner to reduce
saturation of spins in adjacent slices. The MR sequence pa-
rameters (repetition time TR ¼ 3000-9000ms, echo time TE

¼ 91 ms) were originally designed for clinical scans and
were not adjusted for tissue segmentation in this study. To
account for spontaneous fetal movement during scanning,
image stacks of each subject were registered using the slice
intersection motion correction (SIMC) technique [Kim
et al., in press] and reconstructed into 3D volumes with
isotropic resolution 0.469 mm � 0.469 mm � 0.469 mm.

Atlas Construction

The motion-corrected volumes were manually segmented
into regions of developing cortical gray matter, white mat-
ter, the germinal matrix, and ventricles as shown in Figure
5. The resulting tissue label maps were verified and cor-
rected by pediatric neuroradiologists with expertise in fetal
brain imaging. The intensities of the MR volumes were nor-
malized before an average shape and intensity image was
created. The manual segmentations of each subject were
then transferred to the average shape space using nearest-
neighbor interpolation. A probabilistic atlas was created by
averaging of tissue label maps extracted from manual
delineations and smoothing of the resulting probability
maps with a Gaussian kernel (r ¼ 1.5 mm) (see Fig. 6).

Atlas-Based EM Segmentation

For the purpose of automatic tissue segmentation, the
reconstructed MR volume of each subject was warped to
the average shape and intensity image associated with the
probabilistic atlas. Then, the tissue probability maps were
transferred from the atlas space to the original space of
each subject using an inverse transformation. The number
of classes for EM segmentation, K ¼ 6, was selected to
cover three types of developing brain tissues (GM, GMAT,
WM), ventricles (VENT) and two types of nonbrain voxels
(the surrounding fluid and the skull) with different inten-
sity ranges. The distribution of intensity within each class
k was modeled using a Gaussian distribution, yk ¼ {lk, rk}.

Figure 5.

Axial and coronal views of a reconstructed MR T2w image of a

young fetal brain (22.14 weeks GA) with manually traced regions

of developing gray matter, white matter, the germinal matrix and

ventricles. [Color figure can be viewed in the online issue, which

is available at wileyonlinelibrary.com.]

Figure 6.

A probabilistic atlas for developing cortical gray matter (GM), white matter (WM), the germinal

matrix (GMAT) and ventricles (VENT) constructed by spatial normalization of manual segmenta-

tions of MR T2w images of 14 fetal subjects at 20.57–22.86 weeks gestational age. The average

shape and intensity image (MR T2w) is used as a high-quality template for warping of new subject

images to the space of the atlas.
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The class probabilities p(k|xi) for brain tissues and ven-
tricles were initialized with values Pa(k|xi) from the proba-
bilistic atlas and used to calculate the initial estimates of
the intensity distribution parameters lk and rk according
to Eq. (4). The initial values of lk and rk for the two non-
brain classes were copied from the estimates for GM and
VENT, respectively. Because of the aforementioned inten-
sity overlap between various developing tissues and the
presence of other non-brain structures (e.g., maternal
organs) in the analyzed MR images, this atlas-based initial-
ization is the only feasible approach.

To evaluate the impact of the probabilistic atlas and the
neighborhood constraints, automatic EM segmentation
was performed in three modes:

- EM(Pn) where the probabilistic atlas was used only for
initialization and further segmentation was constrained
solely by the neighborhood prior,

- EM(Pa) where the prior tissue probabilities were taken
from the probabilistic atlas,

- EM(Pa,Pn) where the combined prior from Eq. (9) was
used to enforce neighborhood dependencies between
voxel labels during atlas-driven segmentation.

For each mode, the EM segmentation process was con-
fined to regions of images where the atlas indicated a non-
zero probability of any brain tissue. The bias field b(x) was
modeled using polynomial functions /j(x) with degrees
gradually increasing from zero to three. For each degree,
EM iterations were performed until relative changes in the
logarithm of the likelihood p(y|y) were smaller than 10�4.

Segmentation Results

After convergence, the atlas-based EM segmentation
algorithm outputs an estimate of the bias field b(x), a bias-
corrected version yc(x) of the original MR image y(x) fed to

the algorithm and a tissue label map c(x) obtained by
applying the maximum posterior probability rule [Eq. (5)]
to class probability estimates p(k|xi) from Eq. (3). Figure 7
presents typical results of automatic atlas-based EM seg-
mentation of a reconstructed MR T2w image of the young
fetal brain (Fig. 7A) for all three segmentation modes. As
the classification of voxels in the EM(Pn) mode is based
only on intensity and intermediate labeling of the neigh-
bors, it produces smooth but not necessarily feasible seg-
mentations. In the example shown in Figure 7B, clusters of
low intensity voxels inside the layer of the germinal matrix
are incorrectly labeled as non-brain structures. On the
other hand, both atlas-driven segmentation modes—
EM(Pa) and EM(Pa,Pn)—yield more anatomically correct
and overall similar results. The label map from EM(Pa,Pn)
(Fig. 7D) is however more spatially coherent than the map
produced by EM(Pa) (Fig. 7C).

