
k-neighborhood Decentralization: A Comprehensive Solution to
Index the UMLS for Large Scale Knowledge Discovery

Yang Xianga,*, Kewei Lub, Stephen L. Jamesa, Tara B. Borlawskya, Kun Huanga,c,**, and
Philip R.O. Paynea,c

aDepartment of Biomedical Informatics, The Ohio State University, Columbus, OH 43210
bDepartment of Computer Science and Engineering, The Ohio State University, Columbus, OH
43210
cOSUCCC Biomedical Informatics Shared Resource, The Ohio State University, Columbus, OH
43210

Abstract
The Unified Medical Language System (UMLS) is the largest thesaurus in the biomedical
informatics domain. Previous works have shown that knowledge constructs comprised of
transitively-associated UMLS concepts are effective for discovering potentially novel biomedical
hypotheses. However, the extremely large size of the UMLS becomes a major challenge for these
applications. To address this problem, we designed a k-neighborhood Decentralization Labeling
Scheme (kDLS) for the UMLS, and the corresponding method to effectively evaluate the kDLS
indexing results. kDLS provides a comprehensive solution for indexing the UMLS for very
efficient large scale knowledge discovery. We demonstrated that it is highly effective to use kDLS
paths to prioritize disease-gene relations across the whole genome, with extremely high fold-
enrichment values. To our knowledge, this is the first indexing scheme capable of supporting
efficient large scale knowledge discovery on the UMLS as a whole. Our expectation is that kDLS
will become a vital engine for retrieving information and generating hypotheses from the UMLS
for future medical informatics applications.

Keywords
UMLS; Knowledge Discovery; Graph Database; disease gene prioritization; fold enrichment

1. Introduction
The Unified Medical Language System®(UMLS®) [1] is a comprehensive collection of
concepts and their relationships in biomedical science. It includes many important sources
such as NCI Thesaurus [2], OMIM [3], SNOMED CT [4], etc. By searching the UMLS
Metathesaurus®, users can find detailed information on a variety of controlled vocabularies
in biomedical science. The UMLS uses semantic relations to mark the available links
between two concepts.

© 2011 Elsevier Inc. All rights reserved.
*Corresponding author. yxiang@bmi.osu.edu (Yang Xiang). **Corresponding author. kun.huang@osumc.edu (Kun Huang).
Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
J Biomed Inform. Author manuscript; available in PMC 2013 April 1.

Published in final edited form as:
J Biomed Inform. 2012 April ; 45(2): 323–336. doi:10.1016/j.jbi.2011.11.012.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Recently, Payne et al. [5, 6, 7] showed that in addition to the available links, the transitive
links in the UMLS are valuable sources of knowledge. A transitive link is a consecutive
order of links connecting a starting concept to an ending concept via one or more middle
concepts in the UMLS. If a transitive link connects two concepts in a meaningful matter, it
is regarded as a Conceptual Knowledge Construct (CKC) in [5, 6, 7]. By mining CKCs from
a small subset of UMLS, Payne et al. [5, 6, 7] found semantically meaningful results that are
confirmed by subject matter experts as hypotheses for Chronic Lymphocytic Leukemia
(CLL) research.

However, due to the extremely large size of the UMLS, CKC mining has to be limited
within transitive links containing no more than 5 concepts (i.e., no more than 4 consecutive
links), and the search is limited to a very small number of data sources in the UMLS [5].
The results, however, are far from complete, as they are obtained from searching a very
small portion of the UMLS. Furthermore and because of the extremely bulky size of the
UMLS, none of the current methods can produce an efficient indexing scheme for
knowledge discovery on the UMLS without setting similar major limits.

To answer the challenge of efficiently indexing the extremely large UMLS to explore the
rich knowledge in it, in this paper we propose a k-neighborhood Decentralizing Labeling
Scheme (kDLS), a graph labeling scheme tailored for indexing the UMLS under any source
configurations 1 for efficient knowledge discovery. kDLS can efficiently search a large
portion (6-neighborhood) of the UMLS with full data source configuration on servers with
moderate memory space (≈22GB) and make it possible to search the whole UMLS
(unlimited-neighborhood) with full data source configuration on servers with reasonably
large memory space (≈209GB), although the latter may not be necessary in most cases. The
kDLS running time is decreased by several orders of magnitude, according to the measures
reported in Section 3 of this manuscript, as compared with current Breadth-First Search and
Depth-First Search methods.

More importantly, kDLS can produce various granularities of information from the UMLS,
to efficiently answer reachability, distance, and shortest path queries. In addition to
providing efficient solutions to these traditional queries, kDLS is able to construct a set of
paths that represents the relationship between two concepts. Furthermore, the number of
these representative paths can be estimated without actually constructing them. This nice
feature makes the kDLS particularly suitable for large scale knowledge discovery between
two sets of biomedical concepts, e.g. between genes and diseases. Our study on large scale
knowledge discovery for gene-disease relations demonstrates the efficiency and
effectiveness of kDLS.

In summary, kDLS provides a complete solution to index the whole UMLS for large scale
knowledge discovery, and we expect that kDLS or its derivations will become key
knowledge discovery engines for future biomedical informatics applications.

1.1. UMLS Basic Facts
The UMLS generally consists of three parts: Metathesaurus, Semantic Network, and
SPECIALIST Lexicon and Lexical Tools.

The Metathesaurus is the primary part of the UMLS. It is formed by concepts from various
sources and the relationships between concepts. The UMLS uses CUIs (Concept Unique
Identifiers) to uniquely identify concepts across different data sources. Each CUI is also

1The UMLS studied in this work is the UMLS2011AA. Results reported in this work are based on the data downloaded from the
UMLS website on August 08, 2011.

Xiang et al. Page 2

J Biomed Inform. Author manuscript; available in PMC 2013 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

categorized by at least one semantic type. We have observed 133 semantic types in the
UMLS 2011AA.

The Semantic Network is a collection of information related to semantic types which
categorize CUIs, and semantic relations which are used to mark the relationship between
two CUIs. The semantic network does not actually record the detailed relationships between
CUIs and it is very small in size.2 It is the Metathesaurus which actually records the detailed
relationships between concepts that can be used to build a graph for our study.

The SPECIALIST Lexicon and Lexical Tools facilitate the study of the UMLS concepts
with additional syntactic information such as form and spelling.

In this work, we used the UMLS Metathesaurus for indexing and knowledge discovery. To
be specific, we used concepts in the Metathesaurus by CUIs as recorded in the source file
“MRCONSO.RRF”, and their semantic types as recorded in the source file “MRSTY.RRF”,
and we studied relationships between CUIs as recorded in the source file “MRREL.RRF”.
To avoid confusion, in this paper we refer to the relation connecting a CUI a to another CUI
b in the “MRREL.RRF” file a link from a to b. We call the aggregation of all such links the
concept network of the UMLS. Each link is marked by a semantic relation. We have
observed 591 semantic relations in the UMLS 2011AA.

The UMLS contains various sources that are available for selection upon its installation.3
The default installation typically includes data sources marked as level 0. The UMLS
installation menu also suggests “level 0 + SNOMEDCT” as another installation option. To
make our paper complete, we evaluated three typical data source configurations, i.e., UMLS
with level 0 data sources, UMLS with level 0 + SNOMEDCT data sources, and UMLS with
full data sources, for most of our studies. The data source configuration determines the
contents of the three source files: “MRCONSO.RRF”, “MRSTY.RRF”, and
“MRREL.RRF”. Some essential details of the UMLS corresponding to different data source
configurations are listed in Table 1.

1.2. Basic Definitions
In this section we define a number of terms used in this work. Basic graph theory terms: A
graph G = (V, E) consists of a vertex set V and an edge set E. The graph G studied in this
work is a directed graph without self-loops (i.e., edges connecting a vertex to itself). e ∈ E, e
= (a, b) denotes an edge e connecting vertex a to vertex b. A path P is a vertex sequence
such that there is an edge e ∈ E connecting each vertex (other than the ending vertex) to the
next vertex in P. A simple path is a path without repeating vertices. The length of a path P is
the number of vertices in its vertex sequence minus 1. The distance from vertex a to vertex b
in G, denoted as dG(a, b), is the length of a shortest path connecting a to b. A vertex’s in-
degree is the number of edges ending at this vertex. A vertex’s out-degree is the number of
edges starting at this vertex. A vertex’s degree is the sum of its in-degree and out-degree.

Definition 1. (UMLS Graph)—A UMLS Graph is a directed graph G = (V, E) built upon
the UMLS Metathesaurus in the following way: A CUI in the Metathesaurus corresponds to
a vertex v ∈ V if and only if the CUI appears in the concept network. There exists an edge e
= (a, b), e ∈ E, if and only if there exists in the concept network at least one link l
connecting the CUI corresponding to vertex a, to the CUI corresponding to vertex b (b ≠ a),
such that the CUI corresponding to vertex a and the CUI corresponding to vertex b are not

2The Semantic Network folder (NET) is less than 1 MB for UMLS 2011AA installed with full data source configuration.
3Users are required to follow the UMLS Metathesaurus License Agreement which has specific restrictions for some of the data
sources.

Xiang et al. Page 3

J Biomed Inform. Author manuscript; available in PMC 2013 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

categorized in any restricted semantic types, and the semantic relation marking link l is not
restricted.

The concept network does not include all CUIs in the Metathesaurus. That is, there are some
CUIs without any links to or from other CUIs. For those CUIs not included in the concept
network, they do not connect directly or indirectly to any other concepts. Thus we do not
include them in the UMLS graph as defined in Definition 1 to simplify our computation.

