Skip to main content
. Author manuscript; available in PMC: 2013 Mar 16.
Published in final edited form as: Org Lett. 2012 Feb 28;14(6):1640–1643. doi: 10.1021/ol300428q

Table 1.

Optimization and control studies.a

entry catalyst (mol%) O2 concn (M) temp (°C) yield (3/4)b
1c Ru(bpz)3(PF6)2 (5) 1 atm 0.1 23 29%/30%
2c Ru(bpz)3(PF6)2 (5) 3 atm 0.1 23 22%/35%
3c Ru(bpz)3(PF6)2 (5) 4 atm 0.1 23 16%/44%
4c Ru(bpz)3(PF6)2 (5) 4 atm 0.05 23 16%/49%
5 Ru(bpz)3(PF6)2 (5) 4 atm 0.02 23 11%/77%
6 Ru(bpz)3(PF6)2 (5) 4 atm 0.02 5 <5%/79%
7 Ru(bpz)3(PF6)2 (0.5) 4 atm 0.02 5 <5%/75%d
8 Ru(bpy)3(PF6)2 (0.5) 4 atm 0.02 5 <5%/<5%
9 tetraphenylporphyrin (5) 4 atm 0.02 5 <5%/<5%
10 9,10-dicyanoanthracene (5) 4 atm 0.02 5 <5%/<5%
11 triphenylpyrylium•BF4 (5) 4 atm 0.02 5 <5%/20%
a

Reactions were conducted in a 135 mL glass pressure vessel and irradiated for 30 min with a 200 W incandescent light bulb unless otherwise noted.

b

Yields determined by 1H NMR spectroscopy using an internal standard, unless noted.

c

Irradiated for 2 h.

d

Isolated yield.