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Nitrous oxide (N2O) is a powerful atmospheric greenhouse gas and cause of ozone layer depletion.
Global emissions continue to rise. More than two-thirds of these emissions arise from bacterial and
fungal denitrification and nitrification processes in soils, largely as a result of the application of
nitrogenous fertilizers. This article summarizes the outcomes of an interdisciplinary meeting,
‘Nitrous oxide (N2O) the forgotten greenhouse gas’, held at the Kavli Royal Society International
Centre, from 23 to 24 May 2011. It provides an introduction and background to the nature
of the problem, and summarizes the conclusions reached regarding the biological sources and
sinks of N2O in oceans, soils and wastewaters, and discusses the genetic regulation and molecular
details of the enzymes responsible. Techniques for providing global and local N2O budgets are
discussed. The findings of the meeting are drawn together in a review of strategies for mitigating
N2O emissions, under three headings, namely: (i) managing soil chemistry and microbiology,
(ii) engineering crop plants to fix nitrogen, and (iii) sustainable agricultural intensification.
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1. INTRODUCTION
Nitrous oxide (N2O) is a colourless, non-toxic gas,
commonly known as laughing gas. Since its discovery
over 200 years ago, it has found use both as an anaes-
thetic and a fuel additive. However, in 1908, the
invention of the Haber–Bosch process, allowing the
abiological reduction of atmospheric nitrogen to
ammonia (NH3; called nitrogen fixation), gave rise to
the introduction of synthetic nitrogen-based fertilizers
that has enabled dramatic increases in intensive farm-
ing. This, in turn, has led to increasing N2O emissions
from the increased presence of reactive nitrogen in soil
[1,2]. The deposition of nitrogen from motor vehicles,
especially near busy roads, means that fossil fuels are
also a major contributor to soil nitrogen levels [3].
The return of animal waste to soil and wastewater
treatment further contribute to N2O emissions [4,5].
The cumulative effect over the past century has been
an estimated approximately 20 per cent increase in
atmospheric N2O concentration that is still increasing
at a rate of 0.2–0.3% yr21 [6]. More than two-thirds
of these emissions come from bacterial and fungal
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respiratory processes in soils, broadly termed denitrifi-
cation and nitrification [1,2]. Figure 1 illustrates the
proportions of total global nitrous oxide emitted by
various sources, including human activities.

N2O is a powerful greenhouse gas (GHG) with an
atmospheric lifetime of 114 years [7]. Although N2O
only accounts for around 0.03 per cent of total GHG
emissions, it has an almost 300-fold greater potential
for global warming effects, based on its radiative
capacity, compared with that of carbon dioxide
(CO2) [7]. Hence, when the impact of individual
GHGs on global warming is expressed in terms of
the Intergovernmental Panel on Climate Change
approved unit of CO2 equivalents, N2O accounts for
approximately 10 per cent of total emissions [6].

In the stratosphere, the main sink for N2O, ultra-
violet photochemistry oxidizes NOx [8]. Today, N2O
is a major cause of ozone layer depletion [9]. Since
1997, many of the non-biological emissions of N2O,
for example, those associated with the transport indus-
try, have been systematically lowered, whereas
emissions from agriculture are essentially unchanged
[7]. Although the 1997 Kyoto Protocol set emission
limitations and reduction obligations, with respect to
a basket of six gases, including N2O, on its signatories
this Protocol expires in 2012. It is crucial that its succes-
sor is able to address fully the issue of soil-derived N2O
This journal is q 2012 The Royal Society
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Figure 1. Proportions of total global nitrous oxide emitted by
various sources and human activities. Adapted from data in

the Contribution of Working Group III to the fourth assess-
ment report of the intergovernmental panel on climate
change, 2007. Eds B. Metz, O. R. Davidson, P .R. Bosch,
R. Dave and L. A. Meyer. Cambridge, UK; New York,
NY: Cambridge University Press.
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Figure 2. The microbiological nitrogen cycle. Shown are the
several microbial processes that respire or assimilate nitrogen
(the oxidation states of N are given in parentheses). The

name of each process is indicated. Nitrous oxide (N2O) is
an intermediate in denitrification. The anammox reaction,
used in wastewater treatment plants, is the catabolism
between ammonia and nitrite to yield nitrogen gas, e.g.
NHþ4þNO�2 ! N2 þ 2H2O.
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emissions. Because of the ongoing decline of chloro-
fluorocarbons and the continuous increase of N2O in
the atmosphere, the contributions of N2O to both the
greenhouse effect and ozone depletion will be even
more pronounced in the twenty-first century [9,10].

The availability of nitrogen (nitrate or ammonium)
as well as phosphorus (phosphate) and potassium are
crucial determinants of globally sustainable crop
yields. There is widespread nitrogen and phosphate
deficiency and thus potential yields are often not
reached. This deficiency is particularly acute in the
developing world where the need to apply nitrogen fer-
tilizer or encourage biological nitrogen fixation will
certainly increase. In these systems, the primary aim
is food security, but with it will, undoubtedly, come
yet further increases in N2O emissions. Thus, the
environmental damage from the further intensification
of agriculture will increase more rapidly unless means
can be found to mitigate the emissions of biologically
derived N2O [11].

Between 23 and 24 May 2011, a residential sci-
entific meeting, entitled ‘Nitrous oxide (N2O) the
forgotten greenhouse gas’, was held at the Kavli
Royal Society International Centre, Chicheley Hall,
Buckinghamshire, UK. The objective of this meeting
was to bring together scientists from a wide range
of disciplines, including biochemists, chemists,
molecular biologists, geneticists, microbiologists, soil
scientists, ecologists and environmental scientists to
discuss four areas, namely: (i) biological sources of
N2O emissions and the consequent problems; (ii) bio-
logical production and consumption of N2O;
(iii) measuring and modelling N2O balances; finally
(iv) strategies for mitigating N2O emissions. The
papers published in this themed volume of Philosophi-
cal Transactions of the Royal Society B were presented
and discussed at this meeting.

