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Abstract
Mounting evidence suggests that “core object recognition,” the ability to rapidly recognize objects
despite substantial appearance variation, is solved in the brain via a cascade of reflexive, largely
feedforward computations that culminate in a powerful neuronal representation in the inferior
temporal cortex. However, the algorithm that produces this solution remains little-understood.
Here we review evidence ranging from individual neurons, to neuronal populations, to behavior, to
computational models. We propose that understanding this algorithm will require using neuronal
and psychophysical data to sift through many computational models, each based on building
blocks of small, canonical sub-networks with a common functional goal.

Introduction
Recognizing the words on this page, a coffee cup on your desk, or the person who just
entered the room all seem so easy. The apparent ease of our visual recognition abilities
belies the computational magnitude of this feat: we effortlessly detect and classify objects
from among tens of thousands of possibilities (Biederman, 1987) and we do so within a
fraction of a second (Potter, 1976; Thorpe et al., 1996), despite the tremendous variation in
appearance that each object produces on our eyes (reviewed by Logothetis and Sheinberg,
1996). From an evolutionary perspective, our recognition abilities are not surprising -- our
daily activities (e.g. finding food, social interaction, selecting tools, reading, etc.), and thus
our survival, depends on our accurate and rapid extraction of object identity from the
patterns of photons on our retinae.

The fact that half of the non-human primate neocortex is devoted to visual processing
(Felleman and Van Essen, 1991) speaks to the computational complexity of object
recognition. From this perspective, we have a remarkable opportunity -- we have access to a
machine that produces a robust solution, and we can investigate that machine to uncover its
algorithms of operation. These to-be-discovered algorithms will likely extend beyond the
domain of vision -- not only to other biological senses (e.g. touch, audition, olfaction), but
also to the discovery of meaning in high-dimensional artificial sensor data (e.g. cameras,
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biometric sensors, etc.). Uncovering these algorithms requires expertise from psychophysics,
cognitive neuroscience, neuroanatomy, neurophysiology, computational neuroscience,
computer vision, and machine learning, and the traditional boundaries between these fields
are dissolving.

What does it mean to say: “we want to understand object recognition”?
Conceptually, we want to know how the visual system can take each retinal image, and
report the identities or categories of one or more objects that are present in that scene. Not
everyone agrees on what a sufficient answer to object recognition might look like. One
operational definition of “understanding” object recognition is the ability to construct an
artificial system that performs as well as our own visual system (similar in spirit to
computer-science tests of intelligence advocated by Turing (Turing, 1950). In practice, such
an operational definition requires agreed-upon sets of images, tasks, and measures, and these
“benchmark” decisions cannot be taken lightly (Pinto et al., 2008a; see below). The
computer vision and machine learning communities might be content with a Turing
definition of operational success, even if it looked nothing like the real brain, as it would
capture useful computational algorithms independent of the hardware (or wetware)
implementation. However, experimental neuroscientists tend to be more interested in
mapping the spatial layout and connectivity of the relevant brain areas, uncovering
conceptual definitions that can guide experiments, and reaching cellular and molecular
targets that can be used to predictably modify object perception. For example, by uncovering
the neuronal circuitry underlying object recognition, we might ultimately repair that
circuitry in brain disorders that impact our perceptual systems (e.g. blindness, agnosias,
etc.).

Nowadays, these motivations are synergistic -- experimental neuroscientists are providing
new clues and constraints about the algorithmic solution at work in the brain, and
computational neuroscientists seek to integrate these clues to produce hypotheses (a.k.a.
algorithms) that can be experimentally distinguished. This synergy is leading to high-
performing artificial vision systems (Pinto et al., 2008a; Pinto et al., 2009; Serre et al.,
2007b). We expect this pace to accelerate, to fully explain human abilities, to reveal ways
for extending and generalizing beyond those abilities, and to expose ways to repair broken
neuronal circuits and augment normal circuits.

Progress toward understanding object recognition is driven by linking phenomena at
different levels of abstraction. “Phenomena” at one level of abstraction (e.g., behavioral
success on well-designed benchmark tests) are best explained by “mechanisms” at one level
of abstraction below (e.g., a neuronal spiking population code in inferior temporal cortex,
IT). Notably, these “mechanisms” are themselves “phenomena”, that also require
mechanistic explanations at an even lower level of abstraction (e.g., neuronal connectivity,
intracellular events). Progress is facilitated by good intuitions about the most useful levels of
abstraction as well as measurements of well-chosen phenomena at nearby levels. It then
becomes crucial to define alternative hypotheses that link those sets of phenomena, and to
determine those that explain the most data and generalize outside the specific conditions on
which they were tested. In practice, we do not require all levels of abstraction and their links
to be fully understood, but rather that both the phenomena and the linking hypotheses be
understood sufficiently well as to achieve the broader policy missions of the research (e.g.,
building artificial vision systems, visual prosthetics, repairing disrupted brain circuits, etc.).

To that end, we review three sets of phenomena at three levels of abstraction (core
recognition behavior, the IT population representation, and IT single unit responses), and we
describe the links between these phenomena (Sections 1–2 below). We then consider how
the architecture and plasticity of the ventral visual stream might produce a solution for
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object recognition in IT (Sections 3), and we conclude by discussing key open directions
(Section 4).

1. What is object recognition and why is it challenging?
The behavioral phenomenon of interest: core object recognition

Vision accomplishes many tasks besides object recognition, including object tracking,
segmentation, obstacle avoidance, object grasping, etc., and these tasks are beyond the scope
of this review. For example, studies point to the importance of the dorsal visual stream for
supporting the ability to guide the eyes or covert processing resources (spatial “attention”)
toward objects (e.g. (Ikkai et al., 2011; Noudoost et al., 2010; Valyear et al., 2006) and to
shape the hand to manipulate an object (e.g. (Goodale et al., 1994; Murata et al., 2000), and
we do not review that work here (see (Cardoso-Leite and Gorea; Jeannerod et al., 1995;
Konen and Kastner, 2008; Sakata et al., 1997). Instead, we and others define object
recognition as the ability to assign labels (e.g., nouns) to particular objects, ranging from
precise labels (“identification”) to course labels (“categorization”). More specifically, we
focus on the ability to complete such tasks over a range of identity preserving
transformations (e.g., changes in object’s position, size, pose, and background context),
without any object-specific or location-specific pre-cuing (e.g., see Fig. 1). Indeed, primates
can accurately report the identity or category of an object in the central visual field
remarkably quickly: behavioral reaction times for single image presentations are as short as
~250 ms in monkeys (Fabre-Thorpe et al., 1998) and ~350 ms in humans (Rousselet et al.,
2002; Thorpe et al., 1996), and images can be presented sequentially at rates less than ~100
ms per image (e.g. (Keysers et al., 2001; Potter, 1976). Accounting for the time needed to
make a behavioral response, this suggests that the central visual image is processed to
support recognition in less than 200 ms, even without attentional pre-cuing (Fabre-Thorpe et
al., 1998; Intraub, 1980; Keysers et al., 2001; Potter, 1976; Rousselet et al., 2002; Rubin and
Turano, 1992) Consistent with this, surface recordings in humans of evoked-potentials find
neural signatures reflecting object identification within 150 ms (Thorpe et al., 1996). This
“blink of an eye” time scale is not surprising in that primates typically explore their visual
world with rapid eye movements, which result in short fixations (200–500 ms), during
which the identity of one or more objects in the central visual field (~10 deg) must be
rapidly determined. We refer to this extremely rapid and highly accurate object recognition
behavior as “core recognition” (DiCarlo and Cox, 2007). This definition effectively strips
the object recognition problem to its essence and provides a potentially tractable gateway to
understanding. As describe below, it also places important constraints on the underlying
neuronal codes (Section 2) and algorithms at work (Section 3).

The crux computational problem: core recognition requires invariance
To gain tractability, we have stripped the general problem of object recognition to the more
specific problem of core recognition, but we have preserved its computational hallmark --
the ability to identify objects over a large range of viewing conditions. This so-called,
“invariance problem” is the computational crux of recognition -- it is the major stumbling
block for computer vision recognition systems (Pinto et al., 2008a; Ullman, 1996),
particularly when many possible object labels must be entertained. The central importance
of the invariance problem is easy to see if one imagines an engineer’s task of building a
recognition system for a visual world in which invariance was not needed. In such a world,
repeated encounters of each object would evoke the same response pattern across the retina
as previous encounters. In this world, object identity could easily be determined from the
combined responses of the retinal population, and this procedure would easily scale to a
nearly infinite number of possible “objects.” This is not object recognition, and machine
systems that work in these types of worlds already far outperform our own visual system.
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In the real world, each encounter with an object is almost entirely unique, because of
identity-preserving image transformations. Specifically, the vast array of images caused by
objects that should receive the same label (e.g. “car”, Fig. 1) results from the variability of
the world and the observer: each object can be encountered at any location on the retina
(position variability), at a range of distances (scale variability), at many angles relative to the
observer (pose variability), at a range lighting conditions (illumination variability), and in
new visual contexts (clutter variability). Moreover, some objects are deformable in shape
(e.g., bodies and faces), and often we need to group varying three-dimensional shapes into a
common category such as “cars”, “faces” or “dogs” (intraclass variability). In sum, each
encounter of the same object activates an entirely different retinal response pattern and the
task of the visual system is to somehow establish the equivalence of all of these response
patterns while, at the same time, not confuse any of them with images of all other possible
objects (see Fig. 1).

