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Abstract

Background/Aim: Second generation antipsychotics (SGAs) are used to treat schizophrenia but can cause serious metabolic
side-effects, such as obesity and diabetes. This study examined the effects of low to high doses of olanzapine on appetite/
metabolic regulatory signals in the hypothalamus and brainstem to elucidate the mechanisms underlying olanzapine-
induced obesity.

Methodology/Results: Levels of pro-opiomelanocortin (POMC), neuropeptide Y (NPY) and glutamic acid decarboxylase
(GAD65, enzyme for GABA synthesis) mRNA expression, and cannabinoid CB1 receptor (CB1R) binding density (using [3H]SR-
141716A) were examined in the arcuate nucleus (Arc) and dorsal vagal complex (DVC) of female Sprague Dawley rats
following 0.25, 0.5, 1.0 or 2.0 mg/kg olanzapine or vehicle (36/day, 14-days). Consistent with its weight gain liability,
olanzapine significantly decreased anorexigenic POMC and increased orexigenic NPY mRNA expression in a dose-sensitive
manner in the Arc. GAD65 mRNA expression increased and CB1R binding density decreased in the Arc and DVC. Alterations
to neurotransmission signals in the brain significantly correlated with body weight and adiposity. The minimum dosage
threshold required to induce weight gain in the rat was 0.5 mg/kg olanzapine.

Conclusions: Olanzapine-induced weight gain is associated with reduced appetite-inhibiting POMC and increased NPY. This
study also supports a role for the CB1R and GABA in the mechanisms underlying weight gain side-effects, possibly by
altering POMC transmission. Metabolic dysfunction can be modelled in the female rat using low, clinically-comparable
olanzapine doses when administered in-line with the half-life of the drug.
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Introduction

The second generation antipsychotic (SGA) olanzapine is

prescribed to treat schizophrenia and a growing number of other

disorders in adults and children [1–8], but can cause adverse

metabolic side-effects including increased body weight [9], caloric

intake [10,11] and abdominal adiposity [12,13], and reduced

physical activity [14–16]. Metabolic side-effects are a growing

concern due to co-morbidities such as diabetes and obesity [17],

and are a risk factor for medication non-compliance [18]. A

number of potential mechanisms for SGA-induced metabolic

dysfunction have emerged over the past few years [19–21]. In

particular, the histaminergic, serotonergic and dopaminergic

neurotransmitter systems are thought to be highly implicated in

SGA-induced body weight gain [21–26]. However, SGAs have a

broad receptor binding profile that allows direct and indirect

effects on multiple neural and peripheral signalling pathways

[26], and further research into other candidate systems is

required.

The hypothalamic arcuate nucleus (Arc) and the dorsal vagal

complex (DVC) of the brainstem are well-documented for their

role in appetite and energy homeostasis [27–29]; responding to the

acute nutritional status and long-term regulation of energy stores

in the body. Neurons of the Arc and DVC express Gi/o-coupled

cannabinoid CB1 receptors (CB1R) [30,31], which facilitate the

effects of cannabinoids on appetite and energy metabolism [32].

Weight gain during olanzapine and clozapine treatment is

associated with a CB1R gene polymorphism in individuals with

chronic schizophrenia [33], and chronic high-dose risperidone

treatment increases cannabinoid receptor agonist, [3H]CP-55940,

binding density in the Arc of male rats [34]. We previously

demonstrated a decrease in [3H]CP-55940 binding density in the

DVC of rats treated with olanzapine, but not aripiprazole or

haloperidol [35]. However, whether changes in receptor density
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were attributed to the CB1R is unclear due to the low specificity of

the ligand used [36] and localisation of cannabinoid CB2 receptors

in the brain [37]. Moreover, the effects of olanzapine on CB1R

density in the Arc remain unknown.

The appetite enhancing effects of the major neuronal inhibitor,

c-aminobutyric acid (GABA) in the hypothalamus were reported

more than 30 years ago [38]. GABAergic neurons in the Arc are

sensitive to leptin [39], and GABA receptor agonists and

antagonists stimulate and suppress feeding behaviour, respectively

[40]. Down-regulated expression of glutamic acid decarboxylase

(GAD, the GABA synthesising enzyme) has been observed in

individuals with schizophrenia, bipolar and mood disorder,

whereas antipsychotic drug treatment increases cortical GAD

expression in rats and primates [41]. GAD exists as two isoforms,

65 and 67; the latter is found throughout the neuronal cytoplasm,

whereas GAD65 is located primarily in the axon terminal [42–44]

and is the predominant transcript in the hypothalamus of the adult

rat brain [45]. However, to our knowledge the effects of

olanzapine on GAD65 mRNA expression in the hypothalamic

Arc or the DVC have not been investigated.

