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SUMMARY

Protein tyrosine phosphatase 1B (PTP1B) is a negative regulator of insulin signaling and a
therapeutic target for type 2 diabetes (T2DM). In this study, we have evaluated the role of PTP1B
in the development of aging-associated obesity, inflammation and peripheral insulin resistance by
assessing metabolic parameters at 3 and 16 months in PTP1B~/~ mice maintained on mixed
genetic background (C57BI/6J x 129Sv/J). Whereas fat mass and adipocyte size were increased in
wild-type control mice at 16 months, these parameters did not change with aging in PTP1B~/~
mice. Increased levels of pro-inflammatory cytokines, crown-like structures and hypoxia-inducible
factor (HIF)-1a were observed only in adipose tissue from 16-month old wild-type mice.
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Similarly, islet hyperplasia and hyperinsulinemia were observed in wild-type mice with aging-
associated obesity, but not in PTP1B~/~ animals. Leanness in 16-month old PTP-1B~/~ mice was
associated with increased energy expenditure. Whole body insulin sensitivity decreased in 16-
month old control mice; however studies with the hyperinsulinemic-euglycemic clamp revealed
that PTP1B-deficiency prevented this obesity-related decreased peripheral insulin sensitivity. At a
molecular level, PTP1B expression and enzymatic activity were up-regulated in liver and muscle
of 16-month old wild-type mice as were the activation of stress kinases and the expression of p53.
Conversely, insulin receptor-mediated Akt/Foxol signaling was attenuated in these aged control
mice. Collectively, these data implicate PTP1B in the development of inflammation and insulin
resistance associated with obesity during aging and suggest that inhibition of this phosphatase by
therapeutic strategies might protect against age-dependent T2DM.
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INTRODUCTION

Type 2 Diabetes Mellitus (T2DM) is the most common endocrine disorder and occurs when
insulin secretion can no longer compensate for insulin resistance in peripheral tissues
(Barbieri et al. 2001). Aging is associated with development of insulin resistance, providing
a potential explanation for the prevalence of T2DM in older adults (Fink et al. 1983), (Amati
et al. 2009). However, studies of the effects of aging on insulin action have been
complicated by the inability to discriminate between the influence of age itself and aging-
associated changes in body composition.

Although the precise molecular mechanisms underlying insulin resistance are not well
defined, obesity is associated with a low-grade systemic inflammation that contributes to
defects in the critical nodes of insulin signaling (Taniguchi et al. 2006). Several mechanisms
modulate insulin signaling, including down-regulation of the insulin receptor (IR), serine
phosphorylation or degradation of IRS proteins and dephosphorylation by specific protein
tyrosine phosphatases, notably by protein tyrosine phosphatase (PTP) 1B. This phosphatase
is a major negative regulator of insulin and leptin sensitivity, acting by dephosphorylation of
IR and leptin receptor-associated Janus kinase 2 (Seely et al. 1996), (Zabolotny et al. 2002).
In vivo experiments have demonstrated that PTP1B-deficient (PTP1B~/~) mice exhibit
increased insulin sensitivity at 10-14 weeks of age, resistance to weight gain on high-fat diet
(HFD) and increased basal metabolic rate (Elchebly et al. 1999), (Klaman et al. 2000). More
recent studies have reported that PTP1B re-expression in the liver of PTP1B~~ mice
attenuates enhanced insulin sensitivity (Haj et al. 2005). In contrast, liver-specific deletion
of PTP1B improves metabolic syndrome (MS) and attenuates diet-induced endoplasmic
reticulum (ER) stress (Delibegovic et al. 2009). PTP1B expression is elevated in the liver of
mice fed with HFD, concomitant with increased levels of TNFa and CD68, two markers of
hepatic inflammation associated with steatosis (Zabolotny et al. 2008). In humans, PTP1B
polymorphisms are associated with insulin resistance, obesity, and other characteristics of
MS in some populations (Kipfer-Coudreau et al. 2004). These studies reinforce the
importance of the development of PTP1B inhibitors as promising drugs for the treatment of
T2DM (Kasibhatla et al. 2007).

In the present study, we have investigated the involvement of PTP1B in the deleterious
effects of adiposity and metabolic damage in insulin sensitive tissues using wild-type and
PTP1B~/~ mice maintained on the same mixed genetic background (C57BI/6J x 129Sv/J) at
3 and 16 months of age.
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RESULTS

PTP1B-deficient mice are protected against fat accumulation and peripheral insulin
resistance during aging

Insulin resistance in peripheral tissues, frequently associated with an increase in body fat,
progressively increases with age (Barbieri et al. 2001), (Tchkonia et al. 2010). Since
PTP1B-deficient mice are resistant to HFD-induced obesity (Elchebly et al. 1999), (Klaman
et al. 2000), we investigated whether its absence would protect against the adiposity and
insulin resistance associated with aging. This study was performed in animals maintained on
a normal chow diet for up to 16 months. In both mice and rats, no differences in parameters
constituting body composition, including fat mass, have been observed between animals of
16 and 24 months of age (Escriva et al. 2007), (Quinn et al. 2010). Male wild-type mice at
16 months of age (hereafter referred to as 16-month old, obese wild-type mice) displayed
significant increases in total body weight, percentage of fat content, fat mass and lean mass
as compared to mice at 3 months of age (Fig. 1LA). Consistent with this, insulin and glucose
tolerance tests revealed impaired insulin sensitivity with moderate glucose intolerance in
these 16-month old, obese wild-type mice as compared to 3-month old controls (Fig. 1B).
These alterations in 16-month old, obese wild-type mice were prevented in age-matched
PTP1B~/~ mice (hereafter referred to as 16-month old, nonobese PTP1B~/~ mice), except
the increase in body weight due to a significant increase in lean mass. Notably, no
differences in fat content, insulin sensitivity and glucose tolerance were found between 3
and 16-month old PTP1B~/~ mice although body weight was increased at 16 months due to
enhanced lean mass.