Both behavioral (Potter, 1976; Thorpe et al., 1996) and neuronal (Hung et al., 2005)
evidence suggest that the visual stream solves this invariance problem rapidly (discussed in
Section 2). While the limits of such abilities have only been partly characterized (Afraz and
Cavanagh, 2008; Bulthoff et al., 1995; Kingdom et al., 2007; Kravitz et al., 2010; Kravitz et
al., 2008; Lawson, 1999; Logothetis et al., 1994b), from the point of view of an engineer, the
brain achieves an impressive amount of invariance to identity-preserving image
transformations (Pinto et al., 2010). Such invariance is a hallmark not only of primate
vision, but is also found in evolutionary less advanced species (e.g., rodents; (Tafazoli et al.,
2012; Zoccolan et al., 2009). In sum, the invariance of core object recognition is the right
place to drive a wedge into the object recognition problem: it is operationally definable, it is
a domain where biological visual systems excel, it is experimentally tractable, and it engages
the crux computational difficulty of object recognition.

The invariance of core object recognition: a graphical intuition into the problem
A geometrical description of the invariance problem from a neuronal population coding
perspective has been effective for motivating hypothetical solutions, including the notion
that the ventral visual pathway gradually “untangles” information about object identity
(DiCarlo and Cox, 2007). As a summary of those ideas, consider the response of a
population of neurons to a particular view of one object as a response vector in a space
whose dimensionality is defined by the number of neurons in the population (Fig. 2A).
When an object undergoes an identity-preserving transformation, such as a shift in position
or a change in pose, it produces a different pattern of population activity, which corresponds
to a different response vector (Fig. 2A). Together, the response vectors corresponding to all
possible identity-preserving transformations (e.g., changes in position, scale, pose, etc.)
define a low-dimensional surface in this high dimensional space -- an object identity
manifold (shown, for the sake of clarity, as a line in Fig. 2B). For neurons with small
receptive fields that are activated by simple light patterns, such as retinal ganglion cells,
each object manifold will be highly curved. Moreover, the manifolds corresponding to
different objects will be “tangled” together, like pieces of paper crumpled into a ball (see
Fig. 2B, left panel). At higher stages of visual processing, neurons tend to maintain their
selectivity for objects across changes in view; this translates to manifolds that are more flat
and separated (more “untangled”) (Fig 2B, right panel). Thus, object manifolds are thought
to be gradually untangled through nonlinear selectivity and invariance computations applied
at each stage of the ventral pathway (DiCarlo and Cox, 2007).

Object recognition is the ability to separate images that contain one particular object from
images that do not (images of other possible objects; Fig. 1). In this geometrical perspective,
this amounts to positioning a decision boundary, such as a hyperplane, to separate the
manifold corresponding to one object from all other object manifolds. Mechanistically, one
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can think of the decision boundary as approximating a higher order neuron that “looks
down” on the population and computes object identity via a simple weighted sum of each
neuron’s responses, followed by a threshold. And thus it becomes clear why the
representation at early stages of visual processing is problematic for object recognition: a
hyperplane is completely insufficient for separating one manifold from the others because it
is highly tangled with the other manifolds. However, at later stages, manifolds are flatter and
not fused with each other, Fig. 2B), so that a simple hyperplane is all that is needed to
separate them. This conceptual framework makes clear that information is not created as
signals propagate through this visual system (which is impossible); rather, information is
reformatted in a manner that makes information about object identity more explicit -- i.e.,
available to simple weighted summation decoding schemes. Later, we extend insights from
object identity manifolds to how the ventral stream might accomplish this non-linear
transformation.

Considering how the ventral stream might solve core recognition from this geometrical,
population-based, perspective shifts emphasis away from traditional single neuron response
properties, which display considerable heterogeneity in high-level visual areas and are
difficult to understand (see Section 2). We argue that this perspective is a crucial
intermediate level of understanding for the core recognition problem, akin to studying
aerodynamics, rather than feathers, to understand flight. Importantly, this perspective
suggests the immediate goal of determining how well each visual area has untangled the
neuronal representation, which can be quantified via a simple summation decoding scheme
(described above). It redirects emphasis toward determining the mechanisms that might
contribute to untangling. And dictates what must be “explained” at the single neuron level,
rather than creating “just so” stories based on the phenomenologies of heterogenous single
neurons.

2. What do we know about the brain’s “object” representation?
The ventral visual stream houses critical circuitry for core object recognition

Decades of evidence argue that the primate ventral visual processing stream -- a set of
cortical areas arranged along the occipital and temporal lobes (Fig. 3A) -- houses key
circuits that underlie object recognition behavior (For reviews, see Gross, 1994; Miyashita,
1993; Orban, 2008; Rolls, 2000). Object recognition is not the only ventral stream function,
and we refer the reader to (Kravitz et al., 2010; Logothetis and Sheinberg, 1996; Maunsell
and Treue, 2006; Tsao and Livingstone, 2008) for a broader discussion. Whereas lesions in
the posterior ventral stream produce complete blindness in part of the visual field (reviewed
by Stoerig and Cowey, 1997), lesions or inactivation of anterior regions, especially the
inferior temporal cortex (IT), can produce selective deficits in the ability to distinguish
among complex objects (e.g. (Holmes and Gross, 1984; Horel, 1996; Schiller, 1995;
Weiskrantz and Saunders, 1984; Yaginuma et al., 1982). While these deficits are not always
severe, and sometimes not found at all (Huxlin et al., 2000), this variability likely depends
on the type of object recognition task (and thus the alternative visual strategies available).
For example, some (Schiller, 1995; Weiskrantz and Saunders, 1984), but not all, primate
ventral stream lesion studies have explicitly required invariance.

While the human homology to monkey IT cortex is not well-established, a likely homology
is the cortex in and around the human lateral occipital cortex (LOC) (see (Orban et al., 2004)
for review). For example, a comparison of monkey IT and human “IT” (LOC) shows strong
commonality in the population representation of object categories (Kriegeskorte et al.,
2008). Assuming these homologies, the importance of primate IT is suggested by
neuropsychological studies of human patients with temporal lobe damage, which can
sometimes produce remarkably specific object recognition deficits (Farah, 1990).
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Temporary functional disruption of parts of the human ventral stream (using transcranial
magnetic stimulation, TMS) can specifically disrupt certain types of object discrimination
tasks, such as face discrimination (Pitcher et al., 2009). Similarly, artificial activation of
monkey IT neurons predictably biases the subject’s reported percept of complex objects
(Afraz et al., 2006). In sum, long-term lesion studies, temporary activation/inactivation
studies, and neurophysiological studies (described below) all point to the central role of the
ventral visual stream in invariant object recognition.

Ventral visual stream: Multiple, hierarchically organized visual areas
The ventral visual stream has been parsed into distinct visual “areas” based on: anatomical
connectivity patterns, distinctive anatomical structure, and retinotopic mapping (Felleman
and Van Essen, 1991). Complete retinotopic maps have been revealed for most of the visual
field (at least 40 degrees eccentricity from the fovea) for areas V1, V2 and V4 (Felleman
and Van Essen, 1991) and thus each area can be thought of as conveying a population-based
re-representation of each visually presented image. Within the IT complex, crude retinotopy
exists over the more posterior portion (pIT; Boussaoud et al., 1991; Yasuda et al.), but
retinotopy is not reported in the central and anterior regions (Felleman and Van Essen,
1991). Thus while IT is commonly parsed into sub-areas such as TEO and TE (Janssen et
al., 2000; Saleem et al., 2000; Saleem et al., 1993; Suzuki et al., 2000; Von Bonin and P,
1947) or posterior IT (pIT), central IT (cIT) and anterior IT (aIT) (Felleman and Van Essen,
1991), it is unclear if IT cortex is more than one area, or how the term “area” should be
applied. One striking illustration of this is recent monkey fMRI work which shows that there
are three (Tsao et al., 2003) to six (Tsao et al., 2008a) or more (Ku et al., 2011) smaller
regions within IT that may be involved in face “processing” (Tsao et al., 2008b) (also see
(Op de Beeck et al., 2008; Pinsk et al., 2005). This suggests that, at the level of IT,
behavioral goals (e.g. object categorization) (Kriegeskorte et al., 2008; Naselaris et al.,
2009) many be a better spatial organizing principle than retinotopic maps.