The Arc and DVC both express mRNA for orexigenic

neuropeptide Y (NPY) and anorexigenic pro-opiomelanocortin

(POMC) [46–48]. The POMC gene encodes for neuropeptides

such as adrenocorticotropic hormone, b-endorphin and a-

melanocortin stimulating hormone; the latter of which exerts its

anorexigenic effects largely through melanocortin-3 and melano-

cortin-4 receptor (MC4-R) subtypes [49]. Conversely, the central

application of NPY induces food intake in a number of species

[50], hypolocomotor activity in rats [51,52], and can lead to

obesity following chronic over-exposure [53,54]. Therefore, it is

possible that interference in the balance of POMC and NPY by

olanzapine may contribute to the drug’s obesogenic liability.

Several reports demonstrated increased NPY immunoreactivity in

the Arc of clozapine-treated rats [55,56], whereas chronic

risperidone treatment in male rats had no effect on POMC or

NPY expression, or body weight [34], which may be due to the

lower sensitivity of male rats to SGA-induced metabolic side-

effects compared to females [57–60]. Other studies have examined

antipsychotic effects on NPY mRNA expression in the brain with

region-dependent outcomes [61–65]. The effects of antipsychotics

on POMC or NPY in the brainstem have not been examined and

studies on hypothalamic appetite-regulating peptides during

olanzapine treatment are confounding; one group reported an

increase in orexigenic NPY and AgRP and a concurrent reduction

in appetite-inhibiting POMC and cocaine- and amphetamine-

related transcript (CART) [66], whilst another reported no change

in several hypothalamic peptides, including NPY and POMC [67].

A key factor that may contribute to the difference in findings is

drug dosage (i.e.: 1 mg/kg olanzapine [66] vs. a supratherapeutic

dose of 3 mg/kg olanzapine [67] (b.i.d.). Indeed, metabolic

outcomes can differ with antipsychotic dosage [68–71] and

increased dose induces greater metabolic dysfunction in the rat

[66,72,73], however, high antipsychotic dosages in the rat may not

represent the clinic [74]. In addition, both studies had a large

dosage interval, i.e.: 6–7 then 17–18 hourly treatments, b.i.d.

[66,67]. As the half-life of olanzapine is 5.1 hours in the rat brain

with high levels remaining after 8-hours [75], compared to

approximately 75.2 hours in the human brain [76], multiple

dosages are required in the rat in order to minimise drug

fluctuations below sub-therapeutic D2 receptor occupancy levels

[74,77]. Therefore, it may be possible to model olanzapine-

induced metabolic dysfunction in the rat using low olanzapine

dosages when administered in accordance with the half-life of the

drug, i.e.: 8 hourly (t.i.d.) within in 24-hours.

Using an established rat model of olanzapine-induced metabolic

dysfunction [35,70,78–80], this study aimed to investigate the

mechanisms underlying weight gain associated with olanzapine

treatment by examining its effects on POMC, NPY and GAD65

mRNA expression, and CB1R binding density (using the CB1R-

specific ligand [3H]-SR141716A) in the Arc and DVC. Statistical

correlations between these parameters in the brain and body

weight, food intake and visceral adiposity were investigated. To

identify the minimum dosage threshold required to induce

metabolic change, rats were treated with different clinically-

relevant olanzapine dosages, calculated based on comparable

therapeutic in-vivo dopamine D2 receptor occupancy levels [74]

and differences in body surface area between species [81].

Collectively, the present study demonstrates that olanzapine

changes the balance of anorexigenic POMC and orexigenic

NPY mRNA expression in the Arc, does not alter POMC or NPY

in the DVC, and increases GAD65 mRNA expression but reduces

CB1R density in both the hypothalamus and brainstem. These

largely dose-sensitive changes may underlie a shift in energy

balance that favours weight gain during olanzapine treatment.

Metabolic dysfunction can be modelled in the female rat using low

olanzapine doses when administered in-line with the half-life of the

drug.

Methods

Ethics Statement
All experimental procedures were approved by the Animal

Ethics Committee (Approval #: AE06/32), University of Wollon-

gong, and complied with the Australian Code of Practice for the

Care and Use of Animals for Scientific Purposes (2004). All efforts

were made to minimise animal distress and prevent suffering.