Although there may exist more than one link connecting a CUI (let it correspond to vertex a)
to another CUI (let it correspond to vertex b) in the concept network, at most one edge e =
(a, b), e ∈ E, will be built in the UMLS graph to correspond to all these links. Thus, we
conclude that the UMLS graph G is free of repeating edges as well as self-loops (i.e., edges
connecting a vertex to itself). However, it is necessary to point out that cycles (i.e. a path
starting and ending at the same vertex) are widely available in the UMLS graph G, and we
properly handled them in this work.

The restriction on semantic types and semantic relations is an option (called semantic
restriction in the following) provided in our method. Users can choose to set up the semantic
restriction to reduce less-informative paths from the knowledge discovery results for their
specific applications. There is no semantic restriction by default. Thus a UMLS graph is
determined by both the data source configuration which controls the Metathesaurus, and the
optional semantic restriction set up by the users.

The basic characters of the three UMLS graphs with respect to three different data source
configurations (no semantic restrictions) are listed in Table 1. The three UMLS graphs will
be studied from Section 2 to Section 3.1.

2. Methods
As listed in Table 1, the UMLS graphs with respect to three typical data source
configurations are very large and dense. To our knowledge, no available graph database
indexing schemes have demonstrated the capacity to handle them for efficiently answering
distance and path queries for knowledge discovery. Nevertheless, they are quite different
from “random graphs” which are targeted by some available indexing schemes. In contrast,
we find that the three UMLS graphs exhibit a clear power-law property on their cumulative
vertex degree distributions as shown in Figure 1. From Figure 1 we can see that in any of the
three UMLS graphs, there are only hundreds of vertices with a degree 1,000 or larger, and
there are less than 10 vertices with a degree larger than 100,000.

Given the power-law nature of the UMLS graphs, we propose to index them with a flow
chart as in Figure 2. The definition for a UMLS graph is introduced in Section 1.2. Its
construction follows the definition and is considered as a preprocess step in the index
construction. The main part of the index construction is decentralization, whose details are
discussed in Sections 2.1 to 2.3.

2.1. The general process of decentralization
Taking the sizes of the three UMLS graphs into consideration, any successful method must
be highly scalable. Under this philosophy, we avoid the time-costly approaches to label
vertices by constructing densest subgraphs [8, 9, 10, 11], and we also avoid the rigid and
costly approach of finding a graph separator for each iteration [12]. Instead, we fully utilize
the power-law nature of the UMLS graphs through decentralization. Decentralization is a
term used in this work to describe the general process of removing a node and broadcasting
its information to others in the UMLS graph.

Xiang et al. Page 4

J Biomed Inform. Author manuscript; available in PMC 2013 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 3 is an example of decentralizing a vertex by kDLS. The information about the
removed black vertex will be decentralized to other vertices in the graph. In Figure 3, red
vertices will remember how to reach the removed black vertex, and the green vertices will
remember how to be reached by the black vertex, and the blue vertices remember both ways.
It is easy to see that the decentralization can be implemented by a BFS (Breath-First Search)
broadcast procedure.

In fact, it is not necessary to broadcast the removal information to every corner of the UMLS
graph, if we are primarily interested in concepts that are not too far away. This is further
justified by the “small world phenomenon” observations as shown in Figures 4 and 5.

Figure 4 shows the percentage of distances among the reachable cases of 10,000 random
distance queries on the UMLS graphs. In all three UMLS graphs, we found that in a
majority of cases distances are 6 or less, and in most cases, distances are no more than 10.

Further, in Figure 5, we report the average fraction of vertices in the k-neighborhood of a
vertex among 10,000 random tests. A vertex a is in the k-neighborhood of another vertex b
(or we say a and b are within k hops) if and only if dG(a, b) ≤ k or dG(b, a) ≤ k. From this
Figure, we can observe that in all three UMLS graphs, the 6-neighborhood of a vertex on
average contains a majority of vertices (> 60.0%), and the 10-neighborhood of a vertex on
average contains most vertices according to the random tests. (Note that even if we set k to
be infinite, a vertex’s k-neighborhood may not cover all vertices.) Thus, users can configure
the broadcast range of kDLS by referring to Figure 4 and Figure 5 taking into consideration
their needs and, also their computer memory capacities (see Figure 10 in the following).

2.2. Optional handling for sink and source vertices to reduce label sizes
A sink vertex is a vertex in a UMLS graph with a large number of incoming edges but no
outgoing edges. In contrast, a source vertex is a vertex in a UMLS graph with a large
number of outgoing edges but no incoming edges. We have found in our applications that
these sinks or sources are often general or abstract concepts that are less likely to be queried.
Thus we provide an option to further reduce label size by decentralizing the sink or source
vertices first without broadcasting (consequently, there will be no records for them in any
labels). The correctness of answering a query involving no sink or source vertices is clearly
unaffected according to the query details described in Section 2.4. In the case that a query
involves a source vertex or a sink vertex, a Breadth-First Search limited to k-neighborhood
can be used to complete the answer, and it is not difficult to see that the Breadth-First Search
will return the same result as “decentralizing the sink and source vertices first with
broadcasting” does.

2.3. Compact label formats of kDLS
Designing compact label formats for kDLS is a key technique for obtaining a compact index
size. In this section we will introduce the label formats used in this work.

2.3.1. A basic three-tuple compact format—First, we can observe that a three-tuple
record is enough to hold the information a vertex receives from decentralizing. For example,
in Figure 3, the information c receives from decentralizing the node a, is a from-record
containing three tuples “From a; via d; Distance 2”, and the information h receives from
decentralizing the vertex a is a to-record “To a; via g; Distance 2”.

The first tuple is a vertex id for which 3 bytes (24 bit) is sufficient to represent (up to 16
million vertices). The last tuple is the distance. According to Figure 4, most of the distances

Xiang et al. Page 5

J Biomed Inform. Author manuscript; available in PMC 2013 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

are no more than 10, thus focusing on distances no more than 255 or even 15 (using 1 byte)
would be sufficient for most UMLS applications.

It is somewhat tricky to handle the second tuple. Instead of using 3 bytes to record the via-
neighbor vertex, we use only 2 bytes to record the port number. A port number is an offset
of the neighbor vertex in the vertex adjacent list (in-list or out-list). However, in our study
we observed vertices with degree larger than 65, 535 * 2, which implies that either in-list or
our-list (or both) exceeds 65, 535, a number that 2-byte is insufficient to represent. This
problem can be solved by observing the power-law property of the cumulative vertex degree
distributions of the UMLS graphs as shown in Figure 1. There are only a very limited
number of vertices with degree larger than 10, 000 even in the UMLS graph of full data
source configuration, which implies that the number of vertices with in-list or our-list
exceeding 65, 535 is very limited in a UMLS graph. If the power-law property holds for the
future UMLS graphs (we conjecture it is highly likely), then we can still expect the number
to be small. Thus, we propose to use only 0 – 65, 534 to represent port number, and use 65,
535 as a code of port number overflow. When we encounter a port number larger than or
equal to 65, 535 during decentralization, we fill the second tuple with 65, 535, and save the
large port number along with other identifiable numbers, in an overflow container so that the
large port number can be easily retrieved in a query process. Since there are only a very
limited number of vertices with degree larger than 65, 535 in a UMLS graph, we conclude
that the overflow container size is very limited even if we use an integer (usually 4-byte) to
represent each number in it.

Thus, a vertex only uses 3+2+1=6 bytes (even smaller than the size of an 8-byte long
integer) to record the information to or from a decentralized vertex.

2.3.2. Achieving a further compact format by combining from-record with to-
record—A vertex may receive a from-record and a to-record from the same neighbor with
respect to a decentralizing vertex. To design a compact label format for these cases, we
combine both records into one to reduce the label size. For example, in Figure 3, the
information w received from decentralizing the node a, is a from-record “From a; via m;
Distance 2” and a to-record “To a; via m; Distance 2”. The two records can be combined
into one as “From and To a; via m; Distance 2, 2”. This is implementable if we organize an
undirected adjacent list of each vertex such that each neighbor corresponds to a single offset
regardless of whether the neighbor is linked to the vertex or from the vertex or both. The
first tuple still takes 3 bytes, and the second tuple still takes 2 bytes by using the technique
discussed in Section 2.3.1. Since 15 hops is enough for most UMLS applications, we still
use 1 byte for the last tuple by splitting the upper 4 bits for “From” distance and the lower 4
bits for “To” distance.

Even when a vertex receives a from-record and a to-record from two different neighbors
with respect to a decentralizing vertex, we can still achieve a significant label saving by
combining the from-record with the to-record. For example, in Figure 3, the information b
received from decentralizing the node a, is a from-record “From a; via c; Distance 3” and a
to-record “To a; via u; Distance 2”. The two records can be combined into one as “From
and To a; via c, u; Distance 3, 2”. The first tuple still takes 3 bytes. The second tuple takes
4 bytes because we need to record two port numbers. We again use 1 byte for the last tuple
by splitting the upper 4 bits for “From” distance and the lower 4 bits for “To” distance.

Thus after the decentralization process, we will obtain four label lists plus a port number
overflow container. The four label lists are: from-only list, to-only list, from-and-to-via-
same-port list, and from-and-to-via-different-port list. Utilizing these labels, kDLS is ready

Xiang et al. Page 6

J Biomed Inform. Author manuscript; available in PMC 2013 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

to handle various queries and knowledge discovery applications. The nice properties of
kDLS make the large scale knowledge discovery possible, as discussed in Section 2.5.