All visual cortical areas share a six-layered structure and the inputs and outputs to each
visual area share characteristic patterns of connectivity: ascending “feedforward” input is
received in layer 4 and ascending “feedforward” output originates in the upper layers;
descending “feedback” originates in the lower layers, and is received in the upper and lower
layers of the “lower” cortical area (Felleman and Van Essen, 1991). These repeating
connectivity patterns argue for a hierarchical organization (as opposed to a parallel or fully
interconnected organization) of the areas with visual information traveling first from the
retina to the lateral geniculate nucleus of the thalamus (LGN), and then through cortical area
V1 to V2 to V4 to IT (Felleman and Van Essen, 1991). Consistent with this, the (mean) first
visually evoked responses of each successive cortical area are successively lagged by ~10
ms (Nowak and Bullier, 1997; Schmolesky et al., 1998; see Fig. 3B). Thus just ~100 ms
after image photons impinge on the retina, a first wave of image-selective neuronal activity
is present throughout much of IT (e.g. (Desimone et al., 1984; DiCarlo and Maunsell, 2000;
Hung et al., 2005; Kobatake and Tanaka, 1994a; Logothetis and Sheinberg, 1996; Tanaka,
1996). We believe this first wave of activity is consistent with a combination of intra-area
processing and feed-forward inter-area processing of the visual image.

The ventral stream cortical code
The only known means of rapidly conveying information through the ventral pathway is via
the spiking activity that travels along axons. Thus, we consider the neuronal representation
in a given cortical area (e.g., the “IT representation”) to be the spatiotemporal pattern of
spikes produced by the set of pyramidal neurons that project out of that area (e.g. the spiking
patterns traveling along the population of axons that project out of IT; see Fig. 3B). How is
the spiking activity of individual neurons thought to encode visual information?

DiCarlo et al. Page 6

Neuron. Author manuscript; available in PMC 2013 February 9.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Most studies have investigated the response properties of neurons in the ventral pathway by
assuming a firing rate (or, equivalently, a spike count) code, i.e., by counting how many
spikes each neuron fires over several tens or hundreds of milliseconds following the
presentation of a visual image, adjusted for latency (e.g., see Fig. 4A, B). Historically, this
temporal window (here called the “decoding” window) was justified by the observation that
its resulting spike rate is typically well modulated by relevant parameters of the presented
visual images (such as object identity, position, or size; (Desimone et al., 1984; Kobatake
and Tanaka, 1994b; Logothetis and Sheinberg, 1996; Tanaka, 1996) (see examples of IT
neuronal responses in Fig. 4A–C), analogous to the well-understood firing rate modulation
in area V1 by “low level” stimulus properties such as bar orientation (reviewed by Lennie
and Movshon, 2005).

Like all cortical neurons, neuronal spiking throughout the ventral pathway is variable in the
ms-scale timing of spikes, resulting in rate variability for repeated presentations of a
nominally identical visual stimulus. This spike timing variability is consistent with a
Poisson-like stochastic spike generation process with an underlying rate determined by each
particular image (e.g. Kara et al., 2000; McAdams and Maunsell, 1999). Despite this
variability, one can reliably infer what object, among a set of tested visual objects, was
presented from the rates elicited across the IT population (e.g. (Abbott et al., 1996;
Aggelopoulos and Rolls, 2005; De Baene et al., 2007; Heller et al., 1995; Hung et al., 2005;
Li et al., 2006; Op de Beeck et al., 2001; Rust and DiCarlo, 2010). It remains unknown
whether the ms-scale spike variability found in the ventral pathway is “noise” (in that it does
not directly help stimulus encoding/decoding) or if it is somehow synchronized over
populations of neurons to convey useful, perhaps “multiplexed” information (reviewed by
Ermentrout et al., 2008). Empirically, taking into account the fine temporal structure of IT
neuronal spiking patterns (e.g., concatenated decoding windows, each less than 50 ms) does
not convey significantly more information about object identity than larger time windows
(e.g. a single, 200 ms decoding window), suggesting that the results of ventral stream
processing are well-described by a firing rate code where the relevant underlying time scale
is ~50 ms (Abbott et al., 1996; Aggelopoulos and Rolls, 2005; Heller et al., 1995; Hung et
al., 2005). While different time epochs relative to stimulus onset may encode different types
of visual information (Brincat and Connor, 2006; Richmond and Optican, 1987; Sugase et
al., 1999), very reliable object information is usually found in IT in the first ~50 ms of
neuronal response (i.e. 100–150 ms after image onset, see Fig. 4A). More specifically, 1) the
population representation is already different for different objects in that window (DiCarlo
and Maunsell, 2000), and 2) that time window is more reliable because peak spike rates are
typically higher than later windows (e.g. Hung et al., 2005). Deeper tests of ms-scale
synchrony hypotheses require large-scale simultaneous recording. Another challenge to
testing ms-scale spike coding is that alternative putative decoding schemes are typically
unspecified and open-ended; a more complex scheme outside the range of each technical
advance can always be postulated. In sum, while all spike-timing codes cannot easily (if
ever) be ruled out, rate codes over ~50 ms intervals are not only easy to decode by
downstream neurons, but appear to be sufficient to support recognition behavior (see
below).

The IT population appears sufficient to support core object recognition
Although visual information processing in the first stage of the ventral stream (V1) is
reasonably well understood (see (Lennie and Movshon, 2005) for review), processing in
higher stages (e.g. V4, IT) remains poorly understood. Nevertheless, we know that the
ventral stream produces an IT pattern of activity that can directly support robust, real-time
visual object categorization and identification, even in the face of changes in object position
and scale, limited clutter, and changes in background context (Hung et al., 2005; Li et al.,
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2006; Rust and DiCarlo, 2010). Specifically, simple weighted summations of IT spike
counts over short time intervals (see Section 2) lead to high rates of cross-validated
performance for randomly selected populations of only a few hundred neurons (Hung et al.,
2005; Rust and DiCarlo, 2010) (Fig. 4E), and a simple IT summation scheme is sufficient to
explain a wide range of human invariant object recognition behavior (Majaj et al., 2012).
Similarly, studies of fMRI-targeted clusters of IT neurons suggest that IT sub-populations
can support other object recognition tasks such as face detection and face discrimination
over some identity-preserving transformations (Freiwald and Tsao, 2010).

Importantly, IT neuronal populations are demonstrably better at object identification and
categorization than populations at earlier stages of the ventral pathway (Freiwald and Tsao,
2010; Hung et al., 2005; Li et al., 2006; Rust and DiCarlo, 2010). Similarly, while neuronal
activity that provides some discriminative information about object shape has also been
found in dorsal stream visual areas at similar hierarchical levels (Sereno and Maunsell,
1998), a direct comparison shows that it is not nearly as powerful as IT for object
discrimination (Lehky and Sereno, 2007).

Taken together, the neurophysiological evidence can be summarized as follows. First, spike
counts in ~50 ms IT decoding windows convey information about visual object identity.
Second, this information is available in the IT population beginning ~100 ms after image
presentation (see Fig. 4A). Third, the IT neuronal representation of a given object across
changes in position, scale, and presence of limited clutter is untangled from the
representations of other objects, and object identity can be easily decoded using simple
weighted summation codes (see Fig. 2B, 4D,E). Fourth, these codes are readily observed in
passively viewing subjects, and for objects that have not been explicitly trained (Hung et al.,
2005). In sum, our view is that the “output” of the ventral stream is reflexively expressed in
neuronal firing rates across a short interval of time (~50 ms), is an “explicit” object
representation (i.e., object identity is easily decodable), and the rapid production of this
representation is consistent with a largely feedforward, non-linear processing of the visual
input.

Alternative views suggest that ventral stream response properties are highly dependent on
the subject’s behavioral state (i.e., “attention” or task goals) and that these state changes may
be more appropriately reflected in global network properties (e.g., synchronized or
oscillatory activity). While behavioral state effects, task effects, and plasticity have all been
found in IT, such effects are typically (but not always) small relative to responses changes
driven by changes in visual images (Koida and Komatsu, 2007; Op de Beeck and Baker,
2010; Suzuki et al., 2006; Vogels et al., 1995). Another, not-unrelated view is that true
object representation is hidden in the fine-grained temporal spiking patterns of neurons and
the correlational structure of those patterns. However, primate core recognition based on
simple wighted summation of mean spike rates over 50–100 ms intervals is already powerful
(Hung et al., 2005; Rust and DiCarlo, 2010), and appears to extend to difficult forms of
invariance such as pose (Booth and Rolls, 1998; Freiwald and Tsao, 2010; Logothetis et al.,
1995). More directly, decoded IT population performance exceeds artificial vision systems
(Pinto et al., 2010; Serre et al., 2007a) and appears sufficient to explain human object
recognition performance (Majaj et al., 2012). Thus, we work under the null hypothesis that
core object recognition is well-described by a largely feedforward cascade of non-linear
filtering operations (see below) and is expressed as a population rate code at ~50 ms time
scale.