Animals and Treatment
Seven week-old female Sprague Dawley rats (Animal Resources

Centre, Perth, WA, Australia), housed in 12-h light–dark cycle

(lights on 07:00, 22uC) were habituated for 1-week, then randomly

assigned to 0.25, 0.5, 1.0 or 2.0 mg olanzapine/kg (Zyprexa, Eli

Lilly, Indianapolis, IN, USA) or vehicle (control) (n = 12),

administered three-times daily in a sweet cookie dough pellet, as

described previously [70]. Briefly, olanzapine tablets were de-

coated and pulverized then the assigned dosage was added to

measured dry ingredients. Water droplets were added immediately

prior to administration to achieve a dry-dough consistency. After a

1-week teaching period, rats learnt to voluntarily self-administer a

0.3 g cookie-dough pellet either containing the assigned dosage of

olanzapine, or plain cookie-dough without the drug (control

group), offered by a metal spoon at 8-hourly intervals (3 pellets/

day) for 14-days. Consumption of each pellet was observed to

ensure complete dosing. Body weight and food intake measure-

ments were recorded (n = 12). Animals were allowed ad libitum

access to water and standard laboratory chow diet throughout the

study. Animals were fasted for 4–6 hours then euthanized using

sodium pentobarbitone 10–12 hours after the last treatment. Brain

tissue was immediately frozen in liquid nitrogen and stored at

280uC. Visceral (perirenal and periovary) white fat pads were

dissected and weighed (n = 12). Six brains were randomly selected

from each treatment group for use in the mRNA expression and

receptor binding experiments. Tissue was sectioned (14 mm,

218uC) along the coronal plane then stored at 220uC.

NPY, POMC and GAD65 mRNA In-Situ Hybridisation
POMC mRNA expression was observed using in-situ hybrid-

isation techniques previously described by our laboratory [82],

Effects of Olanzapine on Neural Metabolic Signals
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using the following specific antisense hybridisation probe: 59-

CGTTCTTGATGATGGCGTTCTTGAAGAGCGTCACCAG-

GGGCGTCT-39 (J00612, 547–591). NPY mRNA expression was

observed using in-situ hybridisation techniques previously de-

scribed by our laboratory [65,82], using the following specific

antisense hybridisation probe: 59-GAGTGTATCTGGCCATG-

TCCTCTGCTGGCGCGTCCTCGCCCGG-39 (M15792, 1650–

1693). GAD65 mRNA expression was observed using the following

specific antisense hybridisation probe: 59-GGCGTCCACACTG-

CAAGGCCTTGTCTCCCGTGTCATAGGACAGGTCAT-39

(NM_012563.1, 1419-1372), as previously described by Ling et al.,

[83]. Oligonucleotide probes were terminally labelled using

[35S]dATP (1000 Ci/mmol, Perkin Elmer, Waltham, MA, USA)

in 10-fold molar excess and terminal transferase (Promega,

Madison, WI, USA), then purified using a MicroSpin G-50

column (GE Healthcare Ltd, Buckinghamshire, UK). Hybridisa-

tion was performed by incubating slides in hybridisation buffer (46
SSC, 16 Denhardt’s solution, 50% de-ionised formamide,

200 mg/ml sperm DNA, 100 mg/1 ml polyA, 120 mg/ml heparin,

20 mM sodium phosphate and labelled probe, pH 7.0) for 18-

hours at 37uC. Slides were then washed in 16SSC buffer at 55uC
(3630-minutes each) and incubated for 1-hour in SSC buffer at

room temperature. Sections were dipped in Milli-Q water followed

sequentially by 70% then 95% ethanol, and dried under a gentle

stream of air. Autoradiographic images were captured on film

(Kodak BioMax MR film, Rochester, NY, USA) exposed for 3-

weeks. Films were quantified using a GS-800 Densitometer (Bio-

Rad Laboratories, Inc), and analysis software (Quantity One,

v4.6.7, Bio-Rad Laboratories, Inc, CA, USA). Values were derived

from a standard curve generated from a [14C]-labelled autora-

diographic standard (GE Healthcare Ltd, Buckinghamshire, UK)

(mean binding nCi/g tissue equivalent vs. density). Slides were

dipped in Emulsion solution (GE Healthcare Ltd, Buckingham-

shire, UK) and exposed for 6-weeks, then stained with cresyl violet

(Nissl stain) (Sigma-Aldrich, NSW, Australia), to allow further

examination of positive signals at the cellular level.

CB1R Binding Density
CB1R binding density was detected using methods previously

published by our laboratory [84]. Briefly, air-dried slides were pre-

incubated for 15 min in incubation buffer containing 50 mM

Tris–HCl buffer (pH 7.4) and 0.1% bovine serum albumin, at

room temperature. Sections were then incubated with 10 nM [3H]

SR141716A (52 Ci/mMol, Amersham, UK), a CB1R-specific

inverse agonist, in buffer (pH 7.4) at room temperature for

60 minutes to determine total binding. Non-specific binding was

determined by incubating subsequent sections in 10 nM [3H]