Next, we performed a 2-h hyperinsulinemic-euglycemic clamp combined with intravenous
administration of [3-3H] glucose and [1-14C] 2-deoxyglucose in the four groups of mice
(Fig. 1C). Although a small but not significant increase was observed in whole body glucose
infusion rate and hepatic glucose production (HGP) during the clamp in 3-month old
PTP1B~/~ mice compared to 3-month old wild-type mice, there was a significant increase in
tissue-specific glucose uptake in both white adipose tissue (WAT) and brown adipose tissue
(BAT). On the other hand, when 16-month old mice of both genotypes were compared with
the corresponding 3-month old animals, glucose infusion rate decreased by 60% in 16-
month old, obese wild-type mice whereas this parameter only decreased by 28% in 16-
month old, nonobese PTP1B~/~ mice. Moreover, the significant decreases observed in
glucose uptake in skeletal muscle, WAT and BAT in 16-month old, obese wild-type mice
compared to 3-month old controls were not appreciated in 16-month old, nonobese
PTP1B~/~ mice. Accordingly with these data, while glycogen synthesis decreased and
hepatic glucose production (HGP) increased in 16-month old, obese wild-type mice
compared to 3-month old wild-type mice, no significant differences were found in these
parameters between 3 and 16-month old PTP1B~/~ mice.

As it has been reported that PTP1B deficiency improves beta-cell function in IRS27/~
diabetic mice (Kushner et al. 2004), we performed histological analysis of the endocrine
pancreas in wild-type and PTP1B~/~ mice at 3 and 16 months. As expected for an insulin
resistant state, pancreatic sections from 16-month old, obese wild-type mice showed
enlarged islets with a 2.5-fold increase in islet area. Moreover, in these mice insulin levels
were significantly elevated compared to 3-month old wild-type mice (Fig. 2A, 2B).
However, PTP1B expression in pancreas was similar between both age groups of wild-type
mice (Fig. 2C). Notably, islet enlargement and hyperinsulinemia were absent in 16-month
old, nonobese PTP1B~/~ mice (Fig. 2A, 2B). Fed glucose levels were 130 + 4 mg/dl (3-
month old wild-type), 119 + 3 mg/dl (3-month old PTP1B~"), 141 + 5 mg/dl (16-month
old, obese wild-type) and 113 + 4 mg/dl (16-month old, nonobese PTP1B~/7) (p=0.045, 3-
month old PTP1B~/~ versus 3-month old wild-type; p=0.01, 16-month old, obese wild-type
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versus 3-month old wild-type; p=0.02 16-month old, nonobese PTP1B~/~ versus 16-month
old, obese wild-type).

PTP1B-deficiency protects against inflammation and hypoxia in white adipose tissue in
age-associated obesity

Since adipose tissue accretion and inflammation may be causatively linked to insulin
resistance, we hypothesized that PTP1B might modulate the obesity-induced inflammation
associated with aging. Thus, we first assessed pro-inflammatory markers in WAT from the
four groups of mice. Histological examination of WAT showed a direct relationship between
fat accumulation (Fig. 1A) and adipocyte hypertrophy with the mean adipocyte cross-
sectional area being significantly higher in 16-month old, obese wild-type mice compared to
age-matched nonobese PTP1B~/~ mice (Fig. 3A). Moreover, immunohistochemical analysis
of F4/80 revealed clusters of adipose tissue macrophages (ATM) forming crown-like
structures exclusively in WAT of 16-month old, obese wild-type mice (Fig. 3A).
Quantitative real-time PCR showed significant elevations in the expression of other pro-
inflammatory markers such as CD68, CD11c and TNFa in these mice (Fig. 3B). In contrast,
PTP1B~/~ mice presented smaller increases in these parameters with aging and the levels of
the above mentioned pro-inflammatory markers were significantly lower in 16-month old,
nonobese PTP1B~/~ mice than those of the age-matched obese wild-type mice. Next, we
investigated whether our observations at the local tissue level were also reflected in serum
levels of pro-inflammatory cytokines and adipokines. As shown in Fig. 3C, serum TNFa
increased with aging in both genotypes of mice. Of note, the levels of serum TNFa were
significantly higher in 16-month old, obese wild type mice as compared to age-matched
nonobese PTP1B~/~ mice. However, serum levels of IL6 or resistin were similar between all
the groups of mice. Adiponectin levels were higher in 3-month old PTP1B~~ mice as
compared to the age matched wild-type controls, but no differences in this cytokine were
detected between obese, wild-type and nonobese, PTP1B~/~ mice at 16 months. Serum
leptin levels increased with aging in wild-type mice in proportion to adiposity. However,
consistent with the lower adiposity observed in 16-month old, nonobese PTP1B~/~ mice,
levels of leptin were significantly lower in these mice as compared to age-matched wild-type
mice. Serum triglycerides (TG) were significantly elevated in 16-month old, obese wild-type
mice as compared to 3-month old wild type control but the levels in 16-month old, nonobese
PTP1B~/~ mice were equivalent to their corresponding young animals (Fig. 3D).

Recently, increased expression of p53 in WAT has been reported to be involved in the
development of diet-induced obesity and insulin resistance (Minamino et al. 2009).
Interestingly, a significant up-regulation of p53 was detected in WAT from 16-month old,
obese wild-type mice but not in 16-month old, nonobese PTP1B~/~ mice (Fig. 3E).
Moreover, the expression of FasL and Bid, two pro-apoptotic mediators of the death
receptor signaling implicated in the pro-inflammatory response (Wueest et al. 2010), was
increased in WAT from 16-month old, obese wild-type mice as compared to age-matched
mice lacking PTP1B. Finally, enhanced expression of HIF1a in WAT of 16-month old,
obese wild-type mice suggested the presence of microvascular hypoxia which was not
observed in 16-month old, nonobese PTP1B~/~ mice.

PTP1B deficiency protects against obesity-associated activation of stress kinases and
steatosis in the liver during aging

Since adipose tissue inflammation has been linked to histopathological changes in the liver
that reflect steatosis (Cancello et al. 2006), we next addressed the possibility that loss of
PTP1B, by reducing the inflammation in WAT, ameliorates the development of fatty liver
during aging-associated obesity. Histological examination of liver sections revealed higher
lipid accumulation in 16-month old obese, wild-type mice as compared to nonobese PTP1B-
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deficient mice of the same age (Fig. 4A). This was associated with decreased hepatic TG in
16-month old, nonobese PTP1B~/~ mice (Figure 4B). In agreement with these data,
expression levels of genes involved in fatty acid synthesis such as Fasn and Srebfl markedly
increased in the liver of 16-month, obese wild-type mice but up-regulation of these markers
was absent in 16-month, nonobese PTP1B-deficient mice that did not develop hepatic
steatosis with aging (Fig. 4C).