A contemporary view of IT single neurons
How do these IT neuronal population phenomena (above) depend on the responses of
individual IT neurons? Understanding IT single-unit responses has proven to be extremely
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challenging and while some progress has been made (Brincat and Connor, 2004; Yamane et
al., 2008), we still have a poor ability to build encoding models that predict the responses of
each IT neuron to new images (see Fig. 4B). Nevertheless, we know that IT neurons are
activated by at least moderately complex combinations of visual features (Brincat and
Connor, 2004; Desimone et al., 1984; Kobatake and Tanaka, 1994b; Perrett et al., 1982;
Rust and DiCarlo, 2010; Tanaka, 1996), and that they are often able to maintain their
relative object preference over small to moderate changes in object position and size
(Brincat and Connor, 2004; Ito et al., 1995; Li et al., 2009; Rust and DiCarlo, 2010; Tovée et
al., 1994), pose (Logothetis et al., 1994a), illumination (Vogels and Biederman, 2002) and
clutter (Li et al., 2009; Missal et al., 1999; Missal et al., 1997; Zoccolan et al., 2005).

Contrary to popular depictions of IT neurons as narrowly selective “object detectors,”
neurophysiological studies of IT are in near universal agreement with early accounts that
describe a diversity of selectivity: “We found that, as in other visual areas, most IT neurons
respond to many different visual stimuli and, thus, cannot be narrowly tuned “detectors” for
particular complex objects...” (Desimone et al., 1984). For example, studies that involve
probing the responses of IT cells with large and diverse stimulus sets show that, while some
neurons appear highly selective for particular objects, they are the exception not the rule.
Instead, most IT neurons are broadly tuned and the typical IT neuron responds to many
different images and objects (Brincat and Connor, 2004; Freedman et al., 2006; Kreiman et
al., 2006; Logothetis et al., 1995; Op de Beeck et al., 2001; Rolls, 1995, 2000; Rolls and
Tovee, 1995; Vogels, 1999; Zoccolan et al., 2007); see Fig. 4B).

In fact, the IT population is diverse in both shape selectivity and tolerance to identity-
preserving image transformations such as changes in object size, contrast, in-depth and in-
plane rotation, and presence of background or clutter (Ito et al., 1995; Logothetis et al.,
1995; Op de Beeck and Vogels, 2000; Perrett et al., 1982; Rust and DiCarlo, 2010; Zoccolan
et al., 2005; Zoccolan et al., 2007). For example, the standard deviation of IT receptive field
sizes is approximately 50% of the mean (mean ± SD: 16.5° ± 6.1° (Kobatake and Tanaka,
1994b), 24.5° ± 15.7° (Ito et al., 1995), and 10° ± 5° (Op de Beeck and Vogels, 2000).
Moreover, IT neurons with the highest shape selectivities are the least tolerant to changes in
position, scale, contrast and presence of visual clutter (Zoccolan et al., 2007), a finding
inconsistent with “gnostic units” or “grandmother cells” (Gross, 2002), but one that arises
naturally from feedforward computational models (Zoccolan et al., 2007).

Such findings argue for a distributed representation of visual objects in IT, as suggested
previously (e.g. (Desimone et al., 1984; Kiani et al., 2007; Rolls, 1995) -- a view that
motivates the population decoding approaches described above (Hung et al., 2005; Li et al.,
2009; Rust and DiCarlo, 2010). That is, single IT neurons do not appear to act as sparsely
active, invariant detectors of specific objects, but, rather, as elements of a population that, as
a whole, supports object recognition. This implies that individual neurons do not need to be
invariant. Instead, the key single-unit property is called neuronal “tolerance”: the ability of
each IT neuron to maintain its preferences among objects, even if only over a limited
transformation range (e.g., position changes; see Fig. 4C (Li et al., 2009). Mathematically,
tolerance amounts to separable single-unit response surfaces for object shape and other
object variables such as position and size (Brincat and Connor, 2004; Ito et al., 1995; Li et
al., 2009; Tovée et al., 1994; see Fig. 4D). This contemporary view, that neuronal tolerance
is the required and observed single unit phenomenology, has also been shown for less
intuitive identity-preserving transformations such as the addition of clutter (Li et al., 2009;
Zoccolan et al., 2005).

The tolerance of IT single units is non-trivial in that earlier visual neurons do not have this
property to the same degree. It suggests that the IT neurons together tile the space of object
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identity (shape) and other image variables such as object retinal position. The resulting
population representation is powerful because it simultaneously conveys explicit
information about object identity and its particular position, size, pose, and context, even
when multiple objects are present, and it avoids the need to re-“bind” this information at a
later stage (DiCarlo and Cox, 2007; Edelman, 1999; Riesenhuber and Poggio, 1999a).
Graphically, this solution can be visualized as taking two sheets of paper (each is an object
manifold) that are crumpled together, unfurling them, and aligning them on top of each other
(DiCarlo and Cox, 2007). The surface coordinates of each sheet of paper correspond to
identity-preserving object variables such as retinal position and, because they are aligned in
this representation, this allows downstream circuits to use simple summation decoding
schemes to answer questions such as: “Was there an object in the left visual field?”, or
“Which object was on the left?” (see Fig. 2B; DiCarlo and Cox, 2007).

3. What algorithm produces the IT population representation?
The results reviewed above argue that the ventral stream produces an IT population
representation in which object identity and some other object variables (such as retinal
position) are explicit, even in the face of significant image variation. But how is this
achieved? Exactly what algorithm or set of algorithms is at work? We do not know the
answer, but we have empirical data from neuroscience that partly constrains the hypothesis
space, as well as computational frameworks that guide our intuition and show promise. In
this section, we stand on those shoulders to speculate what the answer might look like.

The untangling solution is likely implemented in cortical circuitry
Retinal and LGN processing help deal with important real-world issues such as variation in
luminance and contrast across each visual image (reviewed by Kohn, 2007). However,
because RGC and LGN receptive fields are essentially point-wise spatial sensors (Field et
al., 2010), the object manifolds conveyed to primary visual cortical area V1 are nearly as
tangled as the pixel representation (see Fig. 2B). As V1 takes up the task, the number of
output neurons, and hence the total dimensionality of the V1 representation, increases
approximately thirty-fold (Stevens, 2001); Fig. 3B). Because V1 neuronal responses are
non-linear with respect to their inputs (from the LGN), this dimensionality expansion results
in an over-complete population re-representation (Lewicki and Sejnowski, 2000; Olshausen
and Field, 1997) in which the object manifolds are more “spread out”. Indeed, simulations
show that a V1-like representation is clearly better than retinal-ganglion-cell-like (or pixel-
based) representation, but still far below human performance for real-world recognition
problems (DiCarlo and Cox, 2007; Pinto et al., 2008a).

Global scale architecture: a deep stack of cortical areas
What happens as each image is processed beyond V1 via the successive stages of the ventral
stream anatomical hierarchy (V2, V4, pIT, aIT; Fig. 3)? Two overarching algorithmic
frameworks have been proposed. One framework postulates that each successive visual area
serially adds more processing power so as to solve increasingly complex tasks, such as the
untangling of object identity manifolds (DiCarlo and Cox, 2007; Marr, 1982; Riesenhuber
and Poggio, 1999b). A useful analogy here is a car assembly production line -- a single
worker can only perform a small set of operations in a limited time, but a serial assembly
line of workers can efficiently build something much more complex (e.g., a car or a good
object representation).

A second algorithmic framework postulates the additional idea that the ventral stream
hierarchy, and interactions between different levels of the hierarchy, embed important
processing principles analogous to those in large hierarchical organizations, such as the US
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Army (e.g. Lee and Mumford, 2003; Friston, 2010; Roelfsema and Houtkamp, 2011). In this
framework, feedback connections between the different cortical areas are critical to the
function of the system. This view has been advocated in part because it is one way to
explicitly enable inference about objects in the image from weak or noisy data (e.g., missing
or occluded edges) under a hierarchical Bayesian framework (Lee and Mumford, 2003; Rust
and Stocker, 2010). For example, in the army analogy, foot soldiers (e.g. V1 neurons) pass
uncertain observations (e.g. “maybe I see an edge”) to sergeants (e.g. V2), who then pass the
accumulated information to lieutenants, and so on. These higher agents thus glimpse the
“forest for the trees” (e.g. Bar et al., 2006) and in turn direct the lowest levels (the foot
soldiers) on how to optimize processing of this weak sensory evidence, presumably to help
the higher agents (e.g. IT). A related, but distinct idea is that the hierarchy of areas plays a
key role at a much slower time scale -- in particular, for learning to properly configure a
largely-feedforward “serial chain” processing system (Hinton et al.,1995).