This paper provides an introduction and back-
ground to the nature of the problem of the biological
sources of N2O, exploring the biological sources and
sinks of N2O from different environments such as
oceans, soils and wastewaters, and describes the
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genetic regulation and molecular details of the
enzymes responsible. The techniques for measuring
and assessing the amounts of N2O to provide global
and local budgets are discussed. A summary is pro-
vided of the main conclusions reached by the papers
in this issue. Finally, these findings are drawn together
in a discussion of strategies to mitigate N2O release.
2. THE NITROGEN CYCLE
Nitrogen gas (N2), present at 78.08 per cent (v/v) in
the atmosphere, possesses one of the most stable
chemical linkages known, namely, a chemical triple
bond that requires almost 103 kJ M21 of energy to
break into its component N atoms. The triple bond
of N2 also has a very high-energy barrier towards
breaking, necessitating the use of highly effective cata-
lysts, or enzymes, to speed up the scission process. All
biological organisms require nitrogen to synthesize
amino acids, proteins, nucleic acids and many
additional cofactors. The total nitrogen combined in
biology originates from the atmosphere to where it is
ultimately returned as the gas, N2. Figure 2 shows
the best known, arguably, of all elemental cycles, the
nitrogen (or N2) cycle. Nitrogen is driven through
all its accessible redox states from the most strongly
reduced state, as [NH3], in the 23 oxidation state,
to the most highly oxidized state, nitrate ion,
[NO3]2, in the þ5 oxidation state. Various species
with intermediate oxidation states are produced such
as nitrite ion, [NO2]2, the gases nitric oxide, [NO]
and nitrous oxide [N2O]. They arise through the
actions of a number of biological processes the most
prominent of which are termed nitrogen fixation,
nitrification, dissimilatory nitrate reduction to ammo-
nia (DNRA, or nitrate ammonification), anaerobic
ammonia oxidation (anammox) and denitrification.
Ammonium ion, [NH4]þ, availability is the net result
of immobilization, mineralization and nitrification



Table 1. The genes and enzymes that carry out the bacterial nitrogen cycle.

transformation genes encoding enzyme references

N2!NH3 nifHDK nitrogenase [13]
NO�3 ! NO�2 narG dissimilatory nitrate reductase [14]

NO�2 ! NO nirS, nirK nitrite reductase haem cd1 and copper nitrite reductase [15]
NO!N2O norCB nitric oxide reductase [16,17]
N2O!N2 nosZ nitrous oxide reductase [18–20]
NHþ4 oxidation amo, hao ammonia monooxygenase, hydroxylamine oxidoreductase [21,22]
NO�3 assimilation narB, nasA assimilatory nitrate reductase [23]

NO�2 assimilation Nir assimilatory nitrite reductase [24]
NH3 assimilation glnA glutamine synthetase [25]
organic N metabolism ure urease [26]
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[12]. Table 1 lists the enzymes and the genes that carry
out the nitrogen cycle.

Atmospheric N2 is fixed into NH3 only by free-living
and symbiotic bacteria and archaea (diazotrophs).
Nitrogenase is the universal catalyst that breaks the
triple bond to produce NH3. There are three known
variants of the nitrogenase enzyme, all possessing com-
plex, unique iron and sulphur clusters, one of which
contains an additional metal ion, being molybdenum,
iron or vanadium, in each variant. The ammonium
ion can be oxidized to the nitrate ion [NO3]2 in a
three-step process called nitrification, the first of
which is catalysed by the enzyme ammonia monooxy-
genase (AMO). [NO2]2 and [NO3]2 ions generated
from nitrification may then be reduced either during
DNRA or denitrification.

The main routes of N loss are by soil erosion, leach-
ing, ammonia volatilization, ammonia oxidation and
denitrification. Approximately, 62 per cent of total
global N2O emissions is thought to be emitted from
natural and agricultural soils (6 and 4.2 Tg N yr21,
respectively) [27,28] mainly owing to bacterial denitri-
fication and ammonia oxidation, the first step in
nitrification [2,29]. The other third of N2O emissions
comes from the ocean via nitrification and denitri-
fication [30]. Further anthropogenic sources of N2O
include the production of nitric acid, power plants
(fossil fuelled) and vehicle emissions [10]. These emis-
sions are responsible for an 18 per cent increase of
atmospheric N2O since the early 1900s [1] and are
still increasing at a rate of 0.25 per cent per year [1,7].

Denitrification is the stepwise reduction of [NO3]2

to N2 by four enzymes each generating intermediate
products, namely, nitrite ion [NO2]2, NO and N2O.
[NO3]

2 can also be reduced during nitrate ammonifica-
tion to [NH4]þ via [NO2]2, with N2O being produced.
Anammox is the process by which [NO2]

2 is reduced to
N2 using [NH4]þ as an electron donor. The ability to
denitrify is phylogenetically diverse, and can even be
undertaken by microbes traditionally classified as
belonging to a different functional group. For example,
ammonia-oxidizing bacteria are also able to denitrify,
reducing [NO2]

2 ion, sometimes referred to as nitrifier
denitrification. N2O is also produced as a by-product
during ammonia oxidation, the first step of nitrification.
Two further major biological processes of nitrogen
transformation are immobilization (or assimilation),
the uptake of nitrogen by micro-organisms and its con-
version to organic nitrogen, and mineralization or
Phil. Trans. R. Soc. B (2012)
ammonification, the conversion of organic nitrogen to
[NH4]