To explore whether this obesity-dependent lipid accumulation during aging may be related
to the activation of stress kinases, we measured the phosphorylation of INK1/2, its substrate
c-Jun and p38 MAPK kinase. The results depicted in Fig. 4D demonstrate increased
activation of these stress kinases in livers from 16-month old, obese wild-type mice
compared with 3-month old wild-type controls. Activation of these stress kinases was not
detected in 16-month old mice lacking PTP1B that did not develop obesity during aging.
Moreover, phosphorylation of IRS1 ser307, which is related to the negative feed-back loop
of INK-mediated signaling (Sabio et al. 2009), was increased only in the livers of 16-month
old, obese wild-type mice. Conversely, no differences in the phosphorylation of the ER
stress kinases PERK and elF2a were observed between the livers of both genotypes of mice
at 16 months (results not shown), indicating that JINK is likely to mediate the serine
phosphorylation of IRS1 during age-associated obesity.

Aged PTP1B-deficient mice are protected against hepatic insulin resistance

Various lines of evidence demonstrate that chronic activation of pro-inflammatory pathways
within insulin-sensitive cells can lead to the deregulation of insulin signaling (Schenk et al.
2008). Consistent with this notion, insulin-induced tyrosine phosphorylation of the IRp
chain and total (anti-phosphoTyr-associated) Pl 3-kinase activity were decreased in livers
from 16-month, obese wild-type mice as compared to mice at 3 months (Figures 5A and S1).
However, in 16-month old, nonobese PTP1B~/~ mice activation of IR and PI 3-kinase-
mediated insulin signaling was comparable to the response of these mice at 3 months of age.
Downstream of PI 3-kinase, the phosphorylation of Akt at the catalytic (Thr 308) and
hydrophobic (Ser 473) sites was markedly reduced in the livers of 16-month old, obese wild-
type mice but not in age-matched PTP1B~/~ mice as compared with the corresponding
controls at 3 months. Likewise, the ability of insulin to stimulate the phosphorylation of
Foxol was enhanced in 16-month old, nonobese mice lacking PTP1B. Since we have
previously reported enhanced insulin signaling in PTP1B-deficient hepatocytes from 3-
month old mice compared to wild-type controls (Gonzalez-Rodriguez et al. 2007), we
analyzed this response in primary hepatocytes from 16-month old, obese wild-type mice and
nonobese mice lacking PTP1B. As a control we prepared primary hepatocytes from 3-month
old mice of both genotypes. Figures 5B and S1 reveal that the aging-associated attenuation
of insulin-mediated phosphorylation of Akt and Foxol in hepatocytes does not occur in
hepatic cells lacking PTP1B.

Next, we investigated possible differences in the ability of insulin to inhibit transcription of
Pck1 and G6pc in primary hepatocytes from 16-month old wild-type and PTP1B~/~ mice.
As shown in the northern blot analysis depicted in Figures 5B and S1, the down-regulation
of Pck1 and G6pc mRNAs by insulin was significantly reduced in hepatocytes from 16-
month old, obese wild-type mice as compared to the corresponding 3-month old controls. In
contrast, the inhibitory effect of insulin on Pck1 and G6pc mRNAs was preserved in
hepatocytes from 16-month old, nonobese PTP1B~/~ mice.

Aging Cell. Author manuscript; available in PMC 2013 April 1.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Gonzélez-Rodriguez et al. Page 6

Differential expression of negative modulators of insulin signaling in the liver of 16-month
old, obese wild-type and nonobese PTP1B-deficient mice

We assessed the possibility that the striking differences in insulin signaling between 16-
month old obese, wild-type mice and nonobese, PTP1B-deficient mice could reflect
differential expression of critical negative modulators of the early steps of insulin signaling.
PTP1B was a logical candidate given its ability to directly dephosphorylate the IR (Salmeen
et al. 2000). Consistent with its role in regulating insulin sensitivity, PTP1B protein and
MRNA levels were significantly up-regulated in the livers of 16-month old, obese wild-type
mice compared to mice at 3 months (Fig. 5C, 5D, S1). PTP1B protein levels were also up-
regulated in primary hepatocytes from 16-month old, obese wild-type mice as compared to
hepatocytes from 3-month control mice (Fig. 5C, S1). Importantly, PTP1B activity was
augmented in liver extracts from 16-month old, obese wild-type mice compared with the
phosphatase activity of 3-month old mice (Fig. 5E). Regarding other phosphatases that
negatively modulate insulin signaling, expression of the phosphatidylinositol phosphatase
PTEN was up-regulated in both wild-type and PTP1B~/~ mice with aging as compared to 3-
month old control mice (Fig. 5C, S1) mice whereas no differences were found in the
expression of the tyrosine phosphatase SHP2 (results not shown).

Elevated expression of p85a regulatory subunit of Pl 3-kinase induces competition with
p85a-p110 dimmers, thereby inhibiting insulin signaling (Mauvais-Jarvis et al. 2002). Thus,
p85a constitutes a critical node in the insulin signaling cascade. Levels of p85a were
significantly lower in liver extracts from PTP1B~/~ mice than those of wild-type mice at
both ages. Finally, the expression of p53 was up-regulated in the liver of 16-month old,
obese wild-type mice compared to control mice at 3 months but this effect was absent in
age-matched nonobese PTP1B~/~ mice (Fig 5C, S1).