Finally, when an application involves distances more than 15, we can design a compact label
format by differentiating the cases where the from-record and to-record pairs share the same
distance, with the cases where they do not. Similarly, we will save a record in a list
according to the bytes needed by its distance tuple. This will result in more than four label
lists but the number of lists will still be manageable. For the succinctness of the paper, we
omit the details as they are simple extensions of the previously-discussed techniques.

2.4. Queries supported by kDLS
The query procedure is similar to 2-hop [9, 10, 11], which compares the labels of two query
vertices. However, we are not only interested in the distance and one shortest path, but also
all paths that can be found by comparing the kDLS labels of two vertices. The kDLS labels
are obtained through the flow chart in Figure 2, whose details are discussed in previous
sections.

In the following, a kDLS path between two vertices refers to a path that is identified by
comparing the labels (obtained by kDLS) of the two vertices. If sink and source vertices are
handled according to Section 2.2, then the kDLS path connecting a sink or source vertex to
another vertex refers to the shortest path that can be found by a Breadth-First search limited
to k-neighborhood. A kDLS simple path refers to a kDLS path without repeating vertices.
The main queries from vertex x to vertex y, as supported by kDLS, are listed as follows.

1. The reachability from x to y.

2. The total number of kDLS paths from x to y.

3. The total number of kDLS simple paths from x to y.

4. The distance from x to y.

5. The total number of shortest kDLS paths from x to y.

6. A shortest path from x to y.

7. All shortest kDLS paths from x to y.

8. All kDLS paths from x to y.

9. All kDLS simple paths from x to y.

Upon receiving a query request from vertex x to vertex y, we reorganize the entries of x on
the label lists (as discussed in Section 2.3) into a to-list and the entries of y on the label lists
into a from-list. To facilitate query processing, the to-list includes x as a decentralized vertex
with distance being 0, and the from-list includes y as a decentralized vertex with distance
being 0. Records in the to-list and from-list are in the order of decentralized vertex IDs.
Thus, a linear-time comparison between two labels of the two query vertices can answer
queries (1)(2)(4)(5). It is easy to see a first match of a decentralized vertex ID is enough to
answer (1), while (2) requires a complete comparison between two labels. (4) requires
additional computing over (2), and (5) can be done by another sweep of matchings after a
complete label comparison. The correctness of kDLS in finding at least one shortest path
between two vertices within k hops is guaranteed by Lemma 1.

To answer (3)(6)(7)(8)(9), we need to actually construct paths by recursively locating the
next vertex via the offset in the corresponding record, and searching for the next record
within the label of the located vertex. This requires more memory accesses and thus takes
more computing time compared to answering queries (1)(2)(4)(5).

Xiang et al. Page 7

J Biomed Inform. Author manuscript; available in PMC 2013 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Among the above 9 types of queries, efficiently answering (2) is the biggest advantage of
kDLS over available methods BFS and DFS. That is, to get the total number of kDLS paths,
we do not need to actually construct these paths. This feature makes the kDLS more suitable
for large scale knowledge discovery for UMLS applications.

Figure 6 gives an illustration for answering queries from x to y.

2.5. Large scale knowledge discovery
The total number of kDLS paths between two vertices aggregately represent their
relationship. These paths are a good summarization of paths between any two vertices, as
guaranteed by Lemma 2 and Lemma 3 (please find in the Appendix lemmata and their
proofs). The summarization feature implied by Lemma 3 is not guaranteed if we use the
densest subgraph construction approach for labeling as in [9, 10, 11].

Thus, instead of using a single shortest path, we use a set of paths as more reliable evidence
to describe the relationship. It is easy to observe that other than paths within k hops,
comparing the kDLS labels of two vertices may return paths up to 2k hops between the two
vertices. Lemma 3 is suitably complemented by the negative result of Lemma 4 (NP-
hardness).

As it is a NP-hard problem to construct even a single longest path between any two vertices,
it is clearly computationally intractable to construct all paths or all simple paths between any
two vertices. Given this limitation, we propose to use the number of kDLS paths (i.e., the
paths found by comparing kDLS labels) as well as their lengths, to measure the relationship
between two vertices (concepts) in the UMLS graph. Thus, we can prioritize concepts in
many applications according to these factors. The extremely fast query speed (particular for
calculating the number of kDLS paths, rather than for constructing these paths) makes it
possible to perform very large scale knowledge discovery between two sets of concepts. For
example, in Section 3.2 we will use kDLS to measure the relationships between 29,333
genes and 8134 diseases.

3. Results
We tested kDLS on cluster nodes equipped with 2.4GHz AMD Opteron processors with a
Linux 2.6 kernel, for its general performance and application in large scale knowledge
discovery. In our test, each job can maximally access no more than 32GB memory. All
programs, including kDLS, BFS, and DFS are implemented in C++ using the Standard
Template Library to ensure best performance.

3.1. kDLS Query Performance
To see how efficiently kDLS performs in queries, we compare it with the standard Breath-
First Search (BFS), Depth-First Search (DFS) on four aspects from one vertex to another:
(1) the time to find the distance, (2) the time to find one shortest path, (3) the time to
estimate the number of paths, (4) the time to construct simple paths. We performed these
four measurements on 10, 000 randomly generated tests.

Since no other indexing methods have shown the capacity to handle directed graphs with
similar sizes and densities as the UMLS graphs, BFS and DFS are the only two methods we
compare. As a typical example, we report the results obtained by controlling the kDLS
broadcast range within 6-neighborhood. According to Figure 4, Figure 5, and Figure 10, the
limit of 6-neighborhood covers a majority of search space on the UMLS graphs while using
slightly more than 20GB memory for the full data source configuration, which is a

Xiang et al. Page 8

J Biomed Inform. Author manuscript; available in PMC 2013 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

representative usage of the UMLS graph for many applications. Correspondingly, both BFS
and DFS have a 6-neighborhood limit on their search depths.

Performances of BFS, DFS and kDLS on 10,000 random tests are shown in Figures 7, 8, and
9. In all the three figures, red columns correspond to the UMLS graph of level 0 data source
configuration, and green columns correspond to the UMLS graph of level 0 + SNOMEDCT
data source configuration, and blue columns correspond to the UMLS graph of full data
source configuration. In the case of BFS or DFS, the number of estimated paths equals the
number of constructed simple paths for a given graph.

Since the standard DFS algorithm cannot guarantee finding the distance and one shortest
path (recalling the visited vertex may block the finding of a shortest path by DFS), it is not
available in Figure 7. For the distance and one shortest path queries, kDLS is on average at
least 600 times faster than BFS in our tests. From Figures 7, 8, and 9, one can see that kDLS
is far superior to BFS and DFS by several orders of magnitude with respect to different
measures.

In particular, kDLS can estimate the number of paths from one vertex to another by very
quickly comparing their labels without actually finding these paths, while BFS and DFS
have to search the graph to obtain an estimation (thus the time saving for the path estimation
over the corresponding path construction is very limited in the case of BFS or DFS). This is
particularly helpful to build a relationship matrix based on the path estimation. For example,
it takes kDLS a few hours to build a 10,000*10,000 relationship matrix using the full data
source configuration (measuring the relationship between two vertices, as described in
Section 3.2, has the same complexity as estimating the number of paths between two
vertices). Utilizing BFS, however, will require months to build the matrix with a
significantly smaller number of estimated paths. To measure the efficiency of the path
estimation, we calculate the average time for estimating one path as shown in Figure 9, and
we are quite surprised to see the speedup of kDLS over BFS or DFS is more than 200, 000
in all our tests. The largest speedup for per path estimation even reaches over 1, 000, 000
when kDLS and DFS are tested on the UMLS graph of full data source configuration.

Although kDLS significantly outperforms BFS and DFS in all the above tests, it does have a
small disadvantage. It requires index construction which takes time and storage space.
Under the 6-neighborhood limit as for this test, it takes kDLS less than 5 hours to build the
index for the UMLS graph of level 0 data source configuration, and around 11 hours for the
UMLS graph of level 0 + SNOMEDCT data source configuration, and around 17 hours for
the UMLS graph of full data source configuration. The index of a UMLS graph can be saved
on the hard disk drive for future use. Before answering queries on a UMLS graph by kDLS,
its index needs to be loaded into memory along with the graph. The time to load the index
into memory mainly depends on the I/O speed. Loading the index, however, typically takes
much less time than constructing them.

We observed that the ratio between the kDLS path number (Figure 8, kDLS Path Esti) and
the corresponding kDLS simple path number (Figure 8, kDLS S-Path Constr) is very small
(around 1.11 to 1.13) for all three UMLS graphs. This suggests that it is a good approach to
use the kDLS path number to estimate the kDLS simple path number when it is needed. This
is extremely helpful for large scale knowledge discovery in which we would like to have a
quick look on the overall relations, while later focus on the details of the paths that make up
some specific relations.

The huge difference between the numbers of simple paths discovered by kDLS and by BFS
or DFS, as shown in Figure 8, motivated us to understand what are the fractions of simple
paths discovered. Although in general the problem has no practical solution as suggested by

Xiang et al. Page 9

J Biomed Inform. Author manuscript; available in PMC 2013 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Lemma 4, it is still possible to get an exact solution when we restrict the search depth to
within very few hops. To understand this, we extended the 10,000 random tests above for
the UMLS graph of level 0 data source configuration, with search depth limited to 4-
neighborhood for all algorithms, to study the fractions of simple paths discovered by three
different methods over the total number of simple paths. It takes a recursive algorithm
approximately 2 seconds on average to complete just a one-time all-simple-path search from
one vertex to another, and on average the number of simple paths between two query
vertices is around 970. With the same restriction, the number of simple paths from one
vertex to another discovered by BFS and DFS, are on average around 0.6 and 0.07,
respectively. However, the number of simple paths from one vertex to another discovered by
kDLS is on average around 38. This suggests that kDLS discovered a good number of
simple paths over all simple paths, while BFS and DFS discovered too few simple paths.
Given Lemma 2 and Lemma 3, we conclude that kDLS is very efficient in discovering
summarized knowledge from the UMLS.