þ [2,31].
While there are several enzymological pathways in

fungi and bacteria that generate N2O, there is only
one enzyme known that converts N2O to gaseous
nitrogen, N2, namely, nitrous oxide reductase
(N2OR) [2]. Failure of this enzyme to operate leads,
for example, to the termination of the bacterial denitri-
fication process at N2O rather than N2. This may
be the key to the understanding of, and possible
intervention in, the increased emissions of N2O as
intensification of agriculture has tended to take place
through the increased application of nitrogenous
fertilizers [18].
3. NITROUS OXIDE EMISSION FACTORS
The upward trend in the atmospheric concentration of
N2O over the 140 years between 1860 and 2000 from
all sources has been well documented. Smith et al.
[32] summarize the historical evidence and have now
been able to account satisfactorily for the rises. They
compare the amounts of new reactive N entering agri-
cultural systems globally with the total emission of
N2O, expressing the ratio of these two as an N2O emis-
sion factor (EF). This reactive N includes N newly
fixed as synthetic fertilizer, and biologically fixed N,
and also N mineralized from soil organic matter
(SOM) when natural land is converted to agriculture
[5] and NOx deposition. The historical upward trend
observed in the atmospheric concentration of N2O
can then be very closely matched with an overall EF
close to 4 per cent. Thus, they have clearly shown
that agriculture is the activity mainly responsible for
the additional N2O emissions over the past century
and a half. They also apply their methodology to ana-
lyse N2O emissions arising from biofuel production
and reach the conclusion that, when rapeseed and
maize (corn), which require nitrogenous fertilizer, are
used to produce biodiesel and bioethanol, the N2O
emitted could cause as much, or more, global warming
as that avoided by replacement of the fossil fuel by bio-
fuel. It is, therefore, important to avoid biofuel
production based on crops with a high N demand but
to use those that can be grown with little, or no, fertili-
zer N requirement such as willow and Miscanthus, the
so-called ‘second generation’ biofuel crops.

Skiba et al. [33] argue that, especially in the agricul-
tural sector, an EF can be too simplistic to reflect local
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variations in climate, ecosystems and management,
and should not, therefore, be used to take account of
the effects of any mitigation strategies. This paper
examines deviations of observed N2O emissions from
those calculated using the simple EF for all anthropo-
genic sources and strongly advocates the need to adopt
specific EFs that reflect regional variability in climate,
soil type and management. Although they can show
how bottom-up emission inventories can be verified
by top-down modelling they conclude that, in spite
of the wealth of N2O emission measurements of the
past 20 years, there are still not enough long-term
datasets to provide the information needed to design
EFs for different climate zones or soil types.
4. BIOLOGICAL PRODUCTION AND
CONSUMPTION OF NITROUS OXIDE
(a) Enzymological aspects

N2O is produced by both fungi and certain classes of
bacteria, including those living in soils and in the
oceans, as part of their respiratory processes to gener-
ate energy. A recent study revealed that archaeal
nitrification is dominating the N2O production in the
ocean [34]. The possible contribution of the archaea
to N2O production in terrestrial systems, however, is
as yet unknown.

Shoun & Tanimoto [35] were the first to identify
fungal (eukaryotes) denitrifying activities previously
thought to be restricted only to bacteria (prokaryotes).
Shoun et al. [36] review the fungal denitrification
system. It comprises a copper-containing nitrite
reductase (NirK) and a cytochrome P450 nitric
oxide reductase (P450nor) that together reduces
nitrite to N2O. The system is localized in mitochondria
that are also able to function during anaerobic respir-
ation. Some fungal systems use dissimilatory and
assimilatory nitrate reductases to denitrify nitrate. Phy-
logenetic analysis of nirK genes showed that the fungal
denitrifying system has the same ancestor as the bac-
terial counterpart, and thus probably originates from
the proto-mitochondrion. Fungal denitrification is
often accompanied by co-denitrification, in which a
hybrid N2O species is formed upon the combination
of the nitrogen atoms of nitrite with nitrogen donors
such as amines and imines. The final product of
fungal denitrification is N2O, because the enzyme
N2OR is absent. Hence, fungal denitrification, under
certain conditions, is expected to be a major source
of N2O emissions. Shoun notes that acidification of
environments, for example, by acid rain and excessive
use of ammonia fertilizer, promote fungal activity
resulting in further increases in N2O emissions.
Prendergast-Miller et al. [37] have recently shown
ectomycorrhizal fungal species possess the ability to
produce N2O, suggesting that they may have a signifi-
cant, but as yet unexplored, role in N2O production in
forest ecosystems. Recent advances in isotopomer
approaches promise the ability to be able to estimate
the partition between fungal and bacterial N2O pro-
duction in situ, and to allow estimates of the
significance of fungal denitrification across a range of
ecosystems [38].
Phil. Trans. R. Soc. B (2012)
The major contributor to the biological production
of N2O in many environments is the respiratory NO
reductase (NOR) found in denitrifying bacteria and
in some ammonia-oxidizing organisms. Recently, the
molecular structure of this enzyme, the bacterial nitric
oxide reductase cNOR from Pseudomonas aeruginosa,
has been solved by Shiro et al. [39]. Since 1971, the
NO reduction activities of the bacterial membrane-
bound NORs have been reported for many bacteria.
Although there can be wide variations in the electron-
donating moiety, the structures of the catalytic domains
are invariant consisting of 12 transmembrane helices
that bind one low-spin haem plus a high-spin haem
that is adjacent to a non-haem iron centre, called FeB.
The dinuclear pair (the haem iron and FeB) binds
and activates two NO molecules forming the N–N
bond of N2O. Shiro et al. [39] discuss a number of
possible mechanisms for this reaction.

An intriguing evolutionary aspect of this study is con-
firmation of the long suspected close structural similarity
between NOR and the main subunit of aerobic and
micro-aerobic cytochrome oxidases (COX) that reduce
oxygen to water in an energy conserving reaction that
is tightly linked to the translocation of protons across a
membrane. In this case, the high-spin haem is adjacent
to a copper ion (CuB) that has replaced the FeB. These
structural differences between cNOR and COX
observed in the catalytic centre, and the delivery path-
way of the catalytic protons, clearly reflect the
functional differences between these respiratory
enzymes. NOR, and hence N2O production, is thought
to have preceded COX, and oxygen reduction, on the
evolutionary timescale, consistent with the dramatic
rise of oxygen in the Earth’s atmosphere around 3.5
Ga (giga years ago) [40].

Another source of nitrous oxide is from nitrate-
ammonifying (DNRA) bacteria [41]. It is now
recognized that DNRA bacteria such as Salmonella
and Escherichia coli can produce NO as a side product
of nitrate metabolism. This endogenous NO can lead
to de-repression of genes encoding systems that are
concerned with the detoxification of NO and the
repair of proteins potentially damaged by this cyto-
toxin. One regulator that mediates this de-repression
is the NO-binding protein NsrR. In E. coli, NsrR
regulates some 20 genes, including that for flavohae-
moglobin (Hmp) which converts NO to N2O under
anoxic conditions [42].