Elevated expression of negative modulators of insulin signaling in skeletal muscle from
16-month old, obese wild-type mice; protection by PTP1B deficiency

Since we have demonstrated that PTP1B deficiency has beneficial effects on insulin
resistance in 16-month old mice (Fig. 1C), the effect of PTP1B-deficiency in insulin
signaling in skeletal muscle was evaluated. Insulin-induced Akt/Foxol phosphorylation was
markedly attenuated in skeletal muscle from 16-month old, obese wild-type mice as
compared to mice at 3 months, but was normal in 16-month old, nonobese PTP1B ™/~
animals (Fig. 5F, S2). Similar to our observations in liver, both mMRNA and protein levels of
PTP1B increased in skeletal muscle of 16-month old, obese wild-type mice (Fig. 5G, 5H,
S2). PTEN was also up-regulated in skeletal muscle of obese wild-type and nonobese
PTP1B~/~ mice at 16 months as compared to the 3-month old mice of both genotypes (Fig.
5H, S2) whereas no differences were found in the expression of SHP2 (results not shown).
Finally, PTP1B deficiency prevented the age-related increase of p53, as well as decreased
levels of p85a-P1 3-kinase regulatory subunit in skeletal muscle of 16-month old mice (Fig.
5H, S2).

Effect of PTP1B deficiency on energy expenditure in 16-month-old mice

To determine the cause of decreased adiposity and resistance to age-associated obesity in
PTP1B~/~ mice, we examined food intake and energy expenditure parameters. No
significant differences were found in daily food intake between PTP1B~/~ and wild-type
animals although there was a trend towards a decrease in PTP1B-deficient mice at both ages
(Fig. 6A). These data suggested that energy expenditure (EE) may be increased in 16-month
old, nonobese PTP1B~/~ mice. Thus, we performed indirect calorimetry to assess EE and
substrate oxidation. Oxygen consumption (VO2) was elevated in 16-month old, nonobese
PTP1B~/~ mice as compared to age matched obese wild-type mice during light and dark
cycles albeit significant differences between both genotypes at 3 months were found only in
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the dark cycle. EE was also increased in 16-month old, nonobese PTP1B-deficient mice
compared to obese wild-type mice at the same age during light and dark periods and,
similarly, the corresponding values of 3-month old PTP1B~/~ mice were statistically
significant from the 3-month old wild-type mice only in the dark period. Of note, no
differences between genotypes and age were noted in respiratory quotient (RQ) indicating
that PTP1B-deficiency does not alter fuel selection between fatty acids and carbohydrate
during aging.

Finally, we determined differences in expression levels of genes involved in fatty acid
oxidation. In liver (Fig. 6B), there was a significant increase in Ucp2 and Pgcla levels in
mice lacking PTP1B as compared to the wild-type controls at 3 and 16 months. In skeletal
muscle, Ucp3 and Pgclb were increased in 16-month old, nonobese PTP1B ™~ mice as
compared to the obese wild-type mice of the same age (Fig. 6C).

DISCUSSION

The development of insulin resistance that occurs with aging has been attributed to the
increased prevalence of risk factors such as sedentary life-style that leads to obesity
(Lechleitner 2008). Since life span is actually extended in Western countries, therapeutic
interventions are needed to reduce morbidity and improve quality of life in an elderly
population. The present study has demonstrated that deficiency of PTP1B ameliorates
peripheral insulin resistance, adiposity, inflammation, hyperleptinemia, hyperinsulinemia
and islet hyperplasia in mice at 16 months of age, implicating this enzyme as a key player in
the development of obesity-associated metabolic alterations during aging. Importantly, the
leanness of 16-month old PTP1B~/~ mice is associated with increased whole-body energy
expenditure and fatty acid oxidation but not with a reduction of daily food intake.

The molecular mechanisms underlying the association of obesity, insulin resistance and
chronic low-grade inflammation during aging are of critical importance for the development
of new drugs to treat metabolic diseases in an elderly population. Our data show that fat
mass is increased in 16-month old wild-type mice; moreover, we observed enhanced
adipocyte hypertrophy, crown-like structures, pro-apoptotic and pro-inflammatory markers
in WAT of these mice. Increased expression of pro-inflammatory genes in WAT and up-
regulation of PTP1B have been described in mice fed for 20 weeks with HFD. This has been
attributed to a TNFa-mediated increase of PTP1B transcription via nuclear factor kB
(NF«B) activation (Zabolotny et al. 2008). However, in the present study we did not observe
differences in the expression of PTP1B between WAT of 3 and 16-month old wild-type
mice maintained on a chow diet (results not shown), although TNFa levels were increased at
16 months of age. This suggests that the pro-inflammatory phenotype of WAT in 16-month
old, obese wild-type mice occurs without an elevation of PTP1B. By contrast, mRNA,
protein levels and activity of PTP1B were elevated in liver and muscle of wild-type mice at
16 months compared to 3-month old animals, perhaps owing to elevated levels of circulating
TNFa. These findings imply that PTP1B expression increases with obesity during aging in a
tissue-specific manner. Consistent with this, we have reported that PTP1B plays a prominent
role in mediating the deleterious effects of TNFa in skeletal muscle (Nieto-Vazquez et al.
2007). Therefore, the differential effects of age-related obesity on PTP1B expression in
these tissues may suggest that WAT PTP1B might not increase in obesity due to
compensatory adaptations. Nevertheless, PTP1B deficiency protects from WAT
accumulation during aging, thereby preventing the expression and secretion of pro-
inflammatory adipokines including TNFa which are associated with pathological changes in
peripheral tissues. In agreement with these data, insulin responsiveness of WAT, as assessed
by stimulation of glucose transport during the hyperinsulinemic-euglycaemic clamp, is
higher in 16-month old, nonobese PTP1B~/~ mice as compared to age-matched obese wild-
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type animals. These results differ from published data (Ruffolo et al. 2007) showing the lack
of improvement of insulin signaling in adipocytes from 16-week old PTP1B~/~ mice. This
was due to increased basal S6K1 activity which leads to IRS1 serine phosphorylation and
disruption of PI 3-kinase activation, thereby limiting the effects of insulin on fatty acid
uptake and lipolysis (Um et al. 2004). The age of the study animals might account for the
differences obtained between this study (Ruffolo et al. 2007) and our present data. Our
results demonstrate that the enhanced insulin sensitivity of WAT from 16-month old
PTP1B~/~ mice correlates with protection against inflammation and apoptotic-like features.
Of note, PTP1B deficiency also conferred protection against the decrease of glucose uptake
in BAT, suggesting its involvement in modulating insulin actions during age-related obesity
in both types of fat.