Figure 8 further illustrates the effect of the neighbor-
hood prior Pn on automatic atlas-based EM segmentation
of the fetal brain focusing on the area of the occipital lobe
where thin layers of developing gray matter, white matter
and the germinal matrix are adjacent. As this region is
also a site of large anatomical variability even in young
fetuses, registration of MR images in this area is challeng-
ing. This affects the local quality of the probabilistic atlas
and leads to ambiguous priors Pa for multiple tissue types.
These ambiguities can be addressed by the use of the
neighborhood prior Pn in the EM(Pa,Pn) mode which enfor-
ces spatial consistency of tissue label maps by promoting
connected structures. The neighborhood prior Pn also helps
to eliminate mislabeled partial volume voxels at the interface
between brain tissues with low T2w intensity (i.e., develop-
ing gray matter and the germinal matrix) and fluid with
high T2w intensity. These voxels, indicated by arrows in Fig-
ures 8A and 8C, are incorrectly labeled as white matter in
the EM(Pa) mode but almost completely eliminated in the
EM(Pa,Pn) mode as shown in Figures 8B and 8D.

Figure 7.

A reconstructed MR T2w image of a young fetal brain (21.57 weeks GA) (A) and results of its

automatic segmentation in the EM(Pn) mode (B), the EM(Pa) mode (C), and the EM(Pa,Pn) mode

(D). Label colors are: blue ¼ gray matter, green ¼ white matter, red ¼ germinal matrix, yellow

¼ ventricles. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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Figure 9 demonstrates the results of automatic segmen-
tation of a reconstructed MR T2w image with intensity
inhomogeneity clearly visible in the coronal plane (Fig.
9A). This inhomogeneity arises from extreme proximity of
one side of the fetal head to the maternal abdominal wall
and the imaging coil. During segmentation, the intensity
profile was estimated in the brain area and extrapolated to
other parts of the image (Fig. 9B). The MR image with
intensities corrected by the EM(Pa,Pn) segmentation algo-
rithm is shown in Figure 9C and the final voxel labels are
presented in Figure 9D.

Overall, visual inspection of the segmentation results for
all study subjects indicates that the main tissue types in
the fetal brain are delineated correctly and consistently,
especially in the EM(Pa,Pn) mode. An example of 3D visu-
alization of developing cortical gray matter, white matter,
the germinal matrix and ventricles is shown in Figure 10.

Quantitative Validation

For quantitative validation, the results of automatic
atlas-based EM segmentation were evaluated in terms of
the Dice similarity coefficient (DSC) [Dice, 1945] with
respect to the reference manual segmentations. For any
two regions A and B, the Dice similarity coefficient is
defined as

DSC ¼ 2� A \ Bj j
Aj j þ Bj j (10)

and ranges from zero for complete dissimilarity to one for
perfect overlap between A and B. Values of DSC above 0.7
are usually considered a satisfactory level of agreement
between two segmentations [Zijdenbos et al., 1994; Xue
et al., 2007].

Figure 8.

The effect of the neighborhood prior on automatic segmenta-

tion of fetal brain images in the area of the occipital lobe: (A

and B) axial views of tissue label maps produces in the EM(Pa)

and EM(Pa,Pn) modes, respectively, (C and D) coronal views of

the same label maps. Label colors are: blue ¼ gray matter, green

¼ white matter, red ¼ germinal matrix, yellow ¼ ventricles.

Arrows indicate examples of mislabeled partial volume voxels in

the EM(Pa) mode. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]

Figure 9.

Automatic segmentation of a reconstructed MR T2w image with

substantial intensity inhomogeneity: (A) original MR image y(x),

(B) bias field estimation b(x), (C) bias-corrected MR image

yc(x), and (D) labels c(x) from segmentation in the EM(Pa,Pn)

mode. Label colors are: blue ¼ gray matter, green ¼ white mat-

ter, red ¼ germinal matrix, yellow ¼ ventricles. [Color figure

can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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Table I presents the summary of quantitative validation
for the three modes of EM segmentation evaluated in this
study. The DSC values were calculated for three develop-
ing tissue types in the fetal brain as well as ventricles and
averaged over 14 subjects with gestational ages ranging
from 20.57 to 22.86 weeks. The results from Table I dem-
onstrate that the atlas-based EM segmentation algorithm
achieves good performance for all brain tissues, especially
for developing gray matter, white matter and ventricles
(DSC > 0.8). Overall, the best agreement between manual
and automatic delineations, as measured by the DSC
index, is achieved when both the anatomical prior Pa

derived from the probabilistic atlas and the neighborhood
prior Pn are used in the EM(Pa,Pn) mode. This allows for
correct treatment of partial volume voxels at the interface
between developing cortical gray matter and surrounding
fluid as well as at the interface between the germinal ma-
trix and ventricles.