SR141716A in the presence of 100 mM CP-55940, in buffer

(pH 7.4) for 60 minutes at room temperature. Slides were washed

in ice cold buffer (pH 7.4), (2630 minutes), then dipped in distilled

water and dried under a gentle stream of cool air. CB1R

autoradiographic images were captured using a Beta Image

camera (BioSpace, Paris, France), which counts the amount of b-

particles emitted from the tissue (3.5 hours exposure) to determine

the level of radioactivity bound to the brain sections. Radioactive

levels were obtained in counts per minute per square millimetre of

tissue (cpm/mm2), converted to nCi/mg tissue equivalent using

standard tissue sections calibrated with commercial standards

(Amersham, Buckinghamshire, United Kingdom), then trans-

formed into fmol/mg tissue equivalent by taking into account the

specific activity of the radioligand (52 Ci/mMol). Quantification

was conducted using b-Image Plus software (version 4, BioSpace,

Paris, France).

Quantification and Statistical Analysis
Quantification of autoradiographic images was performed on

the hypothalamic Arc and the DVC of the brainstem, which were

confirmed using a corresponding set of cresyl violet-stained slides

and a standard rat brain atlas [85]. Data were analysed using

SPSS (version 17.0, SPSS, Chicago, IL, USA). All data points were

within 62 standard deviations. One-Sample Kolmogorov-Smir-

nov tests revealed normal data distribution. One-way ANOVAs

were employed to determine the effect of treatment on percentage

body weight change, food intake, visceral adiposity, as well as

NPY, POMC and GAD65 mRNA expression, and CB1R binding

density in the hypothalamus and brainstem. ANOVAs were

followed by multiple comparisons using post-hoc Dunnett-T tests

where relevant (p,0.05). Correlations were identified using

Pearson’s correlation tests.

Results

Body Weight, Food Intake and Visceral Adiposity
There was a significant effect of treatment on the percentage of

body weight change from treatment day 0 (F4,55 = 7.68, p,0.01).

Compared to controls, olanzapine significantly increased percent-

age of body weight change in the 0.5 mg/kg (p,0.05), 1.0 mg/kg

and 2.0 mg/kg (p,0.01) treatment groups, but not in the low

dosage group of 0.25 mg/kg (p.0.05) (Figure 1A). Mean

cumulative food intake significantly increased in the 2.0 mg/kg

Figure 1. Weight Gain and Visceral Adiposity. (A): Percentage body weight change and (B): visceral adiposity in female Sprague Dawley rats
(n = 12/treatment group) treated with 0.25, 0.5, 1.0 or 2.0 mg/kg olanzapine or vehicle (control), (14-days, t.i.d). Data expressed as mean6SEM.
*p,0.05, **p,0.01 vs. control.
doi:10.1371/journal.pone.0033548.g001
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olanzapine dosage group compared to the control group

(318.6611.2 g vs. 269.4611.1 g, p,0.05). An increase (7–8%) in

food intake was also observed in the 0.5 mg/kg and 1.0 mg/kg

olanzapine treatment groups, but did not reach significance

compared to the controls (0.5 mg/kg: 289.1613.9 g vs. 269.46

11.1 g, 1.0 mg/kg: 291.6612.1 g vs. 269.4611.1 g, p.0.05), and

the low dosage group (0.25 mg/kg) did not differ to the control

group (265.4611.7 g vs. 269.4611.1 g). Olanzapine treatment

had a significant effect on visceral adiposity (F4,55 = 4.60, p,0.01),

with a significant increase observed in the 2.0 mg/kg olanzapine

treatment group (p,0.05) and a trend for an increase in the

1.0 mg/kg dosage group (p = 0.09), but not in the lower dosage

groups (p.0.05) (Figure 1B).

POMC and NPY mRNA Expression
Examples of POMC and NPY mRNA expression in the

hypothalamus are shown in Figure 2A–D. Olanzapine had a

significant effect on POMC mRNA expression in the Arc

(F4,25 = 8.32, p,0.01), not in the DVC (F4,25 = 1.44, p = 0.25)

(Figure 3A). Post-hoc analysis identified a significant decrease in

POMC mRNA expression in the Arc following dosages of

0.5 mg/kg, 1.0 mg/kg and 2.0 mg/kg (p,0.01) olanzapine, but

not 0.25 mg/kg olanzapine (p = 0.90), compared to controls

(Figure 3A). There was also a significant effect of treatment on

NPY mRNA expression in the Arc (F4,25 = 8.55, p,0.01), with a

significant increase in the Arc following 1.0 mg/kg and 2.0 mg/kg

olanzapine (Figure 3B), but not in the lower dosage groups

(p = 0.34 and p = 0.11 for 0.25 mg/kg and 0.5 mg/kg olanzapine,

respectively) (Figure 3B). NPY mRNA expression in the DVC was

unaltered by olanzapine (F4,25 = 0.73, p = 0.58) (Figure 3B).