Finally, we would like to understand the scalability of kDLS. To determine this, we
calculated the label size for different broadcast limits. Note that we only need size counters
for label lists in order to calculate the memory cost in advance, rather than actually create
those label lists. Figure 10 displays the results. The total memory requirement for indexing
or answering queries given a k-neighborhood restriction (for k ≥ 4) is very close to the
corresponding estimated label size in Figure 10, because the overhead for recording a
UMLS graph and maintaining the label lists is only a small fraction of the label size. Thus,
according to Figure 4, Figure 5, and Figure 10, it takes kDLS only around 22GB memory to
explore a majority of search space (6-neighborhood) on the full UMLS data sources for
knowledge discovery, and around 80GB memory to explore most of the search space (10-
neighborhood), and ultimately, around 209GB to explore the whole search space (unlimited-
neighborhood, i.e., k is set to be the number of vertices) for large scale knowledge
discovery.

3.2. Application of kDLS on Large Scale Knowledge Discovery
To see how kDLS is applicable to large scale knowledge discovery, we study its application
on disease gene prioritization, which has been studied recently by many researchers [13, 14,
15, 16, 17, 18, 19]. We obtained 8, 134 disease concepts from OMIM (Online Mendelian
Inheritance in Man) source family in the UMLS by searching concepts whose semantic
types include “Disease or Syndrome” or “Neoplastic Process”, and we obtained all gene
concepts (29, 333 in total) from HUGO (Human Genome) data source family in the UMLS.
Thus, our test can be considered as a comprehensive disease-gene prioritization across the
whole genome.

We measure the relationship between a gene concept and a disease concept based on the
kDLS paths between them. To make our measurement between a gene concept and a disease
concept not affected by known simple facts in the UMLS (indicated by the direct links that
connect them), we do not count any paths with length being 1 between them. For any
concept not included in the UMLS graph (recall Definition 1 in Section 1.2), we conclude
there is no kDLS path connecting it to any other concepts. This is also true if we include
these concepts in building the UMLS graph.

Unlike [5, 6] which rely on Subject Matter Experts (SMEs) to evaluate the knowledge
discovery results from the UMLS, we can take an objective approach via kDLS. We
evaluate our knowledge discovery results by fold-enrichment [16, 17, 18, 20], which
measures how well the known gene concepts are ranked with respect to their associated
disease concepts. The fold-enrichment in this work follows the definition in [20]. To be
consistent with [20], equally ranked genes will get the same low rank (e.g. first two genes in

Xiang et al. Page 10

J Biomed Inform. Author manuscript; available in PMC 2013 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Table 3 with the same R value both ranked 2nd). Typically, if only one disease concept is
considered, the fold-enrichment is measured as the maximum α/β such that α% known
causative gene concepts are ranked in the top β% gene concepts for this disease concept. We
can extend the measurement between a set of gene concepts and a set of disease concepts by
considering the two percentiles aggregatively. It is easy to see that if the results are not
statistically significant, the fold-enrichment value will be close to 1.

Formally, the closeness between a gene concept x and a disease concept y is measured as
follows. Let P(x,y) be the set of kDLS paths from x to y excluding paths with length equal to
1. Let P(y,x) be the set of kDLS paths from y to x excluding paths with length equal to 1. The
relationship between a gene concept and a disease concept is measured by

in which each path’s contribution to R(x, y) is determined by its length and γ(R(x, y) is 0
unless P(x,y) ≠ ∅ or P(y,x) ≠ ∅). We vary γ from 1 to 50 for our tests.

In order to fully utilize the information in the UMLS for our knowledge discovery, we
construct a UMLS graph with the full data source configuration, and with semantic
restriction on 14 semantic types and 15 semantic relations to reduce less-informative paths
from the results. For example, “Language” is marked as a restricted semantic type because a
path will have little or no practical meaning in our application if it connects a gene to a
disease via a “Language” concept. Then we apply kDLS with 6-neighborhood to build the
index for the UMLS graph.

By slightly revising the standard kDLS Query (2) in Section 2.4 to calculate the R value for
each disease-gene pair, we build the relationship matrix between 29, 333 gene concepts and
8, 134 disease concepts in only a few hours. We tried γ with quite a few numbers between 1
and 50, and obtained several fold-enrichment values more than 5, 000 when γ is between 5
and 15 as shown in Figure 11. These fold-enrichment values for genome-wide disease gene
prioritization are much higher than the highest value (1016.8, as reported in [17]) reported in
literature to our knowledge. This demonstrates the very strong statistical significance of our
results. More importantly and unlike existing methods [16, 17, 18], our method not only
evaluates all relationships between 29,333 gene concepts and 8134 disease concepts, but can
also constructs the detailed paths as supporting evidence for any gene-disease pair as
needed.

It is easy to see that if we set γ = 1, then all paths in P(x,y) and P(y,x) contribute equally to the
R value regardless of their lengths. In this case we obtained a lowest fold-enrichment among
our tests as shown in Figure 11. This clearly suggests that it is unfair to weigh long paths
and short paths equally. When γ increases, more weight will be placed on the short paths as
opposed to the long paths. It is interesting to observe that the fold-enrichment peaks when γ
is around 5–10. The observation suggests that it is a good idea to choose γ between 5 and 10
in weighing path lengths for the tested UMLS graph. In the following study we fix γ to be 7.

Figure 12 provides an overall look on the percentage of confirmed gene-disease pairs over
the top ranked gene-disease pairs. We can observe that the percentage of confirmed gene-
disease pairs increases sharply when rank increases from 1 to 100, and more than 80% of
confirmed gene-disease pairs are ranked among the top 100. However, the increase rate
slows down significantly after rank 200. We suspect this is because some confirmed gene-

Xiang et al. Page 11

J Biomed Inform. Author manuscript; available in PMC 2013 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

disease pairs have little or no connection with other concepts. By looking into the original
data, we found that 8.13% of the confirmed gene-disease pairs have no kDLS paths with
length more than 1 connecting them. Most of them are less studied genes or diseases. For
example, “C0795958: GOLABI-ITO-HALL SYNDROME” and “C1418859:PQBP1 gene”
is such a pair. These gene-disease pairs provide little to no value in our knowledge discovery
at this moment. However, we believe many of them will contribute to knowledge discovery
in the future, as the evolution of the UMLS will increasingly add new results that could
bring more connections to these less studied genes or diseases.

To provide a detailed look at the result, we selected Chronic Lymphocytic Leukemia (CLL),
which is the targeted disease concept studied previously in the works of CKCs in [5, 6, 7].
Table 3 lists the 30 top-ranked gene concepts for CLL which covers all the 17 confirmed
genes for CLL (i.e., 17 links connecting genes with CLL in the UMLS).

Four gene concepts in Table 3 marked by ★ are confirmed disease gene concepts by direct
links in the concept network. For the remaining genes, we searched literature for their
relationship with CLL, and found most of the gene concepts having been studied for CLL
(marked by ✓ with the PubMed ID of one literature). Some studies are very recent. For
example, the relationship between the MIR155 gene and the CLL has been studied in a very
recent work [21]. For gene concepts not studied in literature for CLL, our ranking
nevertheless suggests that they are very likely to be associated with CLL. This information,
together with kDLS simple paths which can be constructed as needed, provides promising
research directions for biologists and clinicians.

As another example, we list the top 30 genes for Breast Carcinoma, a well studied disease,
to demonstrate the effectiveness of our method. The top 30 genes cover 14 out of 81
confirmed Breast Carcinoma genes. The lowest ranked confirmed Breast Carcinoma gene is
CST6 which is ranked 218 (top 0.743190%) out of the 29, 333 genes.

4. Discussion
4.1. The Features of kDLS

Other than the optional handling for sink and source vertices, we determine the
decentralizing order according to the largest vertex degree at the moment of
decentralization. Under this decentralizing order, the kDLS demonstrates its power for
handling the UMLS graph which exhibits a clear power-law property on its cumulative
vertex degree distribution. Readers may be interested in how kDLS performs for other
graphs.

In fact, kDLS produces optimal results on trees even without the similar power-law nature of
the UMLS graph, if given an optimal decentralizing order. For example, if each time we
decentralize the centroid of a tree (and recursively for its sub-trees), and set k to be unlimited
(i.e., k = n where n is the number of vertices), each vertex will eventually get an O(log2n)-bit
label, which is the minimum one can achieve for distance labeling schemes on a tree [22].
However, the optimal decentralizing order on a general graph is still an open question to us,
and we believe it will be a promising future research question for computer scientists.

Although the kDLS is a rather simple process, it has several powerful functions as discussed
in the previous sections. In addition to these functions, we can find the distance and the
corresponding shortest path with respect to the selected broadcast range, as stated in Lemma
1 (See Appendix for lemmata and proofs). An additional feature of kDLS is its unique
ability to provide an exact estimate of total label size. For different UMLS graphs and
different choices of kDLS broadcast range k, kDLS is able to give an exact estimate of total

Xiang et al. Page 12

J Biomed Inform. Author manuscript; available in PMC 2013 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

label size (thus a very close estimation of memory cost) without actually creating those
labels. This allows us to understand the memory cost in advance, and circumvents expensive
trials ending with “crashing a machine”.