The development of hypoxia in WAT has been described in genetic models of obesity in
rodents (Ye et al. 2007), (Rausch et al. 2008). In vitro, overexpression of HIF1a impairs
insulin signaling in 3T3L1 and human adipocytes (Regazzetti et al. 2010). In light of these
data, our study suggests that fat accumulation during aging is associated with increased
expression of HIFLo which is prevented by PTP1B deficiency. Since hypoxia increases
oxidative stress which, in turn, attracts macrophages and exacerbates inflammation (Rausch
et al. 2008), inhibition of PTP1B might provide therapeutic benefit for insulin resistance and
obesity.

Recent evidence suggests a potential relationship between cellular aging signals in adipose
tissue and metabolic disorders. In this regard, Minamino et al. (Minamino et al. 2009) have
shown that excess caloric intake promotes senescence-like changes in adipose tissue of
young mice including increased oxidative stress and the expression of the tumor suppressor
p53. Indeed, our results demonstrate clearly that p53 protein levels increase in WAT, liver
and skeletal muscle of 16-month old wild-type mice but not in mice lacking PTP1B. Given
that PTP1B-deficent mice do not develop obesity with age, our findings suggest that
preservation of normal p53 expression in insulin sensitive tissues is related to their lean
phenotype.

Elevation in circulating fatty acids and pro-inflammatory adipokines which originate from
WAT reduces insulin sensitivity in liver and skeletal muscle (Olefsky 2008). However, the
molecular mechanisms underlying this deleterious cross-talk are currently not well
understood. Adipose tissue inflammation has been correlated with hepatic steatosis in
humans (Cancello et al. 2006). In our study, the presence of obesity-induced inflammatory
milieu was manifested by accumulation of TG and marked increases in JNK, c-Jun and p38
MAPK phosphorylation in livers of 16-month wild-type mice. Activation of these stress
kinases has been described in primary hepatocytes stimulated with palmitate (Akazawa et al.
2010) or TNFa (Gonzalez-Rodriguez et al. 2009) and negatively modulates insulin signaling
(Aguirre et al. 2000). Consequently, in the liver of 16-month old, obese wild-type mice,
hepatic insulin action, including inhibition of gluconeogenic genes Pck1 and G6pc, was
impaired. As stated above, PTP1B expression and activity were elevated in the livers and
primary hepatocytes of 16-month old, obese wild-type mice, most likely owing to elevated
inflammation. Thus, in these mice, the negative cross-talk on insulin signaling elicited by
JNK on IRSs proteins and by PTP1B on the IR might synergize to induce hepatic insulin
resistance. Ablation of PTP1B is associated with reduced activation of stress kinases,
decreased lipogenic gene expression and fatty liver and recovery of hepatic insulin
sensitization. Likewise, in skeletal muscle obesity-mediated impairment of insulin signaling
during aging was reverted in PTP1B-deficient mice. Collectively our results demonstrated
that the obesity-related inflammation and insulin resistance which generate a negative
endocrine cross-talk between WAT and peripheral tissues during aging (Olefsky 2008),
(Olefsky & Glass 2010) are prevented by inhibition of PTP1B. Moreover, our observations
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suggest that the positive effects of PTP1B deficiency on inflammation and insulin resistance
are due to the prevention of obesity through increased energy expenditure which may reflect
the enhanced sensitivity to leptin in the hypothalamus of these mice (Klaman et al. 2000).
We observed a small decline of glucose infusion rate during the clamp study in 16-month
versus 3-month old PTP1B-deficient mice, suggesting an effect of aging, independent of
obesity, on whole body insulin sensitivity. However, none of the tissue-specific measures of
insulin action (glucose uptake in skeletal muscle and fat) were significantly different
between the two PTP1B-deficient age groups of mice. On the other hand, since PTP1B is a
critical negative modulator of the insulin signaling cascade, a direct role of PTP1B on
insulin signaling pathways in the liver, skeletal muscle and brain should also not be
excluded.

EXPERIMENTAL PROCEDURES

Reagents

Antibodies

Animals

Fetal serum (FS) and culture media were obtained from Invitrogen. Insulin for cell culture
(1-0516) was from Sigma Aldrich. Human regular insulin for animal experiments (Actrapid,
775502) was purchased from Novo Nordisk. Protein A-agarose was from Roche Applied
Science. [y32P]-ATP (3000 Ci/mmol), [a32P]-dCTP (3000 Ci/mmol) and cDNA labeling kit
were from GE Healthcare.

Anti-phospho-Foxol (Ser 256) (#9461), anti-phospho-Akt (Thr308) (#2965), anti-Akt
(#9272), anti-phospho JNK (Thr183/Tyr185) (#4668), anti-phospho-c-Jun (Ser73) (#9164),
anti-phospho p38 MAPK (Thr180/Tyr182) (#9211) and anti-p38 MAPK (#9212) antibodies
were from Cell Signaling Technology. Anti-Bid (Ref. AF860) antibody was from R&D
Systems. Anti-FasL (Ref. 610410) and Anti-HIF1o (Ref. 610959) antibodies were from BD
Biosciences PharMingen (San Diego, CA). The anti-phospho-Akt (Ser473) (sc-7985), anti-
PTEN A2B1 (sc-7974), anti-IR B (sc-711), anti-phospho-IR B (Tyr1162/Tyr1163)
(sc-25103-R), anti-JNK (sc-571), anti-c-Jun (sc-45) and anti-phospho-Tyr for
immunoprecipitations (Py20, sc-508) antibodies were from Santa Cruz Biotechnology. The
anti-IRS1 (06-248), anti-p85a. (06-195), anti-PTP1B (07-088), anti-phospho-IRS1 (Ser307)
(07-247), anti-phospho-Tyr (clone 4G10, 05-321) and anti-SHP2 (06-118), antibodies were
obtained from Upstate (Millipore). The anti-p53 antibody (Ref. OP03) was from
Calbiochem or Cell Signalling (#2524). The anti-B-actin antibody (A-5441) was from
Sigma-Aldrich.