GAD65 mRNA Expression
Examples of GAD65 mRNA expression are shown in Figure 2E–

F. A significant effect of treatment on GAD65 mRNA expression

was observed in the Arc (F4,25 = 5.21, p,0.01) and DVC

(F4,25 = 7.73, p,0.01), with an increase following olanzapine

dosages of 1.0 mg/kg (Arc p,0.05, DVC p,0.01) and 2.0 mg/

kg (both regions p,0.01), but not in the 0.5 mg/kg or 0.25 mg/kg

groups (p.0.05), compared to controls (Figure 3C).

CB1R Binding Density
An example of CB1R binding density in the hypothalamus and

DVC is shown in Figure 4. There was a significant effect of

treatment on CB1R binding density in the Arc (F4,25 = 7.48,

p,0.01), with a reduction in all olanzapine treatment groups

compared to controls (p,0.01) (Figure 3D). Olanzapine decreased

CB1R binding density in the DVC (F4,25 = 3.48, p,0.05) of

animals treated with 0.5 mg/kg, 1.0 mg/kg or 2.0 mg/kg

olanzapine (p,0.05), but not 0.25 mg/kg olanzapine (p = 0.43)

(Figure 3D).

Correlations
POMC mRNA expression in the Arc significantly correlated to

percentage body weight change (r = 20.43, p,0.05), visceral

adiposity (r = 20.49, p,0.01), NPY mRNA expression (r = 20.45,

p,0.05), and GAD65 mRNA expression in the Arc (r = 20.54,

p,0.01) (Figure 5A–D). There was a significant positive

correlation between NPY and GAD65 mRNA expression in the

Arc (r = 0.69, p,0.01) (Figure 5E), however the two factors did not

correlate to percentage body weight change (p.0.05). CB1R

binding density in the DVC correlated to percentage body weight

change (r = 20.38, p,0.05), visceral adiposity (r = 20.38, p,0.05)

and GAD65 mRNA expression in the DVC (r = 20.52, p,0.01)

(Figure 5F–H), and a weak correlation was observed between

CB1R binding density in the Arc and percentage body weight

change (r = 20.33, p = 0.08).

Discussion

We found that olanzapine alters signals in the hypothalamus

and brainstem that are implicated in appetite and energy

Figure 2. Examples of POMC, NPY and GAD65 mRNA Expres-
sion Following Olanzapine Treatment. Examples of pro-opiome-
lanocortin (POMC), neuropeptide Y (NPY) and glutamic acid decarbox-
ylase 65 (GAD65) mRNA expression in the female Sprague Dawley rat
brain following 2.0 mg/kg olanzapine treatment (A-A9, C-C9, E-E9) or
vehicle (control) (B-B9, D-D9, F-F9) for 14-days (t.i.d.). (A–F): Low
magnification film autoradiographs depicting mRNA expression in the
rat brain, (A9–F9): High magnification emulsion/cresyl violet–stained
slides showing mRNA expression specifically in the arcuate nucleus.
Autoradiographs are examples of raw data used for the graphs
depicted in Figure 3A–C and are average representations of 6 rats per
treatment group.
doi:10.1371/journal.pone.0033548.g002
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homeostasis in a largely dose-sensitive manner. These changes

may underlie a shift in energy balance that favours weight gain.

The data support a role for POMC in the mechanisms underlying

olanzapine-induced obesity. Reduced POMC satiety signalling

leads to obesity in the clinic and in animal models of obesity, for

example, POMC mRNA expression is attenuated in genetically

obese Zucker rats [86], tubby mice (tub gene mutation) [87] and

diet-induced obese mice [88]. In addition, genetic POMC

deficiency leads to obesity in humans [89] and mice [90], and

MC4-R deficiency leads to morbid obesity associated with

enhanced adiposity and chronic hyperphagia [91]. The result of

unaltered POMC mRNA expression in the DVC was not entirely

surprising as the role of POMC neurons in the DVC is not well-

characterised, and functional and chemical distinctions to the Arc

have been identified [92,93].

NPY mRNA expression was upregulated in the Arc following

1.0 mg/kg and 2.0 mg/kg olanzapine treatment, however no

significant correlation with weight gain was observed. This is

consistent with some NPY transgenic and deficiency models i.e.:

mice and rats that over-express NPY do not have a hyperphagic/

obese phenotype [94], and genetic modelling of NPY-deficiency

does not result in reduced body weight, adiposity, or food intake

[95–97]. However, it is possible that NPY had an indirect effect on

weight gain in olanzapine-treated animals, for example by

inhibiting POMC. Indeed, NPY neurons synapse on POMC cell

bodies and can inhibit their spontaneous activity [98–100],

however, unlike POMC, NPY mRNA expression did not change

in the 0.5 mg/kg olanzapine treatment group suggesting a role for

other systems in POMC regulation. The dosage response of NPY

mRNA expression was in-line with the increase in GAD65 mRNA

expression in the 1.0 mg/kg and 2.0 mg/kg olanzapine treatment

groups, although GAD65 mRNA expression increased in both the

Figure 3. Dosage Effects of Olanzapine Treatment on POMC, NPY and GAD65 mRNA Expression, and CB1R Binding Density. (A): Pro-
opiomelanocortin mRNA expression (nCi/g tissue), (B): neuropeptide Y mRNA expression (nCi/g tissue), (C): glutamic acid decarboxylase (GAD65)
mRNA expression (nCi/g tissue), (D): cannabinoid CB1 receptor binding density (fmoles/mg tissue), in rats treated with 0.25. 0.5, 1.0 or 2.0 mg/kg
olanzapine or vehicle (control) (14-days, t.i.d.) (n = 6/treatment group). Key: & arcuate nucleus % dorsal vagal complex. Data is expressed as mean 6
SEM. *p,0.05, **p,0.01 vs. control.
doi:10.1371/journal.pone.0033548.g003

Figure 4. Example of CB1R Binding Density Following Olanza-
pine Treatment. Example of cannabinoid CB1 receptor binding
density (using [3H]SR-141716A) in the A, C: hypothalamic arcuate
nucleus and B, D: dorsal vagal complex of the caudal brainstem of
female Sprague Dawley rats following A, B: 2.0 mg/kg olanzapine
treatment, C, D: vehicle (control) for 14-days (t.i.d.). Autoradiographs
are examples of raw data used for the graphs depicted in Figure 3D and
are average representations of 6 rats per treatment group.
doi:10.1371/journal.pone.0033548.g004
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Arc and DVC. Upregulated GABAergic signalling during weight

gain is consistent with previous reports that whilst NPY and/or

AgRP gene deficiency is insufficient to reduce food intake [101],

ablation of NPY/AgRP/GABA neurons results in acute hypo-

phagia [102] and deletion of vesicular GABA transporter in AgRP

neurons (which co-express NPY) results in a lean, obesity-resistant

phenotype in mice [103]. GABA is co-localised in approximately

30% of POMC [104] and NPY/AgRP neurons in the Arc [105],

and GABA derived from NPY/GABA axons can suppress

spontaneous firing of POMC neurons [98]. In addition, a dense

population of leptin-responsive, largely non-AgRP GABAergic

neurons that increase inhibitory post-synaptic currents in POMC

neurons were recently identified in the Arc [39]. Therefore, the

increase in Arc GAD mRNA expression observed in the present

study may have arisen from a number of GABAergic sources.

Olanzapine treatment elicited a robust reduction in CB1R

density in the Arc and DVC. Using the CB1R-specific ligand,

[3H]-SR141716A, we confirm that our original findings of a

reduction in [3H]CP-55940 binding density in the DVC during

olanzapine treatment [35] were attributed to the CB1R sub-type

and extend these findings into the hypothalamus. CB1R number

and cell signal transduction pathways decrease following over-

exposure to agonists [106] and animal models of obesity, for

example obese db/db and ob/ob mice, and fatty Zucker rats, exhibit

elevated hypothalamic endocannabinoid levels [107]. Therefore,

reduced CB1R binding density following olanzapine treatment

may be a result of increased endogenous cannabinoids. Endog-

enous cannabinoids play an important regulatory role in synaptic

transmission by modulating neuronal excitatory and inhibitory

input [108,109]. Interestingly, POMC neurons secrete endocan-

nabinoids under basal conditions that retrogradely activate CB1Rs

expressed on GABAergic neurons [110,111]. G-protein sub-units

coupled to the CB1R inhibit the opening of calcium channels,

which reduces vesicular release of GABA [109]. CB1R activation

can relieve inhibitory input to the post-synaptic POMC neuron

[110–112]. We suggest that reduced CB1R density during

olanzapine treatment may diminish cannabinoid-regulated inhi-

bition of GABA, and therefore enhance GABAergic input to

POMC neurons, suppressing POMC and encouraging body

weight gain (Figure 6). In addition, anandamide and CP-55940

increase NPY release in the hypothalamus [113], therefore,

increased endocannabinoid levels may contribute to an increase

in NPY during olanzapine treatment that further suppresses

POMC (Figure 6). CB1Rs can also modulate GABA and

glutamate release in the DVC [30], however the functional

implications of changes in CB1R density and GAD65 mRNA

expression during olanzapine treatment require further investiga-

tion. Additionally, the influence of olanzapine on other neuro-

transmitter systems may play a role in the mechanisms underlying

SGA-induced weight gain [25,114]. For example, olanzapine is a

potent histamine H1 receptor antagonist [115] and antipsychotic

affinity for the H1 receptor can predict its weight gain liability

[114], however the underlying mechanisms for the effect of the H1

receptor on antipsychotic-induced body weight may be indepen-

dent of melanocortinergic neurotransmission [116]. On the other

hand, dopamine D1 and D2 receptor antagonism influences

hypothalamic NPY mRNA expression [117–119] and serotonin 5-

HT2C receptor agonists can activate POMC neurons [120,121],

therefore, the antagonistic affinity of olanzapine to D2 and 5-

HT2C receptors [122,123] may contribute to its weight gain side-

effects [24]. These receptors may form broader components of the

mechanism proposed in the present study, however further

research is necessary.