4.2. The Biomedical Results Obtained by kDLS
We have used kDLS to perform large scale knowledge discovery in Section 3.2 without
actually constructing paths between any gene concept and any disease concept. However, by
actually constructing simple paths between a selected gene-disease pair, we can provide
invaluable information regarding their relationships and this information is helpful for
experts to decide whether a gene concept rank is legitimate. For example, by constructing
the shortest paths from the IDS gene (rank 85 for CLL) to CLL using Query (7), we found
11 shortest kDLS paths from IDS gene to CLL. The following are two sample paths.4

• “C1415882:IDS gene”–has_manifestation → “C0019209:HEPATOMEGALY”–
clinically_associated_with → “C0015672:Fatigue”–may_be_finding_of_disease →
“C0023434:Chronic Lymphocytic Leukemia”

• “C1415882:IDS gene”–has_manifestation → “C0038002:SPLENOMEGALY”–co-
occurs_with → “C0024228:Lymphatic Diseases”–may_be_finding_of_disease →
“C0023434:Chronic Lymphocytic Leukemia”

These two paths suggest that IDS (a gene associated with Hunters disease) is associated with
inflammation and enlargement of the liver (heptomegaly), as well as enlargement of the
spleen (splenomegaly) which is a lymphocytic organ. Such information implies that the link
to CLL may not be trivial due to the fact that CLL is highly related to inflammation and
lymphocyte activation. Thus, we wonder if the IDS gene expression is associated with CLL
disease. To test this, we obtained a publicly available CLL gene expression microarray
dataset (GSE2466) in the NCBI Gene Expression Omnibus (GEO). This dataset contains
gene expression profiles for mononuclear cells in 11 normal subjects and 100 B-cell CLL
patients. The IDS express levels indeed show a significant decrease in CLL patients as
compared to the normal control (t-test p-value < 10−11, mean fold change = 1.63). These
observations suggest a new hypothesis on the association between IDS and CLL which has
not been previously reported.

In addition, we can find a much larger repertoire of simple paths by using Query (9) in
Section 2.4. These paths are a good candidate of Concept Knowledge Constructs between
the two query objects. It is certainly true that not all paths are strong evidence of the
relations between the two query objects. This is the reason why we use the R value to
measure the relationship between a gene concept and a disease concept. However, there are
some paths collectively providing some interesting hypotheses, though individually they do
not display strong evidence of the relationship between two query objects. For example, the
following are three sample paths connecting MIR1-1 gene (rank 27 for Breast Carcinoma) to
Breast Carcinoma via drugs.

• “C1537699:MIR1-1 gene”–gene_associated_with_disease →
“C0684249:Carcinoma of lung”–mapped_to → “C0024121:Lung Neoplasms”–
may_be_treated_by → “C0010583:Cyclophosphamide”–mapped_from →
“C0055982:CMF regimen”–regimen_has_accepted_use_for_disease →
“C0678222:Breast Carcinoma”

• “C1537699:MIR1-1 gene”–gene_associated_with_disease →
“C0878544:Cardiomyopathies”–clinically_associated_with → “C0005779:Blood

4Every link and concept in the discovered paths can be verified manually through Metathesaurus Browser at https://uts.nlm.nih.gov/

Xiang et al. Page 13

J Biomed Inform. Author manuscript; available in PMC 2013 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

https://uts.nlm.nih.gov/

Coagulation Disorders”–contraindicated_drug → “C0025677:Methotrexate”–
mapped_from → “C0055982:CMF regimen”–
regimen_has_accepted_use_for_disease → “C0678222:Breast Carcinoma”

• “C1537699:MIR1-1 gene”–gene_associated_with_disease → “C2239176:Liver
carcinoma”–clinically_associated_with → “C0027947:Neutropenia”–
contraindicated_drug → “C0016360:Fluorouracil”–mapped_from →
“C0055982:CMF regimen”–regimen_has_accepted_use_for_disease →
“C0678222:Breast Carcinoma”

It has been shown that besides MIR1-1’s well-known relationship with cardiovascular
diseases, it is associated with several types of cancers including lung, liver and renal
cancers. Such information suggests that it may also be relevant to other cancers such as
breast cancer as suggested by our ranking results. For instance, as shown in the three paths
above, MIR1-1 gene is connected to breast carcinoma with known relationships to lung and
liver cancers. Interestingly, the paths are then led to breast carcinoma via three drugs
(Cyclophosphamide, Methotrexate, and Fluorouracil) which are the three components
constituting the NCI recommended CMF regimen for breast cancer. These observations
along with the high ranking of MIR1-1 gene in the breast carcinoma gene list suggest that
the relationship between MIR1-1 and breast cancer could be a new hypothesis to be tested
further.

Similarly, we also found paths connecting MIRLET7C gene (rank 26 for CLL) to CLL via
drugs by using Query (9).

5. Related Works
Prior to our work, there have been a number of works studying the similarity between two
concepts in the UMLS by distance between the two concepts [23, 24, 25, 26, 27]. Using
distance (i.e., the length of a shortest path) to measure the similarities between concepts is a
good idea if a distance measurement is restricted to a data source, or a few similar data
sources. The measurement becomes less controllable if a large number of heterogenous data
sources are fused together. Such combinations may build a short path between two concepts
that are not considered similar to some applications. Thus, most available works [23, 25, 26,
27] focused on studying similarity between concepts in one or several data sources.
Recently, McInnes et al [24] built a general similarity measurement framework that can be
extended to include new measures. In contrast to these works, our work studies not only the
similarity between two concepts, but the general relationship between two concepts as
described by the kDLS paths that connect them through possibly many heterogenous data
sources. For example, it is inappropriate to say a disease is very similar to a gene, but it is
appropriate to say a disease is very related to a gene. Since our relationship measurement is
based on the extracted paths as a whole, rather than a shortest path, our method is robust
against occasional noisy paths. This is confirmed by the very high fold-enrichment values.
Nevertheless, our work can also be configured to extract relationships in specific data
sources (as illustrated in Figure 2) and the extremely fast query time will make it possible to
study the relationships between two very large sets of concepts, an ability those available
works [23, 24, 25, 26, 27] have not demonstrated. However, we shall point out that at this
moment our work can only accept data source configurations before building indices. If the
data source or the semantic restriction configuration changes, then we need to rebuild the
index. Indexing based on dynamic source types, semantic types, or semantic relations is
essentially label-constraint indexing in terms of graph databases, and it is very difficult to
handle even for answering reachability queries on moderate-sized graphs with a small
number of labels [28]. It could be a long-term future research to make the label-constraint
indexing applicable to very large UMLS graphs.

Xiang et al. Page 14

J Biomed Inform. Author manuscript; available in PMC 2013 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

kDLS utilizes the power-law nature of the UMLS graph and decentralizes vertices. The
process of decentralizing vertices is analogous to using these vertices as landmarks for index
construction. Although using landmarks is not a novel idea, our method is the first to
efficiently index the whole UMLS under this general strategy, and provides several flexible
options for large scale knowledge discovery. In the following we briefly review related
techniques.

In the wireless network research community, using landmarks is one of the basic routing
strategies. The well-known Beacon Vector Routing (BVR) [29] is designed under this
philosophy, where each node remembers the distances to a small number of beacons for
making routing decisions. The BVR, however, cannot guarantee finding shortest routes.

A similar idea of using landmarks is available in the graph database community known as 2-
hop [9]. Unlike BVR, 2-hop can guarantee finding the length of a shortest path between any
two nodes. However, 2-hop has severe limitations with respect to scalability issues. This is
mainly due to its time-costly densest subgraph construction and set cover procedure for
labeling. Normally, 2-hop can only handle sparse graphs with less than 10,000 vertices even
for answering reachability queries [8]. Several successive works [10, 11, 12] on 2-hop have
improved on the scalability issues, but they have not demonstrated the ability to handle
graphs with similar sizes and densities as the UMLS graphs for knowledge discovery.

In the graph database community, researchers have been designing algorithms for efficiently
indexing graph databases for answering reachability (e.g., [30, 31, 32, 33, 34, 35, 36, 8, 28,
37]), distance (e.g., [9, 10, 11, 12]) and shortest path queries (e.g., [38, 39]). Indexing
schemes use additional labels built for a graph database to quickly answer queries. Without
indexing, these queries have to be answered by ad-hoc searching, such as Breath-First
Search (BFS), Depth-First Search (DFS), and many other heuristics. Generally speaking, a
good indexing scheme will be faster than the corresponding ad-hoc searching algorithms in
at least one to two orders of magnitude in answering queries.

As the reachability query is a special case of the distance query and the distance query is a
special case of the path query, it is not surprising that less work has been done for answering
distance and path queries. In addition, since undirected graphs are special cases of directed
graphs, it is generally harder to handle distance and path queries on directed graphs.

Given the above background, we can understand why there are only limited works [9, 10,
11, 12, 38, 39] that can index graphs for efficiently answering distance or shortest path
queries. Although these works handle small graphs fairly well, they have quite limited
power in handling large and dense graphs, especially if the graph is directed. The density of
a graph is often measured by the ratio of the edge number to the vertex number.