In contrast to the multiplicity of mechanisms by
which N2O can be generated, only a single dominant
sink for N2O is known, the respiratory N2O reductase
(N2OR) typically found in denitrifying bacteria that
reduce N2O to N2. N2OR is a homo-dimeric protein
containing two structurally distinct copper cofactors
per monomer that are crucial for activity, namely:
CuZ and CuA [43]. These copper cofactors are
inserted only into the apo-protein when it has been
translocated from the cytoplasm to the periplasm
[44]. Hence, severe copper depletion can lead to
enzyme inactivation [45]. In N2OR itself, the catalytic
state seems chemically fragile. For example, it loses
activity if exposed even briefly to oxygen. The fragility
of N2OR likely depends on the chemical nature of the
Cu–S cluster of the catalytic centre. For many years,
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biochemists have known that CuZ can adopt different
oxidation states and stabilities, as evidenced by
changes in colour, that depend on the previous history
of exposure of either the cell or the enzyme itself to
oxygen. The paper from Dell’Acqua et al. [46] pre-
sents evidence on the N2OR purified from the
marine organism Marinobacter hydrocarbonoclasticus
that the catalytic centre, CuZ, can adopt different oxi-
dation states. One form, CuZ*, [1Cu2þ : 3Cuþ], is
redox inert and, hence, enzymatically inactive. How-
ever, they have shown that it can be reactivated
slowly by incubation for many minutes under non-
physiological, highly reducing conditions. A so-called
purple form in which the CuZ centre is in the oxidized,
redox state [2Cu2þ : 2Cuþ] is generated that can sub-
sequently be reduced to the [1Cu2þ : 3Cuþ] state.
However, none of these redox states is a high-activity
state. The high-activity state is reached only after com-
plete reduction of the CuZ centre to an all-Cu(I) form
[4Cuþ]. However, very recent structural evidence [47]
reveals a form of the enzyme that, unexpectedly, con-
tains the CuZ cluster in the form [Cu4S2], whereas
the previous X-ray structures of the low-activity state
[1Cu2þ : 3Cuþ, S] show the cluster to contain only
one sulphide ion, [Cu4S]. One can speculate that the
reductively reactivated, high-activity enzyme may well
contain the [Cu4S2] cluster.

Within the cell, the maintenance of high-activity
N2OR, or recovery of activity, say, after transient
exposure to oxygen, is likely due to ancillary proteins
that insert the copper cofactors into the apo-protein
and are known to be required for N2OR activity.
Thus, supply of sulphur and electrons is a require-
ment. In the nos gene cluster, there is a putative
ABC transporter (possibly of sulphur), consisting
of NosD, NosF and NosY [48]. In addition, the
operon encodes a Cu chaperone, NosL. The mem-
brane-bound regulator NosR, required for operon
expression, appears to contain redox centres, including
FeS clusters (perhaps for electron supply). Thus, the
biosynthesis of N2OR and the maintenance of its
reductase activity requires these ancillary proteins.
These are all points of vulnerability that can lead to
inactivation of N2OR and, hence, result in release of
gaseous N2O. A clearer understanding of these pro-
cesses, their regulation and operation will help define
the optimal environmental conditions for maintenance
of the activity of N2OR and hence the encouragement
of the release of N2 rather than N2O.
(b) Microbiological aspects

Of the many factors that contribute to the emission
of N2O from bacterial populations, one important
determinant is the cellular abundance and another is
the activities of the enzymes that produce and con-
sume N2O [42]. Enzyme abundance is governed by
expression of the corresponding genes of regulatory
systems and signal transduction pathways that respond
to intra- or extracellular signals. Because N2O is rela-
tively inert at ambient temperature, and is not a
potent toxin, micro-organisms can tolerate relatively
high concentrations (millimolar). N2O does not, there-
fore, appear to be a signal that regulates the expression
Phil. Trans. R. Soc. B (2012)
of any of the denitrification genes. From the point of
view of mitigating N2O release from denitrification,
the absence of regulation by N2O is a significant obser-
vation, because denitrifying populations do not
apparently respond to N2O accumulation by making
more of the N2OR. The expression of the genes encod-
ing the enzymes that produce and consume N2O is
regulated by environmental signals, typically oxygen
and NO, acting through regulatory proteins, which,
either directly or indirectly, control the frequency of
transcription initiation. Because denitrification is an
anaerobic respiration, it makes good physiological
sense for denitrification genes to be upregulated by
low oxygen concentrations. NO is an intermediate of
the pathway, and is somewhat toxic. Regulation of
denitrification gene expression by NO is therefore
presumed to be a mechanism to coordinate NO
production and consumption so as to avoid its
accumulation to toxic levels.