Wild-type (PTP1B*/*) and PTP1B-deficient (PTP1B /") mice were obtained from Abbot
Laboratories as previously described (Klaman et al. 2000), (Nieto-Vazquez et al. 2007),
(Gonzalez-Rodriguez et al. 2010). 3-month old PTP1B** (3m-PTP1B**), 3-month old
PTP1B~/~ (3m-PTP1B~/"), 16-month old PTP1B*/* (16m-PTP1B*/*) and 16-month old
PTP1B~/~ mice (16m-PTP1B~/~) were used throughout this study. Mice were maintained on
the same mixed genetic background (C57BI/6J x 129Sv/J), fed a standard chow diet ad
libitum and had free access to drinking water. All animal experimentation was conducted in
accordance with accepted standards of animal care.

Metabolic measurements

For measuring fed and fasted (20-24 h fast) glucose levels, blood was obtained from the tail
vein and glucose concentrations were measured with an Accu-Check Aviva glucometer
(Roche). Intraperitoneal glucose tolerance tests (GTT) were performed on mice fasted for
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20-24 h and injected with 2 g D-glucose/kg. Blood glucose was measured at 30, 60, 90 and
120 min after injection. Intraperitoneal insulin tolerance tests (ITT) were performed on 4 h
fasted mice injected with 0.75 U/kg human regular insulin and blood glucose was measured
at 15, 30, 45, 60 and 120 min after injection. Animals were subjected to DEXA scan
analysis in fed conditions to avoid weight loss induced by overnight fasting. Animals were
weighed and sedated under isoflurane anesthesia and scanned in toto using a small animal
DEXA scanner (pDEXA, Norland Stratec Medizintechinik GmbH, Birkenfeld, Germany).
This study was performed at the NMR Unit (Complutense University, Spain). Fat and lean
mass were measured on anesthetized mice using an EchoMRI-100 analyzer (Echo Medical
Systems, Houston, TX). Data were analyzed by the software supplied by the manufacturer.

Hyperinsulinemic-euglycemic clamp

This study was performed at the UMass Mouse Phenotyping Center and approved by UMass
Medical School IACUC. After an overnight fast, a 2-hr hyperinsulinemic-euglycemic clamp
was conducted in awake mice with a continuous insulin infusion rate of 2.5 mU/kg/min
(Kim et al. 2004). Basal and insulin-stimulated whole-body glucose turnover were estimated
using a continuous infusion of [3-3H] glucose (PerkinElmer, Boston, MA) for 2 h before the
clamps (0.05 pCi/min) and throughout the clamps (0.1 uCi/min), respectively. Whole-body
glycogen synthesis is calculated as the difference between whole-body glucose turnover and
glycolysis. To estimate insulin-stimulated glucose uptake in individual tissues, 2-deoxy-D-
[1-14C] glucose (2-[**C] DG; PerkinElmer) was administered as a bolus (10 pCi) at 75 min
after the start of the clamps. At the end of the clamp, tissues (gastrocnemius, white and
brown adipose and liver) were taken for biochemical analysis.

Indirect calorimetry

Indirect calorimetry was performed following standard methods using Oxylet System
metabolic chambers (Panlab Harvard Apparatus) at the Phenotyping Unit (11S Aragon,
Spain). Mice were in the measurement cages 12 hr previous to data recording. Room
temperature was 23°C and light/dark cycles were of 12 h. Volume of consumed 02 (VO2)
and eliminated CO2 (VCO2) were recorded every 24 min. Respiratory Quotient (RQ) was
calculated as: RQ=VCO2/VO2. Energy Expenditure (EE) was calculated as: EE=
(3.815+(1.232xRQ)) x VO2 x 1.44). Daily body weight and food intake were manually
measured.

Insulin signaling studies

4-h fasted mice were intraperitoneally injected with PBS or 0.75 U/kg of human regular
insulin and killed 15 min later. Then, peripheral tissues (liver, muscle —gastrocnemius- and
epididymal white adipose tissue (WAT)) were removed and total protein extracts were
prepared as previously described (Gonzalez-Rodriguez et al. 2010).

Primary culture of adult hepatocytes

Hepatocytes were isolated from non-fasting male mice by perfusion with collagenase as
described (Benveniste et al. 1998), (Gonzalez-Rodriguez et al. 2010). Cells were plated in
60-mm dishes (Falcon, BD biosciences) and cultured in William’s E medium supplemented
with 20 ng/ml EGF, 100 U/ml penicillin, 100 pug/ml streptomycin and 10% FS for 48 h.
Cells were serum starved for 4-6 h and further stimulated with 1 or 10 nM insulin for 10
min.

RNA extraction from primary hepatocytes and northern blot analysis

Primary hepatocytes were cultured in serum-free medium for 4-6 h and further stimulated
with dex/cAMP (0.5 mM dibutyril cAMP plus 1 uM dexamethasone) in the absence or
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presence of insulin (10 nM) for 6 h. At the end of the culture time, RNA was isolated and
submitted to Northern blot analysis. Total RNA was isolated from primary hepatocytes with
Trizol (Invitrogen) and submitted to northern blot analysis as previously described
(\Valverde et al. 2003), (Gonzalez-Rodriguez et al. 2010). Blots were hybridized with cDNA
probes for Pckl1 and G6pc. Membranes were subjected to autoradiography and relative
quantification of the hybridization signals was performed by densitometric scanning of the
autoradiograms.

Analysis of serum cytokines and hormones

Serum analysis was performed as described (Banno et al. 2010). Serum IL6 and TNFa were
measured using the Multiplex Kit (Linco, Millipore) following manual instructions. Serum
insulin, leptin, resistin and adiponectin were determined by ELISA (Linco, Millipore)
following manual instructions.

Determination of triglyceride (TG) levels

TG levels were determined in plasma and liver extracts by enzymatic methods with specific
kits from Biosystems (Barcelona, Spain).

Preparation of tissue extracts, immunoprecipitation, Pl 3-kinase activity and western blot
All these methods have been previously described (Valverde et al. 1997).

PTP1B phosphatase activity

PTP1B phosphatase activity was determined by measuring phosphate release using a
synthetic monophosphotyrosyl-containing peptide and the malachite green assay (Millipore)
as previously described (Gonzalez-Rodriguez et al. 2010).