To our knowledge, the XMK20M [12] is the largest directed graph with both vertex number
and edge number reported in works of efficiently indexing graph databases for answering
distance or shortest path queries. The XMK20M [12] is a directed graph containing 336, 243
vertices and 397, 713 edges, with a density to be only 397, 713/336, 243 ≈1.18. However,
the UMLS graphs in our study contains much more vertices and edges (recall Table 1), with
densities larger than 7. These numbers explain why currently there is no work available for
effectively indexing the whole UMLS and the queries have to be answered by ad-hoc
searching algorithms, such as BFS and DFS, which are too slow for large scale knowledge
discovery. Therefore, authors of [5] pose major limits to complete the Conceptual
Knowledge Construct (CKC) mining task, such as limiting the concepts to be at most 5 in
CKC (i.e., a path of length 4 in the corresponding graph), and searching a very small number
of data sources. These limits greatly reduce the search space in order to make the CKC
mining possible even though the results are far from complete. It can be conceived that a

Xiang et al. Page 15

J Biomed Inform. Author manuscript; available in PMC 2013 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

method that can efficiently index the whole UMLS will significantly help CKC mining
tasks.

6. Conclusion
In this paper, we propose kDLS, a decentralizing labeling scheme to index the UMLS graph
for answering graph-based queries. kDLS can very efficiently find important information,
such as reachability, distance, and a summary of paths, between two concepts on the UMLS
using very limited label costs, thus making it possible to process large scale knowledge
discovery. kDLS is easy to implement and is very flexible to configure according to
different applications and computer hardware settings, and it is highly effective for large
scale knowledge discovery on the UMLS, as demonstrated by our application on disease
gene prioritization. In addition, our discussion on the optimality of kDLS shows that it has
the potential to be further refined by computer scientists in the future. Thus, we expect
kDLS or its derivations will be the key knowledge discovery engines for the UMLS for
future medical informatics applications.

Acknowledgments
The authors would like to thank the anonymous reviewers for their helpful comments and suggestions. This work
was supported by the National Science Foundation under Grant #1019343 to the Computing Research Association
for the CIFellows Project, and by the National Cancer Institute under Grant NCI R01CA141090 and Grant NCI
R01CA134232.

References
1. Bodenreider O. The unified medical language system (UMLS): integrating biomedical terminology.

Nucleic acids research. 2004; 32(suppl 1):D267. [PubMed: 14681409]
2. Sioutos N, Coronado S, Haber M, Hartel F, Shaiu W, Wright L. NCI Thesaurus: A semantic model

integrating cancer-related clinical and molecular information. Journal of biomedical informatics.
2007; 40(1):30–43. [PubMed: 16697710]

3. Hamosh A, Scott A, Amberger J, Bocchini C, McKusick V. Online Mendelian Inheritance in Man
(OMIM), a knowledgebase of human genes and genetic disorders. Nucleic acids research. 2005;
33(suppl 1):D514. [PubMed: 15608251]

4. Stearns, M.; Price, C.; Spackman, K.; Wang, A. Snomed clinical terms: overview of the
development process and project status. Proceedings of the AMIA Symposium; American Medical
Informatics Association; 2001. p. 662

5. Payne, P.; Borlawsky, T.; Kwok, A.; Dhaval, R.; Greaves, A. Summit on Translational
Bioinformatics. American Medical Informatics Association; 2008. Ontology-anchored Approaches
to Conceptual Knowledge Discovery in a Multidimensional Research Data Repository; p. 85

6. Payne, P.; Borlawsky, T.; Kwok, A.; Greaves, A. Supporting the design of translational clinical
studies through the generation and verification of conceptual knowledge-anchored hypotheses.
AMIA Annual Symposium Proceedings; American Medical Informatics Association; 2008. p. 566

7. Payne, P.; Kwok, A.; Dhaval, R.; Borlawsky, T. Summit on Translational Bioinformatics. American
Medical Informatics Association; 2009. Conceptual Dissonance: Evaluating the Efficacy of Natural
Language Processing Techniques for Validating Translational Knowledge Constructs; p. 95

8. Jin, R.; Xiang, Y.; Ruan, N.; Fuhry, D. 3-hop: a high-compression indexing scheme for reachability
query. Proceedings of the 35th SIGMOD international conference on Management of data,
SIGMOD ’09; ACM; 2009. p. 813-826.

9. Cohen E, Halperin E, Kaplan H, Zwick U. Reachability and Distance Queries via 2-Hop Labels.
SIAM Journal on Computing. 2003; 32(5):1338–1355.

10. Schenkel, R.; Theobald, A.; Weikum, G. EDBT. 2004. HOPI: An Efficient Connection Index for
Complex XML Document Collections; p. 237-255.

Xiang et al. Page 16

J Biomed Inform. Author manuscript; available in PMC 2013 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

11. Schenkel, R.; Theobald, A.; Weikum, G. ICDE. 2005. Efficient Creation and Incremental
Maintenance of the HOPI Index for Complex XML Document Collections; p. 360-371.

12. Cheng, J.; Yu, JX. On-line exact shortest distance query processing; Proceedings of the 12th
International Conference on Extending Database Technology: Advances in Database Technology,
EDBT ’09; ACM; 2009. p. 481-492.

13. Aerts S, Lambrechts D, Maity S, Van Loo P, Coessens B, De Smet F, Tranchevent L, De Moor B,
Marynen P, Hassan B, et al. Gene prioritization through genomic data fusion. Nature
biotechnology. 2006; 24(5):537–544.

14. Franke L, Bakel H, Fokkens L, de Jong E, Egmont-Petersen M, Wijmenga C. Reconstruction of a
functional human gene network, with an application for prioritizing positional candidate genes.
The American Journal of Human Genetics. 2006; 78(6):1011–1025.

15. Lage K, Karlberg E, Størling Z, Ólason P, Pedersen A, Rigina O, Hinsby A, Tümer Z, Pociot F,
Tommerup N, et al. A human phenome-interactome network of protein complexes implicated in
genetic disorders. Nature biotechnology. 2007; 25(3):309–316.

16. Gaulton K, Mohlke K, Vision T. A computational system to select candidate genes for complex
human traits. Bioinformatics. 2007; 23(9):1132. [PubMed: 17237041]

17. Wu X, Jiang R, Zhang M, Li S. Network-based global inference of human disease genes.
Molecular Systems Biology. 2008; 4:Article number 189.

18. Linghu B, Snitkin E, Hu Z, Xia Y, DeLisi C. Genome-wide prioritization of disease genes and
identification of disease-disease associations from an integrated human functional linkage
network. Genome Biol. 2009; 10(9):R91. [PubMed: 19728866]

19. Chen J, Aronow B, Jegga A. Disease candidate gene identification and prioritization using protein
interaction networks. BMC bioinformatics. 2009; 10(1):73. [PubMed: 19245720]

20. Xiang Y, Payne PR, Huang K. Transactional Database Transformation and Its Application in
Prioritizing Human Disease Genes. IEEE/ACM Transactions on Computational Biology and
Bioinformatics. 2012; 9(1):294–304.

21. Vargova K, Curik N, Burda P, Basova P, Kulvait V, Pospisil V, Savvulidi F, Kokavec J, Necas E,
Berkova A, et al. Myb transcriptionally regulates the mir-155 host gene in chronic lymphocytic
leukemia. Blood. 2011; 117(14):3816. [PubMed: 21296997]

22. Gavoille C, Peleg D, Pérennes S, Raz R. Distance labeling in graphs. J Algorithms. 2004; 53:85–
112.

23. Lee, W.; Shah, N.; Sundlass, K.; Musen, M. Comparison of ontology-based semantic-similarity
measures. AMIA Annual Symposium Proceedings; American Medical Informatics Association;
2008. p. 384

24. McInnes, B.; Pedersen, T.; Pakhomov, S. Umls-interface and umls-similarity: Open source
software for measuring paths and semantic similarity. AMIA Annual Symposium Proceedings;
American Medical Informatics Association; 2009. p. 431

25. Melton G, Parsons S, Morrison F, Rothschild A, Markatou M, Hripcsak G. Inter-patient distance
metrics using snomed ct defining relationships. Journal of Biomedical Informatics. 2006; 39(6):
697–705. [PubMed: 16554186]

26. Nguyen, H.; Al-Mubaid, H. New ontology-based semantic similarity measure for the biomedical
domain. Granular Computing, 2006 IEEE International Conference on, IEEE; 2006. p. 623-628.

27. Rada R, Mili H, Bicknell E, Blettner M. Development and application of a metric on semantic nets,
Systems, Man and Cybernetics. IEEE Transactions on. 1989; 19(1):17–30.

28. Jin, R.; Hong, H.; Wang, H.; Ruan, N.; Xiang, Y. Computing label-constraint reachability in graph
databases. Proceedings of the 2010 international conference on Management of data; ACM; 2010.
p. 123-134.

29. Fonseca, R.; Ratnasamy, S.; Zhao, J.; Ee, CT.; Culler, D.; Shenker, S.; Stoica, I. Beacon vector
routing: scalable point-to-point routing in wireless sensornets. Proceedings of the 2nd conference
on Symposium on Networked Systems Design & Implementation; 2005. p. 329-342.

30. Simon K. An improved algorithm for transitive closure on acyclic digraphs. Theor Comput Sci.
1988; 58:325–346.

Xiang et al. Page 17

J Biomed Inform. Author manuscript; available in PMC 2013 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

31. Agrawal, R.; Borgida, A.; Jagadish, HV. Efficient management of transitive relationships in large
data and knowledge bases. Proceedings of the 1989 ACM SIGMOD international conference on
Management of data; 1989. p. 253-262.

32. Jagadish H. A compression technique to materialize transitive closure. ACM Transactions on
Database Systems (TODS). 1990; 15(4):558–598.

33. Wang, H.; He, H.; Yang, J.; Yu, PS.; Yu, JX. Dual labeling: Answering graph reachability queries
in constant time. Proceedings of the 22nd International Conference on Data Engineering; 2006. p.
75

34. Cheng, J.; Yu, JX.; Lin, X.; Wang, H.; Yu, PS. Fast computing reachability labelings for large
graphs with high compression rate. EDBT; 2008. p. 193-204.