Bakken et al. [49] nicely expand these points. For
instance, in various mutants of Paracoccus denitrificans,
the transcription of nosZ, that codes for N2OR, is
equally effective with FnrP that responds to oxygen
depletion or NNR, responding to NO. In P. denitrificans,
N2OR is expressed much earlier than nitrite reductase
(NIR) and NOR in response to low oxygen. Moreover,
only a fraction of the cells are able to express NIR and
NOR before all the oxygen has been depleted. In con-
trast, nearly 100 per cent of the cells appear to express
N2OR, as judged from the rate of reduction of exter-
nally supplied N2O. The denitrification phenotype of
P. denitrificans at pH 7 demonstrates highly efficient
reduction of NOx all the way to N2, with only minor
emissions of either NO or N2O. Bakken wryly observes
that if the denitrifying communities of soils performed
equally well, their contribution to emission of NO and
N2O would be negligible. Although the performance
of P. denitrificans appears to be exceptional, the soil bac-
terium Agrobacterium tumefaciens is unable to reduce
N2O to N2 because it lacks nosZ. Indeed, strains
which lack nosZ occur within many genera of denitrify-
ing prokaryotes, and if organisms with such a truncated
denitrification apparatus were to dominate in soils, it
would lead to high N2O/(N2þN2O) product ratios of
denitrification. Bakken, therefore, proposes the term
‘denitrification regulatory phenotype’, that is a set of
variables characterizing the organism’s ability to per-
form a balanced and effective transition from oxic to
anoxic respiration with only marginal emissions of
intermediates. This rather detailed understanding of
the bacterial nitrogen cycle to date has come from
studies of Gram-negative bacteria but evidence is now
appearing showing that Gram-positive bacteria, such
as bacilli, can also carry out denitrification [50,51].
5. NITROUS OXIDE EMISSIONS FROM SOILS
It is now well-recognized that microbial activity in soils
is a major contributor to atmospheric loading of N2O.
Clark et al. [52] have assessed the influence of different
long-term fertilization and cultivation treatments in a
160 year-old field experiment, comparing the potential
for denitrification with the size and diversity of the soil
denitrifier communities. Denitrification potential was
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found to be much higher in soil from an area left
to develop from arable into woodland than from
a farmyard manure-fertilized arable treatment,
which in turn was significantly higher than inorganic
nitrogen-fertilized and unfertilized arable plots.
These observations correlated with abundance of
nirK but not nirS (dissimilatory nitrite reductase
genes). Most genetic variation was seen in nirK
where sequences resolved into separate groups accord-
ing to soil treatment. They conclude that bacteria
containing nirK are most likely responsible for the
increased denitrification potential associated with
nitrogen and organic carbon availability in this soil.
Soil physicochemical properties (bulk density, pH,
organic matter, organic C, N and C : N ratio) have
an overriding influence on the potential denitrification
activity resulting in increased N2O emissions in soils
with high organic matter. Significantly, there were
also structural differences in denitrifier communities
in soils with high N and C contents. Thus, they
possess proportionally fewer copies of the N2OR
gene nosZ, so may be less able to close the nitrogen
cycle by reducing N2O to N2. They also note that
soil management (tillage) can lower GHG emissions.

Bakken et al. [49] report that, in model strains of
P. denitrificans in pure cultures and in microbial com-
munities extracted from soils, the N2O/(N2þN2O)
product ratio of denitrification is controlled by pH.
The ratio increases with acidity. The effect is probably
due primarily to interference with the assembly of the
enzyme N2OR, rather than to the narrow pH range of
the maximal activity of the enzyme. There have been
many similar observations of pH effects on denitrifica-
tion in soils, indicating a wide generality of the
phenomenon [53–58]. These findings suggest that
the continuing acidification of agricultural soils
through excessive use of nitrogen fertilizers, as demon-
strated for China [59], will enhance N2O emissions
drastically. It is proposed that careful adjustment of
pH in agricultural soils, say, by liming, should
reduce N2O emissions from slightly acid soils. This
needs to be tested rigorously in field trials.

Plants themselves have a strong influence on the
microbial community of the rhizosphere, where most
of the N2O generating activity occurs. The release of
plant-derived low molecular weight organic com-
pounds into the soil enhances heterotrophic activity,
with denitrifiers and nitrate ammonifiers thought to
compete for this carbon. Hence, N2O production
and reduction rates are often positively correlated
with total carbon or soluble organic carbon availability
[60,61]. There is currently interest in understanding
the physiological and genetic bases underpinning the
influence of plant traits in regulating N2O emission,
and the possibility that this could inform future breed-
ing programmes to couple enhanced crop agronomic
performance with environmental sustainability in
terms of lowering net GHG emissions and increasing
soil carbon stocks.

Denitrification enzymes require a variety of metal
cofactors, including Mo, Fe, Cu and Zn. The absolute
requirement of N2OR for Cu (and sulphur) for
activity, as well as the absence of any parallel pathways
that can reduce N2O, account for the critical role of
Phil. Trans. R. Soc. B (2012)
this element in the success of this final step of denitri-
fication. Many species of bacteria have scavenging
systems, such as siderophores, excreted by cells to che-
late Fe strongly in order to extract it from soils, or
sequester it from the ocean, and to deliver Fe(II) to
cell surface receptors for active uptake into the cell.
Furthermore, Fe can also be stored within cells
inside proteins, such as ferritins, for retrieval in times
of external Fe stress (or to compartmentalize the Fe
during dormancy to protect it from reacting with O2,
thereby generating products potentially toxic to
DNA). There are no such sequestering or storage sys-
tems yet known for copper in bacteria with the
exception of some methanotrophic bacteria that
excrete Cu-chelating compounds [62]. Hence,
copper availability to the cell depends on the concen-
trations of Cu in the local external environment as
well as on its state of chelation within soils. Zumft
[2] first showed that by growing laboratory cultures
of denitrifying bacteria in Cu-deficient media, high
levels of N2O emissions occur compared with those
in copper sufficient media, leading him to the
conclusion that N2OR is a copper-dependent enzyme.

Copper in soil is found as the water-soluble cation
Cu2þ, but in reducing soils as the insoluble ion Cuþ.
Soil bacteria can take up Cu2þ or Cuþ either by ener-
gized or diffusive transport [63]. The biological
availability of Cu in soils to crops is influenced by a
number of factors: its chemical state, soil conditions
(pH, redox, soil moisture, etc.), SOM, inputs (fertil-
izer, manure, animal feed, etc.), weather, crop type
and maturity. Cu deficiency is often observed in alka-
line soils. A negative correlation of Cu plant uptake
and pH is seen in clay soils. Cu bioavailability is also
lowered by adsorption of Cu on clay surfaces or, in
soils with high organic matter such as humic acids,
formation of metal–organic complexes [64].

However, free Cu2þ species can also be toxic to soil
bacteria. Ore et al. [65] correlated copper toxicity in
Nitrosomonas europaea to free ion metal activity in soil
pore water; EC50 Cu2þ ¼ 2 � 1026 to 2 � 1029 M.
Two major uncertainties exist regarding the interaction
of bacteria and free metal ions. First, not all soil bac-
teria have the same tolerance to free ion metals and
microbial communities can adapt during long-term
exposure, developing pollution-induced community
tolerance; second, it is difficult to assess which
bacterial cells are exposed to the free metal ions in
the soil matrix. Thus, in Cu-limiting conditions, it
was recently demonstrated that the bacterium P. deni-
trificans is able to acquire Cu from the soil matrix by
excreting zinc coproporphyrin III in both aerobic and
anaerobic environments [66].

