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The essence of neuronal function is 
to generate outputs in response to 

synaptic potentials. Synaptic integration 
at a synapse determines neuronal out-
puts in the CNS. In a recent study, we 
describe that excitatory and inhibitory 
transmitter-gated channels physically 
crosstalk each other at the cellular and 
molecular level. Increased membrane 
expression of ATP P2X4 receptors by 
using an interference peptide compet-
ing with the intracellular endocytosis 
motif enhances neuronal excitability, 
which is further enhanced by reciprocal 
interaction between post-synaptic ATP- 
and GABA-gated channels. Molecular 
interaction is supported by experiments 
of co-immunoprecipitation and muta-
genesis of P2X4 subunit. Two amino 
acids in the intracellular carboxyl tail of 
P2X4 subunit appears to be responsible 
for this crosstalk. Our recent study pro-
vides molecular and electrophysiological 
evidence for physical interaction between 
excitatory and inhibitory receptors that 
appears to be crucial in determining syn-
aptic strength at central synapses.

Fast synaptic transmission between neu-
rons is achieved through the release of one 
or more neurotransmitters from the same 
presynaptic terminal, resulting in the acti-
vation of different classes of ligand-gated 
ion channels co-localized at the same 
post-synaptic site.1-4 Although it has been 
long believed that each receptor type acts 
independently of the other, recent stud-
ies have revealed that ATP-gated chan-
nels crosstalk with cys loop receptors in 
recombinant expression and cell culture 
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preparations.5-12 Of particular interest is 
that an excitatory neurotransmitter, ATP 
is always considered a co-transmitter and 
is released either with an inhibitory neu-
rotransmitter, GABA,4,13-15 or with an 
excitatory neurotransmitter, glutamate 
in the CNS.16,17 Therefore, the process of 
synaptic integration at mixed synapses is 
potentially complicated by the presence of 
ATP P2X receptors.

Our recent study clearly demonstrates 
the physical and functional interactions 
between excitatory ATP P2X4 and inhibi-
tory GABA

A
 receptors at the cellular 

and molecular levels.18 Their interactions 
appear to be critical in regulating syn-
aptic strength at the synaptic level and, 
as a result, neuronal excitability (Fig. 1). 
A series of experiments, including co-
immunoprecipitation, peptide-based pull 
downs, mutagenesis and overexpression 
of peptides in heterogeneous system pro-
vides converging evidence for a physical 
interaction between a specific intracel-
lular motif (Tyr 374, Val 375) within the 
C-terminal tail of P2X4 subunits and 
GABA

A
 β subunits. In addition, our prior 

studies show that the main intracellular 
loop of mainly GABA

A/c
 β or ρ subunits 

are involved in the coupling with P2X2 
or P2X3 receptors.7,8,12 Furthermore, a 
recent FRET study confirms the close 
proximity of the C-terminal tail of P2X2 
subunits and intracellular loop of GABA

A
 

subunits.19 It is thus believed that the 
C-terminal tail of P2X subunits interacts 
directly with the main intracellular loop 
of subunits of cys loop receptor family, 
including GABA

A
, nicotinic or 5-HT3 

receptors. Importantly, the interaction 
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amplitude of GABAergic post-synaptic 
currents. This depression of GABAergic 
currents is abolished following intracel-
lular administration of YV6 peptide that 
disrupts interaction between P2X4 and 
GABA

A
 receptors. We think that the 

physical interaction between P2X4 and 
GABA

A
 receptors at the synaptic level 

plays an essential role in regulating inhibi-
tory synaptic strength.

Since spontaneous P2X receptor-
mediated postsynaptic currents are scarce 
following blockade of P2X4 receptor 
internalization, P2X4 receptors appear 
to be located mainly at peri/extrasyn-
aptic areas in the CNS. If it is the case, 
P2X4 receptors may play a role in the 
modulation of synaptic transmission. 
For instance, P2X4 would preferen-
tially interact with neighboring synaptic 
GABA

A
 receptors at GABAergic syn-

apses in the VMH. Indeed, in-depth 
analysis of individual sIPSCs following 
blockade of the interaction reveals two 
distinct GABAergic synaptic currents 

in recombinant expression system, the 
co-activation of both receptors results in 
non-additive responses due to reciprocal 
inhibition of both channel types. It should 
be emphasized that this current occlusion 
is abrogated by mutation of Tyr374 and/or 
Val375 as well as by intracellular admin-
istration of a peptide corresponding to 
amino acid 372–377 region of P2X4 recep-
tor (YV6). This peptide appears to bind to 
GABA β subunits, which in turn occludes 
the binding of the P2X4 receptors.