35. Trißl, US. Leser, Fast and practical indexing and querying of very large graphs. Proceedings of the
2007 ACM SIGMOD international conference on Management of data, SIGMOD ’07; ACM;
2007. p. 845-856.

36. Jin, Ruoming; Ruan, Ning; Xiang, Yang; Wang, Haixun. Path-tree: An efficient reachability
indexing scheme for large directed graphs. ACM Transactions on Database Systems (TODS).
2011; 36(1):7:1–7:44.

37. Yildirim H, Chaoji V, Zaki M. GRAIL: scalable reachability index for large graphs. Proceedings of
the VLDB Endowment. 2010; 3(1–2):276–284.

38. Xiao, Y.; Wu, W.; Pei, J.; Wang, W.; He, Z. Efficiently indexing shortest paths by exploiting
symmetry in graphs. Proceedings of the 12th International Conference on Extending Database
Technology: Advances in Database Technology, EDBT ’09; ACM; 2009. p. 493-504.

39. Wei, F. Tedi: efficient shortest path query answering on graphs. Proceedings of the 2010
international conference on Management of data, SIGMOD ’10; ACM; 2010. p. 99-110.

8. Appendix: Lemmata and Proofs

Lemma 1 (Correctness)
kDLS with k-neighborhood broadcast guarantees to find a shortest path between any two
vertices within k hops on a UMLS graph.

Proof
Without loss of generally, let x and y be two vertices connected by a shortest path p(x, y),
length(p(x, y)) ≤ k. Let z be the first vertex on p(x, y) selected for decentralization. Let p(x, z)
and p(z, y) are two sub-paths of p(x, y) where length(p(x, z))+length(p(z, y)) = length(p(x,
y)). Let Gz be the graph immediately before the decentralization of z. Since p(x, y) is intact
before the decentralization of z, we conclude dGz (x, z) = length(p(x, z)) ≤ k and dGz (z, y) =
length(p(z, y)) ≤ k. z’s information will be broadcasted and recorded in the labels of vertices
along a shortest path no longer than p(x, z) from z to x, and along a shortest path no longer
than p(z, y) from z to y. Thus, by comparing the labels of x and y, we can construct a shortest
path passing z and no longer than p(x, y).

Lemma 2 (Uniqueness)
Let a simple path be a path without repeated vertices. Let P′(x, y) be the collection of all
path from vertex x to vertex y obtained by comparing the kDLS labels. By removing non-
simple paths in P′(x, y), we can obtain a collection of unique simple paths P″(x, y).

Proof
To prove this lemma, we only need to show that two simple paths in P′(x, y) are unique.
Without loss of generally, assume p(x, u, y) and p(x, w, y) are two simple paths, obtained by
common vertices u and w, respectively, in comparing the labels of x and y. Without loss of
generally again, assume u is decentralized before w. Assume Gw is the graph immediately

Xiang et al. Page 18

J Biomed Inform. Author manuscript; available in PMC 2013 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

before decentralizing w. Then their is no path connecting x and y passing u in Gw. Hence
p(x, w, y) cannot contain u, and we conclude p(x, u, y) and p(x, w, y) are not equal.

Lemma 3 (Summarization)
Let P (x, y) be the complete collection of paths that connect x to y within k hops in a UMLS
graph and are disconnected before decentralizing x and y. Let P′(x, y) be the collection of all
path from vertex x to vertex y obtained by comparing the kDLS labels. For any path p(x, y)
∈ P (x, y), there exists a path q ∈ P′(x, y) sharing at least one vertex (other than x and y) with
p.

Proof
Assume u is the first vertex on p(x, y) selected for decentralization. By literally following the
Proof of Lemma 1, we can find a path q connecting x to y via u by comparing the labels of x
and y, and the length of q is no longer than p(x, y).

Lemma 4 (NP-hardness)
There is no polynomial time algorithm for constructing a longest simple path between any
two vertices in a directed graph unless P = NP.

Lemma 4 is a common knowledge in the Graph Theory community as it can be proven
easily by using a reduction from the Hamiltonian path problem.

Xiang et al. Page 19

J Biomed Inform. Author manuscript; available in PMC 2013 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 1.
Cumulative vertex degree distributions with power trendlines of of three typical UMLS
graphs. The red dashed line and red circles correspond to the UMLS graph of level 0 data
source configuration. The green dotted line and green squares correspond to the UMLS
graph of level 0 + SNOMEDCT data source configuration. The blue solid line and blue
triangles correspond to the UMLS graph of full data source configuration.

Xiang et al. Page 20

J Biomed Inform. Author manuscript; available in PMC 2013 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 2.
The flow chart of index construction.

Xiang et al. Page 21

J Biomed Inform. Author manuscript; available in PMC 2013 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 3.
Illustration of decentralizing a vertex.

Xiang et al. Page 22

J Biomed Inform. Author manuscript; available in PMC 2013 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 4.
Percentage of distances among the reachable cases of 10,000 random distance queries. Red
columns correspond to the UMLS graph of level 0 data source configuration. Green columns
correspond to the UMLS graph of level 0 + SNOMEDCT data source configuration. Blue
columns correspond to the UMLS graph of full data source configuration.

Xiang et al. Page 23

J Biomed Inform. Author manuscript; available in PMC 2013 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 5.
Average percentage of vertices in the k-neighborhood of a vertex among 10,000 random
tests. Red columns correspond to the UMLS graph of level 0 data source configuration.
Green columns correspond to the UMLS graph of level 0 + SNOMEDCT data source
configuration. Blue columns correspond to the UMLS graph of full data source
configuration.

Xiang et al. Page 24

J Biomed Inform. Author manuscript; available in PMC 2013 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 6.
An illustration of queries. Query (1) (2) (4) (5) can be performed by coupling two labels as
illustrated in the brown-dashed rectangle. Since query (3)(6)(7)(8)(9) involves path
constructions, a flow of path construction for path h → g → a → d → c is illustrated outside
the brown-dashed rectangle.

Xiang et al. Page 25

J Biomed Inform. Author manuscript; available in PMC 2013 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 7.
Time to calculate the distance and time to construct one shortest path (total time for 10, 000
random tests).

Xiang et al. Page 26

J Biomed Inform. Author manuscript; available in PMC 2013 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 8.
Up: time to estimate paths and time to construct simple paths (Total time for 10, 000 random
tests). Down: number of estimated paths and number of constructed simple paths (total
number for 10, 000 random tests). “S-Path”, “Esti”, and “Constr” stand for “Simple Path”,
“Estimation”, and “Construction”, respectively.

Xiang et al. Page 27

J Biomed Inform. Author manuscript; available in PMC 2013 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 9.
Time per estimated path and time per constructed simple path, derived from Figure 8 by
dividing the time by number of paths. “S-Path”, “Esti”, and “Constr” stand for “Simple
Path”, “Estimation”, and “Construction”, respectively.

Xiang et al. Page 28

J Biomed Inform. Author manuscript; available in PMC 2013 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 10.
Total label size for different kDLS broadcast ranges. 1 GB=230 Bytes. Red columns
correspond to the UMLS graph of level 0 data source configuration. Green columns
correspond to the UMLS graph of level 0 + SNOMEDCT data source configuration. Blue
columns correspond to the UMLS graph of full data source configuration.

Xiang et al. Page 29

J Biomed Inform. Author manuscript; available in PMC 2013 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 11.
Fold-enrichment over γ.

Xiang et al. Page 30

J Biomed Inform. Author manuscript; available in PMC 2013 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 12.
Fraction of confirmed gene-disease relations contained in the top-ranked gene-disease
relations.

Xiang et al. Page 31

J Biomed Inform. Author manuscript; available in PMC 2013 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Xiang et al. Page 32

Ta
bl

e
1

Th
e

B
as

ic
 F

ac
t o

f U
M

LS
20

11
A

A
 a

nd
 th

e
co

rr
es

po
nd

in
g

U
M

LS
 g

ra
ph

s.

so

ur
ce

 fa
m

ili
es

so

ur
ce

s

C
U

Is

lin
ks

|V
 |

of
 U

M
L

S
G

ra
ph

 G
|E

| o
f U

M
L

S
G

ra
ph

 G
D

en
si

ty
 (|

E|
/|V

 |)

U
M

LS
 L

ev
el

 0
43

63
1,

70
5,

03
2

6,
23

7,
55

4
72

0,
45

7
5,

28
8,

61
6

7.
34

06
40

73
2

U
M

LS
 L

ev
el

0
+

SN
O

M
ED

C
T

44
65

1,
91

3,
32

0
11

,8
21

,3
26

98
7,

29
3

7,
95

4,
12

2
8.

05
64

95
89

3

U
M

LS
 F

ul
l

85
15

9
2,

40
4,

93
7

15
,3

33
,2

46
1,

33
9,

66
0

9,
44

1,
80

2
7.

04
79

09
17

1

J Biomed Inform. Author manuscript; available in PMC 2013 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Xiang et al. Page 33

Ta
bl

e
2

To
p

th
irt

y
ra

nk
ed

 g
en

e
co

nc
ep

ts
 fo

r C
LL

 (C
00

23
43

4)
.

ra
nk

C
U

I
G

en
e

C
on

ce
pt

R
va

lu
e

pe
rc

en
til

e
Pu

bM
ed

 ID

1
★

C
15

37
73

4
M

IR
29

B
2

2.
15

54
1

0.
00

34
09

%

2
★

C
18

35
84

0
M

IR
29

B
1

2.
13

24
3

0.
00

68
18

%

4
✓

C
15

37
91

0
M

IR
LE

T7
A

1
1.