Cu is also a required cofactor in [NO2]2 reduction
in some bacteria such as Achromobacter xylosoxidans. In
a large-scale field study, Enwall et al. [67] found a
positive relationship between soil Cu content and the
abundance of nirK genes. Thus, Cu plays a key role
in both NO2

2 and N2O reduction [68]. With approxi-
mately 40 per cent of Europe’s arable soils being Cu
deficient (less than 2 mg Cu kg21), the potential for
N2O mitigation (with a simultaneous crop yield
increase) is high. Nevertheless, above certain concen-
trations metals in the soil can have adverse effects on
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soil nutrient cycling and soil food webs [69]. Investi-
gating the trade-off between the effect of mineral
micronutrients on N2O soil emissions and soil ecosys-
tem functioning (nutrient cycling) is an important
aspect with practical and environmental implications
yet to be explored [70].

Plants and soil microbes compete for Cu uptake.
Cu is a vital micronutrient to maximize crop yield
and quality. Too little (less than 2 mg kg21) or too
much (greater than 30 mg kg21) Cu in soils will
result in adverse effects on plant growth. Cu sup-
plements can be applied either as soil amendments
or fertilizers (e.g. in the form of pig slurry or
CuSO4) or foliar fertilizers (e.g. copper oxychloride)
to the crops. Cu availability can also be controlled
through changing SOM contents.
6. NITROUS OXIDE FROM OCEANS AND IN THE
ATMOSPHERE
Oceans are an important source of N2O. Freing et al.
[71] present tracer data together with in situ measure-
ments of N2O to estimate the concentration and
production rates of biologically produced N2O in the
ocean on a global scale. They estimate that oceanic
N2O production is dominated by nitrification with a
contribution of only approximately 7 per cent from
denitrification, indicating that previously used
approaches may have overestimated the contribution
from denitrification. Continental shelf areas account
for only a negligible fraction of the global production
of N2O, whereas coastal zones such as estuaries prob-
ably contribute significantly to the total oceanic
emissions of N2O because they are fertilized to an
increasing degree by river run-off carrying a high
load of organic nitrogen (eutrophication).

In the oceans, the estimated global annual subsur-
face N2O production ranges from 3.1+0.9 to 3.4+
0.9 Tg N yr21. The largest amount of subsurface
N2O is produced in the upper 500 m of the water
column. The oxygen minimum zones of the intermedi-
ate layers (between 300 and 700 m water depth) in
various regions of the ocean are expanding and have
been losing oxygen during the past 50 years. This
could result in an expansion of the zones supporting
denitrification, probably having an impact on the pro-
duction and decomposition of N2O. Whether it would
have a net positive or negative effect on N2O pro-
duction remains unclear as the net behaviour of
denitrification and its controlling mechanisms are not
yet fully understood.

There is also evidence that the oceans are warming.
As marine autotrophic and heterotrophic processes dis-
play sensitivities to temperature (to varying degrees),
ocean warming might result in changes of the bacterial
community structure and hence in changes of N2O pro-
duction. Changes in ocean temperature also affect the
solubility of N2O. Rising ocean temperature is likely
to result in the N2O long-term storage capacity of the
deep ocean being reduced. Oceanic N2O sources are
thus likely to vary as ongoing changes of the ocean
environment such as deoxygenation, warming and
eutrophication occur.
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N2O concentrations in the atmosphere are rising
steadily with consequences not only for global warming
but also for ozone destruction. The paper by Portmann
et al. [72] reports the effects of N2O, together with other
gases CO2, CH4 and halocarbons, on stratospheric
ozone levels over the past 100 years and predicts its
future evolution using a chemical model of the strato-
sphere. This model and the underlying chemistry are
set out in their paper. It is concluded that, as halocar-
bons return toward pre-industrial levels, N2O and
CO2 are likely to play the dominant roles in ozone
depletion. They show, however, that there are nonlinear
interactions between these gases that preclude the
unambiguous separation of their effects on ozone. For
example, the chemical destruction of O3 by N2O is buf-
fered by the thermal effects of CO2 in the middle
stratosphere by approximately 20 per cent. Nonethe-
less, it is clear that N2O is expected to be the largest
ozone-destroying compound in the foreseeable future.
Hence, successful mitigation of release of anthropo-
genic N2O provides a more important opportunity for
reduction in future ozone depletion than any of the
remaining uncontrolled halocarbon emissions.
7. NITROUS OXIDE EMISSIONS FROM
WASTEWATER TREATMENT
An excellent example of the type of local analyses that
can be applied to a single source of N2O emission is
provided by the paper from Law et al. [73] on waste-
water treatment plants. Despite its relatively small
contribution to the overall global GHG emissions,
N2O emissions from biological nutrient removal
wastewater treatment plants can be very significant in
terms of the contributions to their overall carbon foot-
print. N2O emissions vary substantially depending on
the design and operation of the plants, and on the
flow and characteristics of wastewater. Such variations
indicate that N2O may be mitigated through engineer-
ing proper process design and operation. Preliminary
strategies remain to be verified through full-scale
applications. Law et al. note that in most wastewater
treatment plants in contrast, for example, to soils
where denitrification is often the primary source of
N2O, autotrophic NH3 oxidation makes a relatively
greater contribution than heterotrophic denitrification.
8. STRATEGIES FOR MITIGATING NITROUS
OXIDE EMISSIONS
Evidence presented in this volume and elsewhere
makes clear the damaging effects on climate of
atmospheric N2O. Therefore, strategies to ameliorate
N2O emission arising from intensive agricultural
practices should be developed in order to decrease
current levels of N2O emissions and to forestall
further rises predicted to occur as usage of nitrogen-
ous fertilizer increases across the globe. Strategies that
might be adopted arise from three quite different
approaches: first, by managing soil chemistry and
microbiology to ensure that bacterial denitrification
runs to completion, generating N2 instead of N2O;
second, by reducing dependence on fertilizers
through engineering crop plants, for example to fix
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nitrogen themselves in order to sustain growth and
yield, or by capitalizing on C–N interactions in the
rhizosphere; third, by promoting sustainable agricul-
tural intensification, that is, producing more output
from the same area of land while reducing the
negative environmental impacts. We consider each
of these strategies in turn.
(a) Managing soil chemistry and microbiology