Quantitative real-time PCR analysis and primer sequence

Total RNA extraction from islets was performed with an RNAspin kit (HealthCare) and
from liver, muscle and epididymal fat pads with Trizol (Invitrogen). Total RNA was reverse
transcribed using a SuperScript™ 111 First-Strand Synthesis System for gPCR following
manufacturer’s indications (Invitrogen). g°PCR was performed with an ABI 7900 sequence
detector using the SyBr Green method and d(N)g random hexamer with the primers
indicated. The primers used in the real time RT-PCR were the following:

Tnf, Fw 5'CATCTTCTCAAAATTCGAGTGAZ' and Rv
S'TGGGAGTAGACAAGGTACAACT

F4/80, Fw 5’CTTTGGCTATGGGCTTCCAGTC3' and Rv
S'GCAAGGAGGACAGAGTTTATCGTG3

Cd68, Fw 5’CAAGGTCCAGGGAGGTTGTG3' and Rv
S'CCAAAGGTAAGCTGTCCATAAGGAZ'

Cd1lc, Fw 5GCCCAGGGATATGTTCACAGC3 and Rv
S'’ACACAGTGTGCTCCAGTATGAZ

Fasn, Fw 5 'GCCCAGACAGAGAAGAGGCAS "and Rv
S'CTGACTCGGGCAACTTCCCY

Serbfl, Fw 5TAGAGCATATCCCCCAGGTG3' and Rv
S'GGTACGGGCCACAAGAAGTAZ

Ucp2, Fw 5’"GATCTCATCACTTTCCCTCTGGATAS3' and Rv
S'CCCTTGACTCTCCCCTTGG3
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Ucp3, Fw 5’ ACTCCAGCGTCGCCATCAGGATTCT3 and Rv
S'TAAACAGGTGAGACTCCAGCAACTTY

Pgcla, Fw 5’ AAGTGTGGAACTCTCTGGAACTG3' and Rv
S'GGGTTATCTTGGTTGGCTTTATG3’

Pgclb, Fw5' GCTCTGACGCTCTGAAGGAC3 "and Rv 5’
AAGGGCTTGGGCAATCCTC3'

Ppara, Fw 5AGAGCCCCATCTGTCCTCTC3 and Rv 5’
ACTGGTAGTCTGCAAAACCAAAZ'

Cptla, Fw 5" TCAATCGGACCCTAGACACC3 and Rv 5
CTTTCGACCCGAGAAGACCTY

Cptlb, Fw 5’CAAGTCATGGTGGGCAACTASJ' and Rv
S'GCTGCTTGCACATTTGTGTT3'

18s, Fw 5 'AGTCCCTGCCCTTTGTACACA3'andRv 5’
GCCTCACTAAACCATCCAATCGZ

Primer-probe sets for mouse Ptpnl was purchased as predesigned TagMan gene expression
assays and run as per the manufacturer’s instructions (Applied Biosystems).

Islet morphometry, immunohistochemistry and immunofluorescence

Pancreata were fixed with 4% paraformaldehyde and cryoprotected in PBS containing 30%
sucrose. Cryostat sections (10 um) were cut and kept at —80 °C until used. Sections were
brought to room temperature, permeabilized with methanol for 2 min at —20 °C and stained
with cresyl-violet. Islets area was measured by acquiring images at 40X from adjacent
nonoverlapping images of sections using a Nikon Eclipse 90i microscope. Islets area was
analyzed with the Image J software. For insulin immunostaining, sections were treated with
5% normal goat serum and incubated with a guinea pig anti-human insulin antibody (Linco
Research, St. Charles, MO). Immunodetection was carried out with a goat anti-guinea pig
fluorescence-tagged antibody. Images were taken using a Leica TCS SP5 confocal
microscope. PTP1B staining was performed as previously described in (Gonzalez-Rodriguez
et al. 2010). The protocol for islet isolation is detailed in (Hennige et al. 2003).

Liver histology

Samples of liver were fixed with 4% paraformaldehyde and cryoprotected in PBS containing
30% sucrose. Cryostat sections (10 um) were cut and kept at —80 °C until used. Liver
sections were stained with Hematoxylin & Eosin and Oil red O.

Statistical analysis

The data are presented as the mean + SEM. Statistical analysis was carried out with SPSS
(v.12) software. The statistical significance was estimated with a multivariate analysis of
variance (ANOVA) or 2-tailed-Student’s t test in hyperinsulinemic-euglycemic clamp
studies. Statistical significance was considered at p<0.05.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. PTP1B-deficient mice are protected against fat accumulation and insulin resistance
during aging
Metabolic phenotyping of 3m-PTP1B*/*, 3m-PTP1B~/~, 16m-PTP1B*/* and 16m-
PTP1B~/~ mice. A. (left panel) Body composition analyzed by dual-energy x-ray
absorptiometry (DEXA) scan analysis (n=6 per genotype). (right panel) Body weight, fat
content, fat mass and lean mass (n=6 per genotype). B. (left panel) insulin tolerance test
(ITT) and (right panel) glucose tolerance test (GTT) (n=20-25 per genotype). Data
corresponding to ITT and GTT tests in 3m-PTP1B~/~ versus 3m-PTP1B*/* are in agreement
with a previous report (Klaman et al. 2000). C. Hyperinsulinemic-euglycemic clamp and
tissue-specific glucose uptake studies (n=6-8 per genotype). “p<0.05, 3m-PTP1B~/~ vs. 3m-
PTP1B*/* *p<0.05, ®*p<0.01 and ***p<0.005, 16m-PTP1B*/* vs. 3m-

Aging Cell. Author manuscript; available in PMC 2013 April 1.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Gonzélez-Rodriguez et al. Page 17

PTP1B*/*: 4p<0.05, A 4p<0.01 and 4 A Ap<0.005, 16m-PTP1B~/~ vs. 16m-PTP1B*/*;
#p<0.05 and ##p<0.005, 16m-PTP1B~/~ vs. 3m-PTP1B~/~.
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Figure 2. PTP1B deficiency protects against p-cell hyperplasia and hyperinsulinemia during
agin