DISCUSSION

In this article, we described methodology for automatic
atlas-based segmentation of individual tissues in the devel-
oping human fetal brain. The approach builds upon our
earlier work on reconstruction of 3D images from in utero
MR scans [Kim et al., in press; Rousseau et al., 2005, 2006]
and a pilot study on atlas-based segmentation of the ger-
minal matrix from motion-corrected clinical MRI [Habas
et al., 2008]. As fetal MR imaging has become an impor-
tant tool in evaluation of pregnancy, the presented meth-
odology makes further use of standard clinical protocols
allowing quantitative analysis of the developing brain
using existing MR data.

To generate anatomically correct automatic segmenta-
tions, we created an in utero 3D statistical atlas of tissue
distribution in the fetal brain incorporating multiple tissue
classes such as developing gray and white matter as well
as transient tissue types such as the germinal matrix. To
relate manual delineations of multiple subjects and build

the probabilistic atlas, we created an unbiased linear aver-
age shape and intensity model from the available set of
training subjects. Although registration of reconstructed
MR images was overall accurate, we are currently working
on an approach where existing manual segmentations of
subject volumes rather than MR images are collectively
registered to create a reference anatomy [Habas et al.,
2009a]. This may help us resolve some registration ambi-
guities between different tissues that appear with very
similar intensities in relatively low-contrast clinical MR
scans. As a result, the quality of the probabilistic atlas is
expected to improve, especially in challenging areas of the
parietal and occipital lobes.

We applied the probabilistic atlas as a source of spatially
varying prior for automatic EM segmentation of recon-
structed and motion-corrected MR images of the fetal
brain. This well-established algorithm is commonly used
for brain segmentation in adults and has been previously
applied for young children (e.g., [Murgasova et al., 2007])
and neonates (e.g., [Xue et al., 2007]). Here, we demon-
strated that the EM-based methodology can be further
extended for automatic 3D delineation of developing tis-
sues in the fetal brain, given an appropriate statistical atlas
of the underlying anatomy. The EM segmentation algo-
rithm also provides a convenient mechanism for model-

Figure 10.

3D visualization of the main tissue types in the young fetal brain obtained from automatic seg-

mentation of the average shape and intensity image. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]

TABLE I. Values of Dice similarity coefficient (DSC)

between manual and automatic segmentations for

developing gray matter (GM), white matter (WM), the

germinal matrix (GMAT) and ventricles (VENT)

averaged over 14 fetal subjects (20.57–22.86 weeks GA)

Brain tissue
or structure

Segmentation mode

EM(Pn) EM(Pa) EM(Pa,Pn)

GM 0.79 � 0.02 0.82 � 0.02 0.82 � 0.02
WM 0.85 � 0.01 0.89 � 0.02 0.90 � 0.02
GMAT 0.65 � 0.05 0.76 � 0.05 0.77 � 0.05
VENT 0.84 � 0.04 0.89 � 0.02 0.90 � 0.02
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based estimation of intensity inhomogeneity which is a
common issue in fetal MR imaging.

The quantitative validation in previous studies on
segmentation of the developing brain anatomy has been
limited. Overlap measures between manual and automatic
segmentations were calculated using a single 2D slice
[Prastawa et al., 2005] or three orthogonal slices [Xue
et al., 2007] per subject. In this study, validation was per-
formed using the entire brain volume for all study subjects
and provided a more meaningful estimation of the seg-
mentation performance. The average DSC values for devel-
oping gray and white matter as well as ventricles were very
similar to those previously reported in other studies on seg-
mentation of developing brains [Murgasova et al., 2007;
Prastawa et al., 2005; Xue et al., 2007]. The somewhat lower
but still satisfactory average DSC value and slightly higher
DSC variance for the germinal matrix can be attributed to
the fact that this transient tissue type undergoes rapid and
individualized development for each fetal subject. Moreover,
the boundary between the germinal matrix and white matter
has very low contrast and its accurate and consistent identi-
fication is challenging even for experience neuroradiologists.
Nonetheless, the overall good performance of the atlas-based
EM segmentation algorithm indicates that reliable morpho-
metric measures of brain development can be automatically
derived from clinical MR imaging.

Automatic segmentation of developing tissues from
reconstructed 3D volumes makes use of 2D data collected
through clinical MR scanning of fetal subjects. Reliable tis-
sue delineation extends our knowledge of the normal
brain development process and allows for further 3D volu-
metric and morphometric analysis of the fetal brain such
as cortical thickness mapping [Chandramohan et al., 2009].
Moreover, efficient and reproducible processing of multi-
ple volumes opens up the possibility for population-based
studies including investigation of early folding patterns
[Habas et al., 2009b] and potentially others.
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