Among P2X receptors, P2X4-
containing receptors constitutively 
cycle into and out of the membrane in a 
dynamin-dependent mechanism. As a 
result, P2X4 receptors appear to be pre-
dominantly retained in intracellular com-
partments.21 Blockade of P2X4 receptor 
internalization with a site-specific pep-
tide increases surface expression of P2X4 
subunits and the mean amplitude of ATP 
responses. Furthermore, increased sur-
face expression of P2X4 receptors induces 
a decrease in the frequency and the 

motif identified in P2X4 subunit is differ-
ent from that identified in P2X3. These 
identified motifs are absent in P2X2 sub-
unit. Likewise, the interacting regions of 
cys loop receptors, including GABA, nic-
otinic and 5-HT3 subunits show no pri-
mary sequence homology. It thus appears 
that the interaction between P2X and cys 
loop receptors is subunit-specific. In addi-
tion to the direct interaction between two 
receptors, undefined interacting proteins 
and/or regulatory factors may trigger or 
alter this negative interaction since these 
receptors appear to act independently in 
some neuronal populations20 (Fig. 1).

P2X4-GABA
A
 receptor interaction 

results in an instantaneous and reciprocal 
current inhibition in recombinant expres-
sion system. In other words the amplitude 
of the currents evoked by concomitant 
application of ATP and GABA is signifi-
cantly smaller than the predicted sum of 
the responses to separate application of 
ATP and GABA. Although P2X4 and 
GABA

A
 receptors form separate channels 

Figure 1. Interaction between P2X4 and GaBaa receptors at a central synapse. (a) Schematic diagrams to describe the interaction between P2X4 and 
GaBaa subunits. unknown proteins and/or factors may regulate or initiate physical coupling between the C-terminal tail of P2X and the second intra-
cellular loop of GaBaa subunits. If this is the case, the cross-inhibition would be regulated by these factors. (B) Surface trafficking of P2X4 receptors and 
subsequent interaction with GaBaa receptors at synapses and/or peri/extra synaptic sites downregulate inhibitory synaptic inputs. additionally, this 
interaction may alter trafficking of other receptors, including GaBaa receptors.
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(Figs. 2A and B): 34.8 ± 4% of sIPSCs 
have a fast decay time course of 10 ± 1.3 
ms (n = 11 neurons) and 65.2 ± 4% of 
sIPSCs have a slow decay phase of 21.2 
± 1.9 ms (n = 11 neurons). As the com-
position of GABA

A
 subunits determines 

the subcellular localization as well as 
biophysical properties, including decay 
time phase of GABA

A
 receptors,22-24 we 

may speculate that GABA
A
 receptors 

having a slow decay phase are physically 
coupled with P2X4 receptors. In fact, the 
desensitization of αβ- or αβδ-containing 
GABA

A
 receptors is slower than that of 

αβγ-containing GABA
A
 receptors.25 

These αβγ-containing receptors appear 
to be located at synaptic sites, whereas 
δ subunit-containing receptors or 
αβ-containing receptors without γ sub-
units are found at extrasynaptic sites.26 
Furthermore, native α2- or α3 subunit-
containing GABA

A
 receptors decay more 

slowly than α1-expressing GABA
A
 recep-

tors.27 It is thus possible that P2X4 recep-
tors would interact with synaptic GABA

A
 

receptors containing α2 or α3, β and γ 
subunits. This is, somewhat, consistent 
with prior studies showing that extrasyn-
aptic GABA

A
 receptors do contain neither 

α2 nor α3.28-30 Given that the interaction 
between P2X and GABA receptors influ-
ences receptor trafficking,7,19 the expres-
sion of P2X4 receptors on the membrane 
would be critical in altering targeting of 
GABA

A
 receptors in favor of a peri/extra 

synaptic location.
In summary, the observed crosstalk 

between excitatory and inhibitory ligand-
gated channels appears to be a novel form 
of short-term synaptic plasticity at central 
synapses. P2X4 subunit-mediated fine 
tuning of GABAergic transmission would 
contribute to the regulation of synaptic 
strength, thereby regulating neuronal 
outputs in neural circuits fundamental to 
feeding behavior in particular and likely 
in brain.
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