It seems unlikely that it will ever be possible to develop
farming practices that completely eliminate N2O
emissions from soil denitrifiers in agriculture. The
ability to denitrify is phylogenetically diverse, and
recent developments in techniques for quantifying
N2O production from denitrification show its occur-
rence to be more widespread than previously
thought. However, it should be possible to mitigate
N2O emissions by using our understanding of the
enzymology and microbiology of denitrification to
design protocols to manipulate soil chemistry and
physics and, thereby, the physiology of denitrifying
bacteria to ensure that the reduction of N2O to N2

is, as far as possible, unconstrained.
Much evidence has been presented in the papers in

this volume, and elsewhere, that it is the failure of the
enzyme N2OR to operate that curtails the denitrifica-
tion process at N2O rather running on to N2. Two
key factors that can cause this are low soil concen-
trations of Cu available to the bacterium and soil pH
values below 7. Cu availability will depend not only
on the absolute Cu concentration in the soil but also
on the presence of competing chemical chelators,
such as humic acids. Hence, there is the possibility
of using SOM management, copper application or
liming as primary controls of copper availability and
pH values. Recent work investigated the effect of O2

on NO�2 -dependent denitrification and the emission
of NO, N2O and N2 in cultures of soil extracted bac-
teria [74]. There was evidence that N2OR can be
temporarily inactivated by sudden exposure to even
low levels of O2, whereas the other enzymes of denitri-
fication continue to function. In soils themselves,
N2O–N2 ratios are higher as the soil pore O2 concen-
tration increases. This may, in part, reflect a greater
contribution of ammonia-oxidizing bacteria to N2O
emission, but could also arise from the sensitivity of
N2OR to O2. It will be difficult in soils to show in
vivo enzyme inactivation.

A full list of factors known to influence the ratio of
N2 to N2O during denitrification include [NO3]2 and
C availability, partial pressure of O2, water-holding
capacity, Cu availability, as well as soil pH. The set
of management options by which soil conditions
might be manipulated either to lower emission of
N2O, or to increase its reduction to N2 would include
liming, manure addition, biochar or zeolite addition,
minimal tillage, integrated fertilizer residue manage-
ment, crop residue addition, as well as controlled
release fertilizer, nitrification inhibitors, plant trait,
plant breeding. Results reported by Bakken et al.
[49] do indeed suggest that mitigation of N2O emis-
sions by increasing the pH of soils is currently a
most promising management option. The pervasive
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effect of pH on the product stoichiometry of denitrifi-
cation lies within the pH range 5–7, that of most
agricultural soils. A recent paper points out the impor-
tance of assessing emissions according to the unit of
product [75]. It shows very clearly the rapid increase
in N2O emissions when N fertilizer is added in
excess of crop requirements. By considering agro-
nomic conditions optimizing rather than minimizing
nitrogen fertilizer application rates, N2O emissions
are reduced. A fuller discussion of all these aspects is
given by Richardson et al. [18] which also contains
descriptions of various management practices.

It may also be possible through plant breeding to
manipulate denitrification through inputs into the
plant rhizosphere, thereby changing the composition
of plant-derived carbon flow or nitrogen uptake
demand, or through crop spacing, tillage or integrated
inorganic fertilizer, residue and SOM management.
Breeding for plant release of biological nitrification
inhibitors that block the AMO and hydroxylamine
oxidoreductase pathways in ammonia-oxidizing bac-
teria promises to allow manipulation of soil nitrogen
concentrations, and hence the soil denitrification
potential. However, the effects on N2O production
are unknown. Such opportunities for managing N2O
emissions need to be considered in the light of effects
on soil carbon levels and chemistry, not only because
of the other key GHGs, CO2 and CH4, but also
because of the important balance between fertilizer
application increasing carbon sequestration through
greater biomass production versus the undesirable
alternative consequence of increased N2O emission.

A key step in the future will be whether we can use
technical advances in geochemistry and environmental
biochemistry to monitor a wide set of parameters, both
of the soil and the bacterial processes, in field studies so
that we can take an ecosystems biology approach to
allow identification, and ranking, of the various factors
that regulate N2O production and consumption. We
note the recent development of field-deployable instru-
ments capable of measuring nitrous oxide isotopic
ratios, based on the principle of laser cavity ring down
spectroscopy (CRDS) [76] that can measure continu-
ously in real time the abundance of isotopically
labelled 14N15N16O and 15N14N16O relative to
14N14N16O in N2O. Unlike mass spectrometry, this
technique can distinguish between the two isotopomers
14N15N16O and 15N14N16O. The nitrogen isotopic site
preference, the difference between the isotope ratios of
the central and terminal nitrogen atom, can distinguish
between N2O produced via the hydroxylamine oxi-
dation pathway and that of nitrate reduction as well as
between fungal and bacterial N2O production.

Central to the development of appropriate mitiga-
tion practices is addressing the challenge of spatial
scale. N2O production impacts us at different spatial
scales, from cellular production to the landscape,
and to the global impact of climate change, and feed-
backs within and between these scales. The challenge
we face is in understanding phenomena of global mag-
nitude that have their foundations at the microscale,
and to formulate appropriate management practices
for mitigation that are informed by regulation at the
microscale. Recent efforts have demonstrated links
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between microbial gene expression, environmental
parameters and N2O-genic processes at the microcosm
scale, but there is still much progress to be made when
relating this to processes at the macroscale, exacer-
bated by the high-spatial heterogeneity of N2O
emission [77]. The scaling up, or even scaling down,
of N2O producing processes in the plant–soil–
microbe system is essential to inform policymakers
of the environmental factors driving climate change
that can be targeted for management, and may
help reduce model uncertainty, which is vital for
accurate prediction of emissions and for the formu-
lation of appropriate mitigation strategies. We have
invested much effort into examining the drivers of
microbial activity at the rhizosphere to plot scales,
but there is still uncertainty over whether this regu-
lation is still relevant at the landscape scale, how
we can extrapolate between scales, and whether
the drivers of N2O production/reduction that can be
targeted for management vary depending on the
spatial scale being considered. To address this will
require integration of molecular, microbiology, physi-
ology, physics, biogeochemistry and mathematical
modelling approaches.
(b) Engineering crop plants