A central issue that separates the largely feedforward “serial-chain” framework and the
feedforward/feedback “organized hierarchy” framework is whether reentrant areal
communication (e.g. spikes sent from V1 to IT to V1) is necessary for building explicit
object representation in IT within the time scale of natural vision (~200 ms). Even with
improved experimental tools that might allow precise spatial-temporal shutdown of
feedback circuits (e.g. Boyden et al., 2005), settling this debate hinges on clear predictions
about the recognition tasks for which that reentrant processing is purportedly necessary.
Indeed, it is likely that a compromise view is correct in that the best description of the
system depends on the time scale of interest and the visual task conditions. For example, the
visual system can be put in noisy or ambiguous conditions (e.g. binocular rivalry) in which
coherent object percepts modulate on significantly slower time scales (seconds; e.g.
Sheinberg and Logothetis, 1997) and this processing likely engages inter-area feedback
along the ventral stream (e.g. Naya et al., 2001). Similarly, recognition tasks that involve
extensive visual clutter (e.g. “Where’s Waldo?”) almost surely require overt reentrant
processing (eye movements that cause new visual inputs) and/or covert feedback (Sheinberg
and Logothetis, 2001; Ullman, 2009) as do working memory tasks that involve finding a
specific object across a sequence of fixations (Engel and Wang, 2011). However, a
potentially large class of object recognition tasks (what we call “core recognition”, above)
can be solved rapidly (~150 ms) and with the first spikes produced by IT (Hung et al., 2005;
Thorpe et al., 1996), consistent with the possibility of little to no reentrant areal
communication. Even if true, such data do not argue that core recognition is solved entirely
by feedforward circuits -- very short time reentrant processing within spatially local circuits
(<10 ms; e.g. local normalization circuits) is likely to be an integral part of the fast IT
population response. Nor does it argue that anatomical pathways outside the ventral stream
do not contribute to this IT solution (e.g. Bar et al., 2006). In sum, resolving debates about
the necessity (or lack thereof) of reentrant processing in the areal hierarchy of ventral stream
cortical areas depends strongly on developing agreed-upon operational definitions of “object
recognition” (see Section 4), but the parsimonious hypothesis is that core recognition does
not require reentrant areal processing.

Mesoscale architecture: inter-area and intra-area cortical relationships
One key idea implicit in both algorithmic frameworks is the idea of abstraction layers --
each level of the hierarchy need only be concerned with the “language” of its input area and
its local job. For example, in the serial chain framework, while workers in the middle of a
car assembly line might put in the car engine, they do not need to know the job description
of early line workers (e.g., how to build a chassis). In this analogy, the mid-line workers are
abstracted away from the job description of the early line workers.
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Most complex, human-engineered systems have evolved to take advantage of abstraction
layers, including the factory assembly line to produce cars and the reporting organization of
large companies to produce coordinated action. Thus, the possibility that each cortical area
can abstract away the details below its input area may be critical for leveraging a stack of
visual areas (the ventral stream) to produce an untangled object identity representation (IT).
A key advantage of such abstraction is that the “job description” of each worker is locally
specified and maintained. The trade off is that, in its strongest instantiation, no one oversees
the online operation of the entire processing chain and there are many workers at each level
operating in parallel without explicit coordination (e.g., distant parts of V1). Thus, the
proper upfront job description at each local cortical sub-population must be highly robust to
that lack of across-area and within-area supervision. In principle, such robustness could arise
from either an ultra precise, stable set of instructions given to each worker upfront (i.e.,
precise genetic control of all local cortical synaptic weights within the sub-population), or
from a less precise “meta” job description -- initial instructions that are augmented by
learning that continually refines the daily job description of each worker. Such learning
mechanisms could involve feedback (e.g. Hinton et al., 1995; see above) and could act to
refine the transfer function of each local sub-population.

Local architecture: Each cortical locus may have a common sub-space untangling goal
We argue above that the global function of the ventral stream might be best thought of as a
collection of local input-output sub-populations (where each sub-population is a “worker”)
that are arranged laterally (to tile the visual field in each cortical area) and cascaded
vertically (i.e. like an assembly line) with little or no need for coordination of those sub-
populations at the time scale of online vision. We and others advocate the additional
possibility that each ventral stream sub-population has an identical meta job description (see
also Douglas and Martin, 1991; Fukushima, 1980, Kouh, 2008 #2493; Heeger et al., 1996).
We say “meta” because we speculate about the implicit goal of each cortical sub-
population, rather than its detailed transfer function (see below). This canonical meta job
description would amount to an architectural scaffold and a set of learning rules describing
how, following learning, the values of a finite number of inputs (afferents from lower
cortical level) produce the values of a finite number of outputs (efferents to the next higher
cortical level; see Fig. 5). We would expect these learning rules to operate at a much slower
time scale than online vision. This possibility is not only conceptually simplifying to us as
scientists, but it is extremely likely that an evolving system would exploit this type of
computational unit because the same instruction set (e.g., genetic encoding of that meta job
description) could simply be replicated laterally (to tile the sensory field) and stacked
vertically (to gain necessary algorithmic complexity, see above). Indeed, while we have
brought the reader here via arguments related to the processing power required for object
representation, many have emphasized the remarkable architectural homogeneity of the
mammalian neocortex (e.g., Douglas and Martin, 2004; Rockel et al., 1980); with some
exceptions, each piece of neocortex copies many details of local structure (number of layers
and cell types in each layer), internal connectivity (major connection statistics within that
local circuit), and external connectivity (e.g., inputs from the lower cortical area arrive in
layer 4, outputs to the next higher cortical area depart from layer 2/3).

For core object recognition, we speculate that the canonical meta job description of each
local cortical sub-population is to solve a microcosm of the general untangling problem
(Section 1). That is, instead of working on a ~1 million dimensional input basis, each
cortical sub-population works on a much lower dimensional input basis (1–10 thousand; Fig.
5) which leads to significant advantages in both wiring packing and learnability from finite
visual experience (Bengio, 2009). We call this hypothesized canonical meta goal cortically
local subspace untangling. “Cortically local” because it is the hypothesized goal of every
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local sub-population of neurons centered on any given point in ventral visual cortex (see
Section 4), and “subspace untangling” because each such sub-population does not solve the
full untangling problem, but instead aims to best untangle object identity within the data
subspace afforded by its set of input afferents (e.g., a small aperture on the LGN in V1, a
small aperture on V1 in V2, etc.). It is impossible for mossst cortical sub-populations to
fully achieve this meta goal (because most only “see” a small window on each object), yet
we believe that the combined efforts of many local units each trying their best to locally
untangle may be all that is needed to produce an overall powerful ventral stream. That is,
our hypothesis is that the parallel efforts of each ventral stream cortical locus to achieve
local subspace untangling leads to a ventral stream assembly line whose “online” operation
produces an untangled object representation at its top level. Later we outline how we aim to
test that hypothesis.

“Bottom-up” encoding models of cortical responses
We have arrived at a putative canonical meta job description, local subspace untangling, by
working our way “top down” from the overall goal of visual recognition and considering
neuroanatomical data. How might local subspace untangling be instantiated within neuronal
circuits and single neurons?

Historically, mechanistic insights into the computations performed by local cortical circuits
have derived from “bottom up” approaches that aim to quantitatively describe the encoding
functions that map image features to the firing rate responses of individual neurons. One
example is the conceptual encoding models of Hubel and Wiesel (1962), which postulate the
existence of two operations in V1 that produce the response properties of the “simple” and
“complex” cells. First, V1 simple cells implement AND-like operations on LGN inputs to
produce a new form of “selectivity” -- an orientation-tuned response. Next, V1 complex
cells implement a form of “invariance” by making OR-like combinations of simple cells
tuned for the same orientation. These conceptual models are central to current encoding
models of biological object recognition (e.g. (Fukushima, 1980; Riesenhuber and Poggio,
1999b; Serre et al., 2007a), and they have been formalized into the linear-nonlinear (LN)
class of encoding models in which each neuron adds and subtract its inputs, followed by a
static nonlinearity (e.g., a threshold) to produce a firing rate response (Adelson and Bergen,
1985; Carandini et al., 2005; Heeger et al., 1996; Rosenblatt, 1958). While LN style models
are far from a synaptic-level model of a cortical circuit, they are a potentially powerful level
of abstraction in that they can account for a substantial amount of single neuron response
patterns in early visual (Carandini et al., 2005), somatosensory (DiCarlo et al., 1998), and
auditory cortical areas (Theunissen et al., 2000). Indeed, a nearly complete accounting of
early level neuronal response patterns can be achieved with extensions to the simple LN
model framework -- most notably, by divisive normalization schemes in which the output of
each LN neuron is normalized (e.g. divided) by a weighted sum of a pool of nearby neurons
(reviewed by Carandini and Heeger, 2011). Such schemes were used originally to capture
luminance and contrast and other adaptation phenomena in the LGN and V1 (Mante et al.,
2008; Rust and Movshon, 2005), and they represent a broad class of models which we refer
to here as the “normalized LN” model class (NLN; see Fig. 5).