Our finding of a decrease in POMC and increase in NPY

mRNA expression during olanzapine treatment coincide with

Ferno et al [66], but contrast to the lack of change reported by

Davoodi et al [67]. As discussed earlier, these studies differ in

olanzapine dosage and treatment interval [66,67]. Additionally, in

Davoodi’s study animals were not fasted and PCR methods were

used to detect expressional changes in the whole hypothalamus

[67], whereas rats were fasted prior to euthanasia and in-situ

hybridisation techniques were utilised to target expression

specifically in the Arc in the present study and [66]. Furthermore,

patterns of daily changes in hypothalamic NPY and POMC gene

expression have been reported [124], therefore timing of

euthanasia may also confound results. A previous study from our

laboratory reported a drug withdrawal response of NPY mRNA

expression to olanzapine treatment cessation, i.e.: no change in

Arc NPY mRNA expression after 2-hour drug washout and a

decrease after 48-hour withdrawal after 5-weeks olanzapine

treatment [65]. As body weight associated with olanzapine

treatment follows a ‘peak-and-plateau’ trend over time

[71,79,125], the lack of change in NPY mRNA expression [65]

may be related to compensatory mechanisms that coincide with a

plateau in body weight. Further investigation into the time-

dependent pattern of NPY mRNA expression during chronic

olanzapine treatment would be useful.