A recent review discusses the feasibility of, and
assesses the way forward in, reducing dependence on
fertilizers through engineering crop plants to fix nitro-
gen themselves in order to sustain growth and yield
[78]. This paper drew on a meeting convened by the
Bill and Melinda Gates Foundation. Three approaches
were considered. The first is the development of root
nodule symbioses in cereals. Legumes and actinorhizal
(non-legume) plants have evolved productive nitrogen-
fixing symbioses with rhizobial and Frankia bacteria,
respectively. The main steps required to make symbi-
otic nitrogen-fixing cereals include engineering bacteria
to recognize and infect a host cereal root cell, and
having the plant subsequently establish a low-oxygen
environment such as a root nodule. The second
approach discussed was the application, as fertilizers,
of nitrogen-fixing endophytic bacteria that form
nodule-independent associations with cereal crops.
Although commercial biofertilizers containing such
bacteria are available, it is unclear whether the
enhancement of plant growth is the result of nitrogen
fixation or of bacterial molecules that act as plant
growth hormones. Nevertheless, biofertilizers rep-
resent an existing, and the only currently available,
technology. The third method considered was the
introduction of the nitrogenase enzyme system into a
plant organelle. To achieve this, the complete biosyn-
thetic pathway of the several components of the
nitrogenase enzyme must be engineered into cereals
and targeted to a low-oxygen compartment within
the plant. In a related approach, a recent paper has
reported expression of the Nos operon proteins from
Pseudomonas stutzeri in transgenic plants to assemble
N2OR, the objective being to bestow on plants the
ability to reduce N2O to N2 themselves. Both the
single-gene transformants (nosZ) and the multi-gene
transformants (nosFLZDY ) produced active
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recombinant N2OR. Enzymatic activity was detected
using the methyl viologen-linked enzyme assay, show-
ing that extracts from both types of transgenic plants
exhibited N2O-reducing activity [79].

All these approaches are challenging but the
rewards would be great. It has been claimed that, if
the coupling of nitrogen supply and carbon metab-
olism could be achieved, excess nitrogen would not
be lost to the environment, thereby resulting in lower
N2O emissions.

(c) Sustainable agricultural intensification

Agriculture contributes a disproportionate amount of
GHGs with high impact on warming, notably about
47 per cent and 58 per cent of total CH4 and N2O
emissions, respectively. Of all global land area, 14
per cent is used for food production, which ties up a
vast amount of carbon. Changes in agricultural prac-
tices that affect this store could have a considerable
effect on global warming.

Sustainable agricultural intensification is defined as
producing more output from the same area of land
while reducing the negative environmental impacts
and at the same time increasing contributions to natur-
al capital and the flow of environmental services
[80,81]. A sustainable production system would thus
exhibit most of the following attributes:

— using crop varieties and livestock breeds with a
high ratio of productivity to use of externally
derived inputs;

— avoiding the unnecessary use of external inputs;
— harnessing agro-ecological processes such as

nutrient cycling, biological nitrogen fixation,
allelopathy, predation and parasitism;

— minimizing use of technologies or practices that
have adverse impacts on the environment and
human health;

— making productive use of human capital in the
form of knowledge and capacity to adapt and
innovate, and social capital to resolve common
landscape-scale problems; and

— quantifying and minimizing the impacts of system
management on externalities such as GHG
emissions, clean water availability, carbon seques-
tration, conservation of biodiversity, and dispersal
of pests, pathogens and weeds.

In terms of technologies, therefore, productive and
sustainable agricultural systems make the best of
both crop varieties and livestock breeds and their
agro-ecological and agronomic management. The pion-
eering rice breeder, Peter Jennings, who led early
advancements in high-yielding rice varieties during the
first green revolution, has argued for an ‘agronomic
revolution’: Pretty states ‘It is now widely recognized
that rice yield gaps result from agronomic failings,
and that future yield increases depend heavily on this
science. Agronomy’s time has come to lift farm pro-
ductivity out of stagnancy’ [81]. Agronomy refers to
the management of crops and livestock in their specific
circumstances, and matches with the emergence of the
term agro-ecology to indicate that there is a need to
invest in science and practice that gives farmers a
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combination of the best possible seeds and breeds and
their management in local ecological contexts.

This suggests that sustainable intensification will
very often involve more complex mixes of domesti-
cated plant and animal species and associated
management techniques, requiring greater skills and
knowledge by farmers. To increase production effi-
ciently and sustainably, farmers need to understand
under what conditions agricultural inputs (seeds,
fertilizers and pesticides) can either complement or
contradict biological processes and ecosystem services
that inherently support agriculture. In all cases, farm-
ers need to see for themselves that added complexity
and increased efforts can result in substantial net
benefits to productivity, but they need also to be
assured that increasing production actually leads to
increases in income. Too many successful efforts in
raising production yields have ended in failure when
farmers were unable to market the increased outputs.
Understanding how to access rural credit, or how to
develop warehouse receipt systems and, especially,
how to sell any increased output, become as important
as learning how to maximize input efficiencies or build
fertile soils.
9. CONCLUSIONS
Despite decades of research on N2O emissions, few
mitigation options have been proposed and even
fewer trialled. A key target should be to improve the
product stoichiometry of denitrification (N2/N2O) in
agro-ecosystems. The understanding now reached of
the genetics, microbiology, enzymology and chemistry
allows trials in the field to be designed. The availability
of mobile monitoring systems, such as MS and CRDS,
together with isotopic spiking, and coupling to mol-
ecular ecology approaches provide the means to
diagnose, distinguish and quantify the pathways oper-
ating and, hence, to allow a description of the fate of
applied N to be reached. This should enable the
exploration of different management options to ascer-
tain their effectiveness. Systematic studies of complex
interactions in such eco-systems that are contributing
globally to the release of the potent GHG N2O are
now feasible. They should be providing prescriptions
for the minimization of N2O emissions from soils
under a wide variety of circumstances.
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