We do not know if the NLN class of encoding models can describe the local transfer
function of any output neuron at any cortical locus (e.g., the transfer function from a V4 sub-
population to a single IT neuron). However, because the NLN model is successful at the first
sensory processing stage, the parsimonious view is to assume that the NLN model class is
sufficient but that the particular NLN model parameters (i.e., the filter weights, the
normalization pool, and the specific static non-linearity) of each neuron are uniquely
elaborated. Indeed, the field has implicitly adopted this view with attempts to apply
cascaded NLN-like models deeper into the ventral stream (e.g. David et al., 2006).
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Unfortunately, the approach requires exponentially more stimulus-response data to try to
constrain an exponentially expanding set of possible cascaded NLN models, and thus we
cannot yet distinguish between a principled inadequacy of the cascaded NLN model class
and a failure to obtain enough data. This is currently a severe “in practice” inadequacy of the
cascaded NLN model class in that its effective explanatory power does not extend far
beyond V1 (Carandini et al., 2005). Indeed, the problem of directly determining the specific
image-based encoding function (e.g., a particular deep stack of NLN models) that predicts
the response of any given IT neuron (e.g., the one at the end of my electrode today) may be
practically impossible with current methods.

Canonical cortical algorithms: possible mechanisms of sub-space untangling
Nevertheless, all hope is not lost, and we argue for a different way forward. In particular, the
appreciation of under-constrained models reminds us of the importance of abstraction layers
in hierarchical systems -- returning to our earlier analogy, the workers at the end of the
assembly line never need to build the entire car from scratch, but, together, the cascade of
workers can still build a car. In other words, building an encoding model that describes the
transformation from an image to a firing rate response is not the problem that (e.g.) an IT
cortical neuron faces. On the contrary, the problem faced by each IT (NLN) neuron is a
much more local, tractable, meta problem: from which V4 neurons should I receive inputs,
how should I weigh them, what should comprise my normalization pool, and what static
nonlinearity should I apply?.

Thus, rather than attempting to estimate the myriad parameters of each particular cascade of
NLN models or each local NLN transfer function, we propose to focus instead on testing
hypothetical meta job descriptions that can be implemented to produce those myriad details.
We are particularly interested in hypotheses where the same (canonical) meta job
description is invoked and set in motion at each cortical locus.

Our currently hypothesized meta job description (cortically local subspace untangling) is
conceptually this: “Your job, as a local cortical sub-population, is to take all your neuronal
afferents (your input representation) and apply a set of non-linearities and learning rules to
adjust your input synaptic weights based on the activity of those afferents. These non-
linearities and learning rules are designed such that, even though you do not know what an
object is, your output representation will tend to be one in which object identity is more
untangled than your input representation.” Note that this is not a meta job description of
each single neuron, but is the hypothesized goal of each local sub-population of neurons (see
Fig. 5). It accepts that each neuron in the sub-population is well-approximated by a set of
NLN parameters, but that many of these myriad parameters are highly idiosyncratic to each
sub-population. Our hypothesis is that each ventral stream cortical sub-population uses at
least three common, genetically encoded mechanisms (described below) to carry out that
meta job description and that together, those mechanisms direct it to “choose” a set of input
weights, a normalization pool, and a static nonlinearity that lead to improved subspace
untangling. Specifically, we postulate the existence of the following three key conceptual
mechanisms:

1. Each sub-population sets up architectural non-linearities that naturally tend to
flatten object manifolds. Specifically, even with random (non-learned) filter
weights, NLN-like models tend to produce easier-to-decode object identity
manifolds largely on the strength of the normalization operation (Jarrett et al.,
2009; Lewicki and Sejnowski, 2000; Olshausen and Field, 2005; Pinto et al.,
2008b), similar in spirit to the overcomplete approach of V1 (described above).

2. Each sub-population embeds mechanisms that tune the synaptic weights to
concentrate its dynamic response range to span regions of its input space where
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images are typically found (e.g., do not bother encoding things you never see). This
is the basis of natural image statistics and compression (e.g., Hoyer and Hyvarinen,
2002; Olshausen and Field, 1996; Simoncelli and Olshausen, 2001) and its
importance is supported by the observation that higher levels of the ventral stream
are more tuned to natural feature conjunctions than lower levels (e.g., Rust and
DiCarlo, 2010).

3. Each sub-population uses an unsupervised algorithm to tune its parameters such
that input patterns that occur close together in time tend to lead to similar output
responses. This implements the theoretical idea that naturally occurring temporal
contiguity cues can “instruct” the building of tolerance to identity-preserving
transformations. More specifically, because each object’s identity is temporally
stable, different retinal images of the same object tend to be temporally contiguous
(Fazl et al., 2009; Foldiak, 1991; Stryker, 1992; Wallis and Rolls, 1997; Wiskott
and Sejnowski, 2002). In the geometrical, population-based description presented
in Figure 2, response vectors that are produced by retinal images occurring close
together in time tend to be the directions in the population response space that
correspond to identity-preserving image variation, and thus attempts to produce
similar neural responses for temporally contiguous stimuli achieve the larger goal
of factorizing object identity and other object variables (position, scale, pose, etc.).
For example, the ability of IT neurons to respond similarly to the same object seen
at different retinal positions (“position tolerance”) could be bootstrapped by the
large number of saccadic-driven image translation experiences that are
spontaneously produced on the retinae (~100 million such translation experiences
per year of life). Indeed, artificial manipulations of temporally contiguous
experience with object images across different positions and sizes can rapidly and
strongly reshape the position and size tolerance of IT neurons -- destroying existing
tolerance and building new tolerance, depending on the provided visual experience
statistics (Li and DiCarlo, 2008, 2011), and predictably modifying object
perception (Cox et al., 2005). We refer the reader to computational work on how
such learning might explain properties of the ventral stream (e.g. Foldiak, 1991;
Hurri and Hyvarinen, 2003; Wiskott and Sejnowski, 2002; see Section 4), as well
as other potentially important types of unsupervised learning that do not require
temporal cues (Karlinsky et al., 2008; Perry et al., 2010).

Testing hypotheses: instantiated models of the ventral stream
Experimental approaches are effective at describing undocumented behaviors of ventral
stream neurons, but alone they cannot indicate when that search is complete. Similarly,
“word models” (including ours, above) are not falsifiable algorithms. To make progress, we
need to construct ventral-stream-inspired, instantiated computational models, and compare
their performance with neuronal data and human performance on object recognition tasks.
Thus, computational modeling cannot be taken lightly. Together, the set of alternative
models define the space of falsifiable alternative hypotheses in the field, and the success of
some such algorithms will be among our first indications that we are on the path to
understanding visual object recognition in the brain.

The idea of using biologically inspired, hierarchical computational algorithms to understand
the neuronal mechanisms underlying invariant object recognition tasks is not new: “The
mechanism of pattern recognition in the brain is little known, and it seems to be almost
impossible to reveal it only by conventional physiological experiments... If we could make a
neural network model which has the same capability for pattern recognition as a human
being, it would give us a powerful clue to the understanding of the neural mechanism in the
brain.” (Fukushima, 1980). More recent modeling efforts have significantly refined and
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extended this approach (e.g. Lecun et al., 2004; Mel, 1997; Riesenhuber and Poggio, 1999b;
Serre et al., 2007a). While we cannot review all the computer vision or neural network
models that have relevance to object recognition in primates here, we refer the reader to
reviews by (Bengio, 2009; Edelman, 1999; Riesenhuber and Poggio, 2000; Zhu and
Mumford, 2006).

Commensurate with the serial chain, cascaded untangling discussion above, some ventral-
stream-inspired models implement a canonical, iterated computation, with the overall goal
of producing a good object representation at their highest stage (Fukushima, 1980;
Riesenhuber and Poggio, 1999b; Serre et al., 2007a). These models include a handful of
hierarchically arranged layers, each implementing AND-like operations to build selectivity
followed by OR-like operations to build tolerance to identity preserving transformations
(Fig. 6). Notably, both AND-like and OR-like computations can be formulated as variants of
the NLN model class described above (Kouh and Poggio, 2008), illustrating the link to
canonical cortical models (see inset in Fig. 6). Moreover, these relatively simple hierarchical
models can produce model neurons that signal object identity, are somewhat tolerant to
identity-preserving transformations, and can rival human performance for ultra-short,
backward-masked image presentations (Serre et al., 2007a).

The surprising power of such models substantially demystifies the problem of invariant
object recognition, but also points out that the devil is in the details -- the success of an
algorithm depends on a large number of parameters that are only weakly constrained by
existing neuroscience data. For example, while the algorithms of (Fukushima, 1980;
Riesenhuber and Poggio, 1999b; Serre et al., 2007a) represent a great start, we also know
that they are insufficient in that they perform only slightly better than baseline V1-like
benchmark algorithms (Pinto et al., 2011), they fail to explain human performance for 100
ms or longer image presentations (Pinto et al., 2010), and their patterns of confusion do not
match those found in the monkey IT representation (Kayaert et al., 2005; Kiani et al., 2007;
Kriegeskorte et al., 2008). Nevertheless, these algorithms continue to inspire ongoing work,
and recent efforts to more deeply explore the very large, ventral-stream-inspired algorithm
class from which they are drawn is leading to even more powerful algorithms (Pinto et al.,
2009), and motivating psychophysical testing and new neuronal data collection (Pinto et al.,
2010; Majaj et al., 2012).