83
76

9
0.

01
36

37
%

19
24

66
18

4
✓

C
15

37
91

2
M

IR
LE

T7
A

3
1.

83
76

9
0.

01
36

37
%

17
98

97
17

5
★

C
08

12
28

6
N

FK
B

2
1.

77
38

0.
01

70
46

%

6
★

C
15

37
79

7
M

IR
14

3
1.

72
20

5
0.

02
04

55
%

7
★

C
15

37
76

4
M

IR
10

6B
1.

69
90

7
0.

02
38

64
%

8
✓

C
15

37
71

3
M

IR
17

1.
69

72
9

0.
02

72
73

%
15

28
44

43

9
✓

C
13

34
91

3
N

U
P9

8
1.

68
91

2
0.

03
06

82
%

10
92

90
31

10
 ✓

C
06

94
88

9
R

B
1

1.
68

42
2

0.
03

40
91

%
83

78
35

1

11
 ✓

C
15

37
81

1
M

IR
15

5
1.

68
36

2
0.

03
75

%
21

29
69

97

12
 ★

C
15

37
70

9
M

IR
15

A
1.

63
21

1
0.

04
09

1%

13
 ★

C
15

37
79

9
M

IR
14

5
1.

62
83

0.
04

43
19

%

14
 ★

C
15

37
71

2
M

IR
16

-2
1.

61
73

4
0.

04
77

28
%

15
 ★

C
13

33
22

1
D

LE
U

1
1.

61
36

7
0.

05
11

37
%

16
 ✓

C
09

19
52

4
A

TM
1.

60
91

5
0.

05
45

46
%

98
92

17
8

18
 ★

C
15

37
81

3
M

IR
18

1B
1

1.
60

89
6

0.
06

13
64

%

18
 ★

C
15

37
81

4
M

IR
18

1B
2

1.
60

89
6

0.
06

13
64

%

19
 ★

C
13

33
22

3
D

LE
U

2
1.

60
74

7
0.

06
47

73
%

20
 ★

C
08

12
23

8
B

C
L3

1.
59

45
8

0.
06

81
83

%

21
 ★

C
13

66
52

6
B

TG
2

1.
58

79
2

0.
07

15
92

%

22
 ✓

C
13

67
44

9
B

C
L1

0
1.

58
53

9
0.

07
50

01
%

10
58

32
29

23
 ✓

C
13

34
89

4
N

PM
1

1.
58

16
8

0.
07

84
1%

18
48

75
10

24
 ★

C
14

13
17

2
C

C
N

D
1

1.
56

10
3

0.
08

18
19

%

25
 ✓

C
18

25
99

8
M

IR
20

A
1.

53
93

1
0.

08
52

28
%

18
34

81
59

26
C

15
37

91
4

M
IR

LE
T7

C
1.

51
68

8
0.

08
86

37
%

27
 ✓

C
14

12
09

7
A

B
L1

1.
51

65
4

0.
09

20
47

%
16

88
53

84

J Biomed Inform. Author manuscript; available in PMC 2013 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Xiang et al. Page 34

ra
nk

C
U

I
G

en
e

C
on

ce
pt

R
va

lu
e

pe
rc

en
til

e
Pu

bM
ed

 ID

28
 ★

C
15

37
71

0
M

IR
15

B
1.

51
34

4
0.

09
54

56
%

29
 ✓

C
15

37
71

1
M

IR
16

-1
1.

49
37

3
0.

09
88

65
%

18
44

82
18

30
 ★

C
13

66
58

7
M

C
L1

1.
49

36
1

0.
10

22
74

%

C
on

fir
m

ed
 d

is
ea

se
 g

en
e

co
nc

ep
ts

 (b
y

av
ai

la
bl

e
lin

ks
 c

on
ne

ct
in

g
ge

ne
s t

o
C

LL
) a

re
 m

ar
ke

d
by

 ★
. G

en
e

co
nc

ep
ts

 h
av

in
g

be
en

 st
ud

ie
d

fo
r C

LL
 in

 li
te

ra
tu

re
 a

re
 m

ar
ke

d
by

 ✓
. O

ne
 p

ap
er

 fo
r e

ac
h

of
 th

es
e

ge
ne

co
nc

ep
ts

 is
 li

st
ed

 b
y

its
 P

ub
M

ed
®

ID
.

J Biomed Inform. Author manuscript; available in PMC 2013 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Xiang et al. Page 35

Ta
bl

e
3

To
p

th
irt

y
ra

nk
ed

 g
en

e
co

nc
ep

ts
 fo

r B
re

as
t C

ar
ci

no
m

a
(C

06
78

22
2)

.

ra
nk

C
U

I
G

en
e

C
on

ce
pt

R
va

lu
e

pe
rc

en
til

e
Pu

bM
ed

 ID

2
★

C
15

37
91

0
M

IR
LE

T7
A

1
1.

04
68

7
0.

00
68

18
%

2
★

C
15

37
91

2
M

IR
LE

T7
A

3
1.

04
68

7
0.

00
68

18
%

3
★

C
00

79
41

9
TP

53
1.

04
68

4
0.

01
02

27
%

4
★

C
09

19
52

4
A

TM
1.

03
02

7
0.

01
36

37
%

5
✓

C
03

76
57

1
B

R
C

A
1

1.
00

28
3

0.
01

70
46

%
88

07
33

0

6
★

C
13

33
54

4
FG

FR
4

0.
96

62
85

0.
02

04
55

%

7
✓

C
02

42
95

7
ER

B
B

2
0.

96
14

33
0.

02
38

64
%

97
97

68
8

8
✓

C
06

94
88

4
M

EN
1

0.
93

97
49

0.
02

72
73

%
15

16
87

74

9
✓

C
01

62
83

2
A

PC
0.

93
77

8
0.

03
06

82
%

11
44

89
17

10
 ✓

C
06

94
87

2
C

D
H

1
0.

93
46

44
0.

03
40

91
%

11
59

73
16

11
 ★

C
15

37
71

3
M

IR
17

0.
93

38
32

0.
03

75
00

%

12
 ✓

C
13

32
80

2
C

TL
A

4
0.

91
48

95
0.

04
09

10
%

16
52

76
05

13
 ★

C
13

36
68

6
TS

SC
4

0.
91

02
4

0.
04

43
19

%

14
 ✓

C
15

37
73

4
M

IR
29

B
2

0.
89

90
02

0.
04

77
28

%
19

63
90

33

15
 ★

C
15

37
85

9
M

IR
22

1
0.

89
83

88
0.

05
11

37
%

16
 ✓

C
08

12
24

1
B

R
A

F
0.

89
68

12
0.

05
45

46
%

12
06

83
08

17
 ★

C
18

25
99

8
M

IR
20

A
0.

89
61

33
0.

05
79

55
%

18
 ★

C
13

37
00

1
W

N
T3

0.
89

33
16

0.
06

13
64

%

19
 ★

C
15

37
77

3
M

IR
12

6
0.

88
43

53
0.

06
47

73
%

20
 ✓

C
08

12
26

5
ER

B
B

3
0.

88
35

7
0.

06
81

83
%

13
33

78
7

21
 ✓

C
13

32
41

6
B

IR
C

5
0.

88
29

32
0.

07
15

92
%

16
87

32
89

22
 ★

C
06

94
88

3
ST

K
11

0.
88

24
28

0.
07

50
01

%

23
 ✓

C
08

12
26

7
ER

B
B

4
0.

87
45

04
0.

07
84

10
%

15
73

50
25

24
 ★

C
18

36
30

6
M

IR
12

4-
1

0.
87

13
43

0.
08

18
19

%

25
 ✓

C
13

33
20

6
D

D
R

1
0.

87
13

28
0.

08
52

28
%

10
92

31
03

26
 ✓

C
15

37
71

5
M

IR
19

A
0.

86
91

82
0.

08
86

37
%

21
05

96
50

27
C

15
37

69
9

M
IR

1-
1

0.
86

85
04

0.
09

20
47

%

J Biomed Inform. Author manuscript; available in PMC 2013 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Xiang et al. Page 36

ra
nk

C
U

I
G

en
e

C
on

ce
pt

R
va

lu
e

pe
rc

en
til

e
Pu

bM
ed

 ID

28
 ★

C
13

35
27

4
PT

K
6

0.
86

75
11

0.
09

54
56

%

29
 ✓

C
18

35
84

0
M

IR
29

B
1

0.
86

67
7

0.
09

88
65

%
21

35
95

30

30
 ✓

C
06

94
88

9
R

B
1

0.
86

02
63

0.
10

22
74

%
11

10
86

60

C
on

fir
m

ed
 d

is
ea

se
 g

en
e

co
nc

ep
ts

 (b
y

av
ai

la
bl

e
lin

ks
 c

on
ne

ct
in

g
ge

ne
s t

o
B

re
as

t C
ar

ci
no

m
a)

 a
re

 m
ar

ke
d

by
 ★

. G
en

e
co

nc
ep

ts
 h

av
in

g
be

en
 st

ud
ie

d
fo

r B
re

as
t C

ar
ci

no
m

a
in

 li
te

ra
tu

re
 a

re
 m

ar
ke

d
by

 ✓
. O

ne
pa

pe
r f

or
 e

ac
h

of
 th

es
e

ge
ne

 c
on

ce
pt

s i
s l

is
te

d
by

 it
s P

ub
M

ed
 ID

.

J Biomed Inform. Author manuscript; available in PMC 2013 April 1.