Secher et al. [34] reported increased [3H]CP-55940 binding

density in the Arc following 28-days risperidone treatment, and

observed a significant correlation between plasma drug levels and

visceral adiposity. These results are similar to our study as

olanzapine influenced CB1R density in the Arc and changes in

CB1R density correlated with adiposity. Differences in the

direction of CB1R density change may be attributed to several

differences in experimental design in Secher et al.’s study [34],

including drug dosage above the upper clinical limit [34],

administration method i.e.: continuous drug application via

mini-pump with no drug washout period, and treatment duration

as time-dependent changes in CB1R density and transduction

pathways have been reported [106]. Neither drugs have an affinity

for the CB1R (.10,000 Ki (nM) [126,127]), indicating that effects

on the CB1R are secondary changes and exactly how these SGAs

influence CB1Rs should be investigated in future studies. An

olanzapine-induced decrease in CB1R binding density seems

contrary to the orexigenic influence of CB1R activation, and

appetite suppression of CB1R blockade [128]. However, there is

vast potential for the endogenous cannabinoid system to modulate

metabolism, including central and peripheral effects on food intake

and reward aspects of feeding, glucose and lipid metabolism, and

energy expenditure [129–136]; aspects of which may contribute to

the weight loss efficacy of rimonabant [135]. Olanzapine-induced

weight gain is associated with increased GABA and decreased

Figure 5. Correlations. Correlations between pro-opiomelanocortin (POMC) mRNA expression in the arcuate (Arc) nucleus and (A): percentage of
body weight change, (B): visceral adipose tissue, (C): neuropeptide Y (NPY) mRNA expression in the Arc, (D): glutamic acid decarboxylase (GAD65)
mRNA expression in the Arc, (E): Arc NPY and GAD65 mRNA expression, (F): cannabinoid CB1 receptor (CB1R) binding density in the dorsal vagal
complex (DVC) and percentage of body weight changed, (G): DVC CB1R binding density and visceral adipose tissue, and (H): DVC CB1R binding
density and GAD65 mRNA expression, following 14-days olanzapine treatment or vehicle (control). Correlation analyses were made from raw data
underlying the graphs presented in Figures 1 and 3. Key: control, 60.5 mg/kg, # 0.5 mg/kg, % 1.0 mg/kg, n 2.0 mg/kg olanzapine.
doi:10.1371/journal.pone.0033548.g005
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Figure 6. A Proposed Mechanism for Olanzapine-Induced Weight Gain through Interactions Between POMC, NPY, CB1 and GABA
systems. (A) Normal Conditions. Schematic illustrating proposed inhibitory synaptic transmission to the POMC neuron modulated by NPY,
cannabinoid and GABAergic systems under normal conditions. (1) Endogenous cannabinoids are released from the post-synaptic POMC neuron and
retrogradely activate CB1 receptors located on the non-AgRP GABAergic neuron (2). GABA is synthesised from glutamate via the rate limiting enzyme
GAD (3), however G-protein sub-units coupled to the CB1R inhibit the opening of calcium channels (4), which reduces vesicular release of GABA from
the presynaptic terminal to the POMC neuron (5), disinhibiting POMC (6). A number of NPY neurons co-express GABA and can also inhibit POMC.
These NPY/AgRP/GABA neurons synapse on POMC neurons and can regulate POMC cell activity (7). (B) Olanzapine Treatment: Our data
demonstrates that olanzapine decreases POMC mRNA expression and CB1R binding density, whilst simultaneously increasing NPY and GAD mRNA
expression. Based on these findings we suggest a potential mechanism contributing to weight gain during olanzapine treatment. (1) Increased GAD
mRNA expression enhances the potential for GABA production, whilst (2) decreased CB1R density following olanzapine treatment may remove
inhibition of calcium channels (3) and allow vesicular release of GABA (4). The combined effect may be to increase GABA production and release. (5)
Olanzapine increases NPY mRNA expression, which can inhibit POMC activation (6). Therefore, reduced CB1R density, and enhanced GAD and NPY
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CB1R density, whereas anorexigenic rimonabant, decreases

GABA release from NPY/AgRP/GABA neurons, possibly via

modulation of cannabinoid-sensitive opioid peptides [112]. This

suggests that although olanzapine and rimonabant influence the

CB1R, they exert their effects through different modes of action.

The doses used in the present study were selected based on the

recommended clinical olanzapine dosage range of 5–20 mg/day

[70,74,81] excluding the 0.25 mg/kg treatment group, which was

included as a minimum response threshold. Olanzapine was

administered every 8-hours, based on the half-life of olanzapine in

the rat brain [75], to minimise inappropriate peaks and troughs in

drug levels between treatments [74]. The present study demon-

strates that olanzapine-induced metabolic dysfunction can be

modelled in the female rat using low olanzapine dosages when

treatment is administered in accordance with the half-life of the

drug. In addition, treatment was voluntarily self-administered

orally in a cookie-dough pellet, which aimed to minimise potential

handling stress [137] and maintain a consistently high drug dosage

in the brain [74,75]. Oral drug administration in rats requires a

teaching period to ensure voluntary pellet consumption, however

this method resembles clinical administration and may circumvent

limitations reported using other administration techniques, such as

mini-pump, injection and gavage [74,138–140]. Consistent with

the clinic [141], olanzapine has a sedative effect in the rat at high

doses [72] and we previously reported a general trend of reduced

locomotor activity in response to increasing olanzapine dosage

[70]. It is possible that sedation plays a role in weight gain during

olanzapine treatment, however, as hyperphagia was only apparent

in the high dosage group (2 mg/kg olanzapine) in the present

study, it is unlikely that sedation influenced the animal’s ability to

consume food.

In conclusion, our data demonstrates that olanzapine, an

antipsychotic drug with a high metabolic liability, alters key

metabolic signals in the hypothalamus and brainstem in a manner

that favours positive energy balance and may contribute to its

weight gain/obesity side-effects. Olanzapine decreases anorexi-

genic POMC, increases orexigenic NPY, and alters CB1R and

GABAergic signalling in a largely dose-sensitive manner. Low

dosages of 0.5 mg/kg and 1.0 mg/kg olanzapine (t.i.d.) were

sufficient to induce metabolic changes. Drug dosage may

contribute, in-part, to inconsistencies observed between reports

in the literature. Enhanced body weight and visceral adiposity

during olanzapine treatment are associated with reduced anorex-

igenic POMC mRNA expression. We propose that increased NPY

and enhanced inhibitory GABAergic input, possibly through

reduced CB1R density, may contribute to POMC inhibition

(Figure 6). However, the present study has several limitations,

firstly, statistical correlations do not provide direct evidence of a

causal link, and secondly, changes to mRNA and receptor binding

density may not reflect a functional protein change, therefore

further studies are required to confirm the mechanism proposed in

the present study. Examination of olanzapine’s effects on the

GAD67 isoform and other hypothalamic neuropeptides, such as

AgRP and CART, would be useful, as well as investigation into

the time-response of all parameters at different intervals during

treatment. Finally, as CB1R density decreased in all olanzapine

dosage groups, experiments using lower dosages are required to

identify the minimum dosage threshold. Taken together, this study

supports a role for the melanocortinergic, GABAergic and

cannabinoid systems in the underlying mechanisms contributing

to olanzapine-induced weight gain side-effects and provides

direction on dosage consideration for future animal modelling

studies.
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