4. What is missing and how do we move forward?
Do we “understand” how the brain solves object recognition? We understand the
computational crux of the problem (invariance); we understand the population coding issues
resulting from invariance demands (object-identity manifold untangling); we understand
where the brain solves this problem (ventral visual stream); and we understand the neuronal
codes that are likely capable of supporting core recognition (~50 ms rate codes over
populations of tolerant IT neurons). We also understand that the iteration of a basic class of
largely feedforward functional units (NLN models configured as alternating patterns of
AND-like and OR-like operations) can produce patterns of representations that approximate
IT neuronal responses, produce respectable performance in computer vision tests of object
recognition, and even approach some aspects of human performance. So what prevents us
from declaring victory?

Problem 1. We must fortify intermediate levels of abstraction
At an elemental level, we have respectable models (e.g. NLN class; Heeger et al., 1996;
Kouh and Poggio, 2008) of how each single unit computes its firing rate output from its
inputs. However, we are missing a clear level of abstraction and linking hypotheses that can
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connect mechanistic, NLN-like models to the resulting data reformatting that takes place in
large neuronal populations (Fig. 5).

We argue that an iterative, canonical population processing motif provides a useful
intermediate level of abstraction. The proposed canonical processing motif is intermediate in
its physical instantiation (Fig. 5). Unlike NLN models, the canonical processing motif is a
multi-input, multi-output circuit, with multiple afferents to layer 4 and multiple efferents
from layer 2/3 and where the number of outputs is approximately the same as the number of
inputs, thereby preserving the dimensionality of the local representation. We postulate the
physical size of this motif to be ~500 um in diameter (~40K neurons), with ~10K input
axons and ~10K output axons. This approximates the “cortical module” of Mountcastle
(1997), and the “hypercolumn” of Hubel and Wiesel (1974), but is much larger than
“ontogenetic microcolumns” suggested by neurodevelopment (Rakic, 1988) and the basic
“canonical cortical circuit” (Douglas and Martin, 1991). The hypothesized sub-population of
neurons is also intermediate in its algorithmic complexity. That is, unlike single NLN-like
neurons, appropriately configured populations of (~10K) NLN-like neurons can, together,
work on the type of population transformation that must be solved, but they cannot perform
the task of the entire ventral stream. We propose that each processing motif has the same
functional goal with respect to the patterns of activity arriving at its small input window; that
is to use normalization architecture and unsupervised learning to factorize identity-
preserving variables (e.g., position, scale, pose) from other variation (i.e., changes in object
identity) in its input basis. As described above, we term this intermediate level processing
motif “cortically local subspace untangling.”

We must fortify this intermediate level of abstraction and determine if it provides the
missing link. The next steps include: 1) We need to formally define “subspace untangling”.
Operationally, we mean that object identity will be easier to linearly decode on the output
space than the input space, and we have some recent progress in that direction (Rust and
DiCarlo, 2010). 2) We need to design and test algorithms that can qualitatively learn to
produce the local untangling described in (1) and see if they also quantitatively produce the
input-output performance of the ventral stream when arranged laterally (within an area) and
vertically (across a stack of areas). There are a number of promising candidate ideas and
algorithmic classes to consider (e.g. Hinton and Salakhutdinov, 2006; Olshausen and Field,
2004; Wiskott and Sejnowski, 2002). 3) We need to show how NLN-like models can be
used to implement the learning algorithm in (2). In sum, we need to understand the
relationship between intermediate-complexity algorithmic forms (e.g., filters with firing
thresholds, normalization, competition, and unsupervised, time-driven associative learning)
and manifold untangling (Fig. 2), as instantiated in local networks of ~40K cortical neurons.

Problem 2. The algorithmic solution lives in a very, very large space of “details”
We are not the first to propose a repeated cortical processing motif as an important
intermediate abstraction. Indeed, some computational models adopt the notion of common
processing motif, and make the same argument we reiterate here -- that an iterated
application of a sub-algorithm is the correct way to think about the entire ventral stream
(e.g., Fukushima, 1980; Kouh and Poggio, 2008; Riesenhuber and Poggio, 1999b; Serre et
al., 2007a; see Fig. 6). However, no specific algorithm has yet achieved the performance of
humans or explained the population behavior of IT (Pinto et al., 2011; Pinto et al., 2010).

The reason is that, while neuroscience has pointed to properties of the ventral stream that are
likely critical to building explicit object representation (outlined above), there are many
possible ways to instantiate such ideas as specific algorithms. For example, there are many
possible ways to implement a series of AND-like operators followed by a series of OR-like
operators, and it turns out that these details matter tremendously to the success or failure of
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the resulting algorithm, both for recognition performance and for explaining neuronal data.
Thus, these are not “details” of the problem -- understanding them is the problem.

Our proposal to solve this problem is to switch from inductive-style empirical science
(where new neuronal data are used to motivate a new “word” model) to a systematic,
quantitative search through the large class of possible algorithms, using experimental data to
guide that search. In practice, we need to work in smaller algorithm spaces that use a
reasonable number of meta-parameters to control a very large number of (e.g.) NLN-like
parameters (see Section 3). For example, models that assume unsupervised learning use a
small number of learning parameters to control a very large number of synaptic weight
parameters (e.g. Bengio et al., 1995; Pinto et al., 2009; Serre et al., 2007b), which is one
reason that neuronal evidence of unsupervised tolerance learning is of great interest to us
(Section 3).

Exploration of these very large algorithmic classes is still in its infancy. However, we and
our collaborators recently used rapidly advancing computing power to build many thousands
of algorithms, in which a very large set of operating parameters was learned (unsupervised)
from naturalistic video (Pinto et al., 2009). Optimized tests of object recognition (Pinto et
al., 2008a) were then used to screen for the best algorithms. The resulting algorithms
exceeded the performance of state-of-the-art computer vision models that had been carefully
constructed over many years (Pinto et al., 2009). These very large, instantiated algorithm
spaces are now being used to design large-scale neurophysiological recording experiments
that aim to winnow out progressively more accurate models of the ventral visual stream.

Problem 3. We lack a systematic, operational definition of success
Although great strides have been made in biologically inspired vision algorithms (e.g.
Hinton and Salakhutdinov, 2006; Lecun et al., 2004; Riesenhuber and Poggio, 1999b; Serre
et al., 2007b; Ullman and Bart, 2004), the distance between human and computational
algorithm performance remains poorly understood because there is little agreement on what
the benchmarks should be. For example, one promising object recognition algorithm is
competitive with humans under short presentations (20 ms) and backward-masked
conditions, but its performance is still far below unfettered, 200 ms human core recognition
performance (Serre et al., 2007a). How can we ask if an instantiated theory of primate object
recognition is correct if we do not have an agreed upon definition of what “object
recognition” is? Although we have given a loose definition (Section 1), a practical definition
that can drive progress must operationally boil down to a strategy for generating sets of
visual images or movies and defined tasks that can be measured in behavior, neuronal
populations, and bio-inspired algorithms. This is easier said than done, as such tests must
consider psychophysics, neuroscience, and computer vision; even supposed “natural, real-
world” object recognition benchmarks do not easily distinguish between “state-of-the-art”
computer vision algorithms and the algorithms that neuroscientists consider to be equivalent
to a “null” model (e.g., performance of a crude model V1 population; Pinto et al.,2008b).
Possible paths forward on the problem of benchmark tasks are outlined elsewhere (Pinto et
al., 2008c), and the next steps require extensive psychophysical testing on those tasks to
systematically characterize human abilities (e.g. Pinto et al., 2010; Majaj et al., 2012).

Problem 4. Synergies among the relevant domains of expertise must be nurtured
At a sociological level, progress has been challenged by the fact that the three most relevant
research communities have historically been incentivized to focus on different objectives.
Neuroscientists have focused on the problem of explaining the responses of individual
neurons (e.g., Brincat and Connor, 2004; David et al., 2006) or mapping the locations of
those neurons in the brain (e.g. Tsao et al., 2003), and using neuronal data to find algorithms
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that explain human recognition performance has been only a hoped-for, but distant future
outcome. For computer vision scientists that build object recognition algorithms, publication
forces do not incentivize pointing out limitations or comparisons with older, simpler
alternative algorithms. Moreover, the space of alternative algorithms is vague because
industrial algorithms are not typically published, “new” object recognition algorithms from
the academic community appear every few months, and there is little incentive to produce
algorithms as downloadable, well documented code. Visual psychophysicists have
traditionally worked in highly restricted stimulus domains and tasks that are thought to
provide cleaner inference about the internal workings of the visual system. There is little
incentive to systematically benchmark real-world object recognition performance for
consumption by computational or experimental laboratories.

Fortunately, we are seeing increasing calls for meaningful collaboration by funding
agencies, and collaborative groups are now working on all three pieces of the problem: 1)
collecting the relevant psychophysical data, 2) collecting the relevant neuroscience data, and
3) putting together large numbers of alternative, instantiated computational models
(algorithms) that work on real images (e.g., Cadieu et al., 2007; Zoccolan et al., 2007; Pinto
et al., 2009; Pinto et al., 2010; Majaj et al., 2012).