A?na?ysis of pancreata from 3m-PTP1B** 3m-PTP1B~/~, 16m-PTP1B** and 16m-
PTP1B~/~ mice. A. (left panel) Representative staining with cresyl violet in pancreas
sections (n=4-5 per genotype). (right panel) Islet surface was calculated by mean cross-
sectional area of multicelled islets from pancreas (n=45-50 islets per pancreas from 4-5
animals per genotype). B. (left panel) Representative anti-insulin immunostaining in
pancreas sections. (right panel) Serum levels of insulin (n=10 per genotype). C. (left panel)
Representative anti-PTP1B immunostaining in pancreas sections (n=3 per genotype). (right
panel) Ptpnl mRNA levels determined by real-time PCR (n=5-6 per genotype). *p<0.05
and ***p<0.005, 16m-PTP1B*/* vs. 3m-PTP1B*/*: 4p<0.05 and 4 4 4p<0.005, 16m-
PTP1B~/~ vs. 16m-PTP1B*/*.
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Figure 3. PTP1B-deficiency protects against inflammation and hypoxia in white adipose tissue in
age-associated obesity

Analysis of WAT pads from 3m-PTP1B*"*, 3m-PTP1B~/~, 16m-PTP1B*/* and 16m-
PTP1B~/~ mice. A. (left panel) Representative immunostaining with F4/80 in WAT sections
(n=7-8 per genotype). (right panel) Adipocyte surface was calculated by mean cross-
sectional area of adipocytes from epididymal WAT (n=25 adipocytes per WAT pad from 6
animals per genotype). B. F4/80, Cd68, Tnf and Cd11c mRNA levels determined by real-
time PCR (n=9 per genotype). C. Serum levels of the indicated cytokines (n=8-12 per
genotype). D. Serum levels of TG (n=8 per genotype). E. Western blot analysis of WAT pad
extracts with the indicated antibodies (n=6-8 per genotype). *p<0.05, 3m-PTP1B~/~ vs. 3m-
PTP1B*/* ®p<0.05, ®*p<0.01 and ***p<0.005, 16m-PTP1B** vs. 3m-PTP1B**: 4p<0.05
and A4 /‘p<0.005, 16m-PTP1B~/~ vs. 16m-PTP1B*/*; #p<0.05, 16m-PTP1B~/~ vs. 3m-
PTP1B™".
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Figure 4. PTP1B deficiency protects against obesity-associated activation of stress kinases and
steatosis in the liver during aging

Analysis of livers from 3m-PTP1B**, 3m-PTP1B~/~, 16m-PTP1B** and 16m-PTP1B ™/~
mice. A. Representative staining with Hematoxylin & Eosin and Oil red O in liver sections
(n=6 per genotype). B. Hepatic TG content (n=6 per genotype). C. Fasn and Srebf1 mRNA
levels determined by real-time PCR (n=8 per genotype). D. Western blot analysis of liver
extracts with the indicated antibodies (n=6-8 per genotype). *p<0.05 and **p<0.01, 16m-
PTP1B** vs. 3m-PTP1B*/*: 4p<0.05 and 4 A 4p<0.005, 16m-PTP1B~/~ vs. 16m-
PTP1B**,
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Figure 5. PTP1B deficiency recovers insulin signaling in liver and muscle from 16-month old
mice. A

Analysis of insulin response and its signaling pathways in liver from 3m-PTP1B*/*, 3m-
PTP1B~/~, 16m-PTP1B*/* and 16m-PTP1B~/~ mice. Quantification of western blot analysis
of liver extracts (n=8 per genotype) performed with the indicated antibodies. Quantification
of anti-pTyr- associated PI3K activity in liver extracts (n=8 per genotype) (see Fig. S1). B.
(left panel) Quantification of western blot analysis of insulin signaling in primary
hepatocytes (3 mice per genotype). (right panel) Quantification of the insulin effect on the
inhibition of cAMP/Dex-stimulated Pck1 and G6pc mRNA by northern blot analysis in
primary hepatocytes (3 mice per genotype). Increased insulin signaling in liver and
hepatocytes of 3m-PTP1B~/~ compared to 3m-PTP1B*/* agrees with previous reported data
(Haj et al. 2005) (Gonzalez-Rodriguez et al. 2007). C. Quantification of western blot
analysis of liver extracts (n=8 per genotype) with the indicated antibodies. PTP1B
expression was also analyzed in primary hepatocytes (3 mice per genotype). D. Ptpnl
mMRNA levels determined by real-time PCR from livers (n=12 per genotype). E. PTP1B
enzymatic activity in liver extracts (n=5 per genotype). F. Analysis of insulin response and
its signaling pathways in skeletal muscle from 3m-PTP1B*/*, 3m-PTP1B~/~, 16m-
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PTP1B** and 16m-PTP1B~/~ mice. Quantification of western blot analysis of skeletal
muscle extracts with the indicated antibodies (n=6 per genotype). G. Ptpn1 mRNA levels
determined by real-time PCR from skeletal muscle (n=12 per genotype). H. Quantification
of western blot analysis of skeletal muscle extracts with the indicated antibodies. *p<0.05,
3m-PTP1B ™/~ vs. 3m-PTP1B*/* *p<0.05 and **p<0.01, 16m-PTP1B*/* vs. 3m-
PTP1B*/*: 4p<0.05, A 4p<0.01 and 4 A 4p<0.005, 16m-PTP1B~/~ vs. 16m-PTP1B**,
#p<0.05, 16m-PTP1B~/~ vs. 3m-PTP1B~/~.
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Figure 6. Effect of PTP1B deficiency on energy expenditure in 16-month old mice

Analysis of energy expenditure parameters of 3m-PTP1B*/*, 3m-PTP1B~/~, 16m-PTP1B*/*
and 16m-PTP1B~/~ mice A. Daily food intake (n=10 per genotype). RQ, VO2 and EE
determined by indirect calorimetry (n=4 per genotype). Increased EE in 3m-PTP1B ™/~
compared to 3m-PTP1B*/* agrees with previous data (Klaman et al. 2000). B. Ucp2, Pgcla,
Pgclb, Ppara and Cptla mRNA levels determined by real-time PCR from livers (n=8 per
genotype). C. Ucp3, Pgcla, Pgclb, Ppara and Cptlb mRNA levels determined by real-time
PCR from skeletal muscles (n=8 per genotype). “p<0.05, 3m-PTP1B~/~ vs. 3m-

PTP1B*/*: 4p<0.05, 16m-PTP1B~/~ vs. 16m-PTP1B*/*,
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