Conclusion
We do not yet fully know how the brain solves object recognition. The first step is to clearly
define the question itself. “Core object recognition,” the ability to rapidly recognize objects
in the central visual field in the face of image variation, is a problem that, if solved, will be
the cornerstone for understanding biological object recognition. Although systematic
characterizations of behavior are still ongoing, the brain has already revealed its likely
solution to this problem in the spiking patterns of IT populations. Human-like levels of
performance do not appear to require extensive recurrent communication, attention, task
dependency or complex coding schemes that incorporate precise spike timing or synchrony.
Instead, experimental and theoretical results remain consistent with this parsimonious
hypothesis: a largely feedforward, reflexively computed, cascaded scheme in which visual
information is gradually transformed and re-transmitted via a firing rate code along the
ventral visual pathway, and presented for easy downstream consumption (i.e., simple
weighted sums read out from the distributed population response).

To understand how the brain computes this solution, we must consider the problem at
different levels of abstraction and the links between those levels. At the neuronal population
level, the population activity patterns in early sensory structures that correspond to different
objects are tangled together, but they are gradually untangled as information is re-
represented along the ventral stream and in IT. At the single-unit level, this untangled IT
object representation results from IT neurons that have some tolerance (rather than
invariance) to identity-preserving transformations -- a property that neurons at earlier stages
do not share, but that increases gradually along the ventral stream.

Understanding “how” the ventral pathway achieves this requires that we define one or more
levels of abstraction between full cortical area populations and single neurons. For example,
we hypothesize that canonical sub-networks of ~40K neurons form a basic “building block”
for visual computation, and that each such sub-network has the same meta function. Even if
this framework ultimately proves to be correct, it can only be shown by getting the many
interacting “details” correct. Thus, progress will result from two synergistic lines of work.
One line will use high-throughput computer simulations to systematically explore the very
large space of possible sub-network algorithms, implementing each possibility as a
cascaded, full scale algorithm, and measuring performance in carefully considered
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benchmark object recognition tasks. A second line will used rapidly expanding systems
neurophysiological data volumes and psychophysical performance measurements to sift
through those algorithms for those that best explain the experimental data. Put simply, we
must synergize the fields of psychophysics, systems neuroscience and computer vision
around the problem of object recognition. Fortunately, the foundations and tools are now
available to make it so.
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Figure 1. Core object recognition
is the ability to rapidly (<200 ms viewing duration) discriminate a given visual object (e.g., a
car, top row) from all other possible visual objects (e.g. bottom row) without any object-
specific or location-specific pre-cuing (e.g. (DiCarlo and Cox, 2007). Primates perform this
task remarkably well, even in the face of identity-preserving transformations (e.g., changes
in object position, size, viewpoint, and visual context).
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Figure 2. Untangling object representations
(A) The response pattern of a population of visual neurons (e.g., retinal ganglion cells) to
each image (three images shown) is a point in a very high dimensional space where each
axis is the response level of each neuron. (B) All possible identity-preserving
transformations of an object will form a low-dimensional manifold of points in the
population vector space, i.e., a continuous surface (represented here, for simplicity, as a one-
dimensional trajectory; see red and blue lines). Neuronal populations in early visual areas
(retinal ganglion cells, LGN, V1) contain object identity manifolds that are highly curved
and tangled together (see red and blue manifolds in left panel). The solution to the
recognition problem is conceptualized as a series of successive re-representations along the
ventral stream (black arrow) to a new population representation (IT) that allows easy
separation of one namable object’s manifold (e.g., a car; see red manifold) from all other
object identity manifolds (of which the blue manifold is just one example). Geometrically,
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this amounts to remapping the visual images so that the resulting object manifolds can be
separated by a simple weighted summation rule (i.e. a hyperplane, see black dashed line; see
(DiCarlo and Cox, 2007). (C) The vast majority of naturally experienced images are not
accompanied with labels (e.g. “car”, “plane”), and are thus shown as black points. However,
images arising from the same source (e.g. edge, object) tend to be nearby in time (gray
arrows). Recent evidence shows the ventral stream uses that implicit temporal contiguity
instruction to build IT neuronal tolerance, and we speculate that this is due to an
unsupervised learning strategy termed cortical local subspace untangling (see text). Note
that, under this hypothetical strategy, “shape coding” is not the explicit goal -- instead,
“shape” information emerges as the residual natural image variation that is not specified by
naturally occurring temporal contiguity cues.
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Figure 3. The ventral visual pathway
(A) Ventral stream cortical area locations in the macaque monkey brain, and flow of visual
information from the retina. (B) Each area is plotted so that its size is proportional to its
cortical surface area (Felleman and Van Essen, 1991). Approximate total number of neuron
(both hemispheres) is shown in the corner of each area (M = million). The approximate
dimensionality of each representation (number of projection neurons) is shown above each
area, based on neuronal densities (Collins et al., 2010), layer 2/3 neuronal fraction (O’Kusky
and Colonnier, 1982), and portion (color) dedicated to processing the central 10 deg of the
visual field (Brewer et al., 2002). Approximate median response latency is listed on the right
(Nowak and Bullier, 1997; Schmolesky et al., 1998).
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Figure 4. IT single unit properties and their relationship to population performance
(A) Post stimulus spike histogram from an example IT neuron to one object image (a chair)
that was the most effective among 213 tested object images (Zoccolan et al., 2007). (B) Left:
The mean responses of the same IT neuron to each of 213 object images (based on spike rate
in the gray time window in A). Object images are ranked according to their effectiveness in
driving the neuron. As is typical, the neuron responded strongly to ~10% of objects images
(four example images of nearly equal effectiveness are shown) and was suppressed below
background rate by other objects (two example images shown), with no obvious indication
of what critical features triggered or suppressed its firing. Colors indicate highly-effective
(red), medium-effective (blue) and poorly-effective (green) images. Right: Data from a
second study (new IT neuron) using natural images patches to illustrate the same point (Rust
and DiCarlo, unpublished). (C) Response profiles from an example IT neuron obtained by
varying the position (elevation) of three objects with high (red), medium (blue), and (low)
effectiveness. While response magnitude is not preserved, the rank-order object identity
preference is maintained along the entire tested range of tested positions. (D) To explain
data in C, each IT neuron (right panel) is conceptualized as having joint, separable tuning for
shape (identity) variables and for identity-preserving variables (e.g. position). If a population
of such IT neurons tiles that space of variables (left panel), the resulting population
representation conveys untangled object identity manifolds (Fig. 2B, right), while still
conveying information about other variables such as position, size, etc. (Li et al., 2009). (E)
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Direct tests of untangled object identity manifolds consist of using simple decoders (e.g.
linear classifiers) to measure the cross-validated population performance on categorization
tasks (adapted from (Hung et al., 2005; Rust and DiCarlo, 2010). Performance magnitude
approaches ceiling level with only a few hundred neurons (left panel), and the same
population decode gives nearly perfect generalization across moderate changes in position
(1.5 deg and 3 deg shifts), scale (0.5x/2x and 0.33x/3x), and context (right panel), which is
consistent with previous work (Hung et al., 2005); right bar) and with the simulations in (D).
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Figure 5. Abstraction layers and their potential links
Here we highlight four potential abstraction layers (organized by anatomical spatial scale),
and the approximate number of inputs, outputs, and elemental sub-units at each level of
abstraction (M=million, K= thousand). We suggest possible computational goals (what is
the “job” of each level of abstraction?), algorithmic strategies (how might it carry out that
job?), and transfer function elements (mathematical forms to implement the algorithm). We
raise the possibility (gray arrow) that local cortical networks termed “subspace untanglers”
are a useful level of abstraction to connect math that captures the transfer functions emulated
by cortical circuits (right most panel), to the most elemental type of population
transformation needed to build good object representation (see Fig. 2C), and ultimately to
full untangling of object identity manifolds (as hypothesized here).
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Figure 6. Serial-chain discriminative models of object recognition
A class of biologically-inspired models of object recognition aims to achieve a gradual
untangling of object manifolds by stacking layers of neuronal units in a largely feedforward
hierarchy. In this example, units in each layer process their inputs using either AND-like
(see red units) and OR-like (e.g. “MAX”, see blue units) operations, and those operations
are applied in parallel in alternating layers. The AND-like operation constructs some tuning
for combinations of visual features (e.g. simple cells in V1), and the OR-like operation
constructs some tolerance to changes in (e.g.) position and size by pooling over AND-like
units with identical feature tuning, but having receptive fields with slightly different retinal
locations and sizes. This can produce a gradual increase of the tolerance to variation in
object appearance along the hierarchy (e.g. (Fukushima, 1980; Riesenhuber and Poggio,
1999b; Serre et al., 2007a). AND-like operations and OR-like operations can each be
formulated (Kouh and Poggio, 2008) as a variant of a standard LN neuronal model with
nonlinear gain control mechanisms (e.g. a type of NLN model, see dashed frame).
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