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Dynamical systems with asymptotically stable periodic orbits are generic models for rhythmic
processes in dissipative physical systems. This paper presents a method for reconstructing the
dynamics near a periodic orbit from multivariate time-series data. It is used to test theories
about the control of legged locomotion, a context in which time series are short when com-
pared with previous work in nonlinear time-series analysis. The method presented here
identifies appropriate dimensions of reduced order models for the deterministic portion of
the dynamics. The paper also addresses challenges inherent in identifying dynamical
models with data from different individuals.
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1. INTRODUCTION

This paper stems from an effort to find broadly appli-
cable data-driven methods for constructing and
validating reduced order models of animal motion. In
1999, Full & Koditschek [1] presented the Templates
and Anchors Hypotheses (TAH). They suggest that
a low-dimensional attracting invariant manifold1 (a
template) is present in any high-dimensional system
modelling the detailed dynamics of a specific animal’s
motion (an anchor), and that this same template is
the natural mathematical expression of the statement
that animals with dissimilar morphologies follow similar
gaits. Numerous templates for terrestrial locomotion
have been studied, including sagittal plane inverted
pendulum and spring–mass templates [4–11] and hori-
zontal plane spring–mass templates [12–14]. These
templates describe the centre of mass motion and
ground reaction forces of two-, four-, six- and eight-
legged animals during steady-state running [15,16]
and in response to perturbations [17,18] using physical
models for the underlying dynamics. The low dimension
of these templates was obtained based on mechanical
reasoning. In contrast, our method establishes the pres-
ence and dimension of a template directly from data,
with no intervening modelling step.
1.1. Oscillators

This section presents some of the mathematical techni-
calities for the sequel. We represent steady running
orrespondence (shrevzen@umich.edu).

g invariant manifold’ is, loosely speaking, a surface to
ories of the system are drawn, and from which they do
3].
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gaits by periodic solutions of an n-dimensional vector
field

d
dt

x ¼ Fðx;mÞ

F : Rn � Rk ! Rn; x [ Rn and m [ Rk ;

ð1:1Þ

with k parameters m. A periodic orbit q ¼ foðtÞjt [ Rg
with period t is a solution of this equation that satisfies
o(t þ t) ¼ o(t); it is asymptotically stable if all nearby
trajectories approach q as t!1. The set of initial con-
ditions evolving on trajectories with this property is B,
the basin of attraction of q. In general, both q and B are
functions of m.

We use the return (Poincaré ) map [2,3] from a cross
section back to itself to study the stability of a periodic
orbit. A cross section S is an n 2 1-dimensional manifold
intersecting the vector field transversely. The return
map s :S! S is defined by setting s(x) to be the first
intersection of the trajectory starting at x with S. If S
intersects the periodic orbit q at the single point o0,
then o0 is a fixed point of s; it is asymptotically stable
if and only if q is asymptotically stable. The derivative
Dsjo0

and the corresponding derivative of the time-t
map along trajectories of the vector field are central to
our data analysis. WhenL :¼ Dsjo0

has eigenvalues smal-
ler than than one in magnitude, we say that q is an
oscillator. Oscillators are asymptotically stable.

There is a well-developed theory of normal forms for
oscillators, based on the concepts of isochrons [19] and
Floquet coordinates (figure 1). Oscillators have iso-
chrons: cross sections that are mapped into themselves
by the time-t-map. For isochrons, the return map and
the time t map coincide; for other cross sections they
differ. If x is in the isochron of o0 [ q, the distance
between x(t) and o0(t) tends to 0 at an exponential
This journal is q 2011 The Royal Society
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Figure 1. Illustration of Floquet structure. An oscillator is given
with a limit cycle (thick dark looping arrow, o(w)). Empirically
observed trajectories (e.g. q(.), dense dashed arrow, green) cycle
around nearby the limit cycle. At any phase f in that cycle, if
perturbed in certain directions, the recovery may have a special
property similar to that of an eigenvector. For example, on the
section representing states with the phase f (square; yellow), a
perturbation in the direction of the solid (blue) arrow (marked
with l1, representing an eigenvector) will leave the state within
the surface whose direction tangent to the cycle is swept by the
Floquet axis p1(.) associated with l1 (blue). The perturbed state
will return to phasef a cycle later with its distance from the per-
iodic cycle changed by a factor of l1 (the eigenvalue, or Floquet
multiplier, of the f return map). A similar property holds for
the dashed (red) arrow, with respect to the surface of l2 (red).
At another phase u (section represented by grey square), each
of the Floquet axes maintains the same eigenvalues (l1 for
solid, blue; l2 for dashed, red) but intersects the phase section
at a different set of eigenvectors (i.e. the Floquet axis threads
through related eigenvectors at all sections). The phase-
dependent coordinate frame comprising all Floquet axes defines
the Floquet coordinates with respect to which the system takes
on the form equations (1.2). Each axis (or pair of axes, in the
case of complex conjugate eigenvalues) defines a different,
linearly independent invariant surface tangent to the cycle.
(Online version in colour.)
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rate as t! 1. There is a natural parametrization of q
by S1 that maps o0(t) to t/t [ S1 ¼ R/Z (the circle
with circumference 1). The map w : B! S1 that sends
isochrons to their intersection with q defines a phase
coordinate on the basin of attraction B of q. We have
w(x(t)) ¼ w(x(0)) þ t/t.

We use Floquet theory to make a further change of
coordinates that establishes a normal form for an oscil-
lator. If we write the derivative L of the return map of
the isochron o0 [ q in the form L ¼ exp(A), then we
seek a coordinate system for B, and a rescaling of
time, in which the system becomes

d
dt

w ¼ 1

and
d
dt

y ¼ Ay:

9>=
>; ð1:2Þ

Floquet established the existence of such coordinate
systems for the linearized flow near an oscillator [20].
Smooth linearization without approximations is possible
J. R. Soc. Interface (2012)
in the absence of resonance conditions on eigenvalues [3].
We ignore the technical difficulties posed by resonances
and assume models of the form equations (1.2) for (deter-
ministic) oscillators. We call the associated coordinate
systems Floquet coordinates. The eigenvalues of L are
the Floquet multipliers. As L is a linear operator, each
of its eigenvalues is associated with an invariant subspace
spanned by k generalized eigenvectors. Generically, k ¼ 1
for each (real) eigenvalue and the action of L reduces to
multiplication by the eigenvalue in its one-dimensional
eigenspace. The Floquet structure allows each of these
eigenvectors to be extended into a Floquet mode—a
trajectory of the system, which in addition to being a
solution of the ordinary differential equation, has an
eigenvector-like property—after one cycle its offset from
the limit cycle is scaled by a constant factor equal to
the Floquet multiplier.

We give a definition of the template concept in
the setting of oscillators as a low(er)-dimensional
system compatible with the dynamics of the vector
field equation (1.1). Formally, a template consists of
an invariant m-dimensional manifold S with an invar-
iant transverse foliation. Stated differently, there is a
family of n 2 m-dimensional manifolds parametrized
by S that are mapped into each other by evolving the
system t units of time. An oscillator and its isochrons
are an example of a template, but we seek templates
of intermediate dimensions that represent more of the
dynamics and can be used to test the TAH.

Templates of intermediate dimension appear in sys-
tems with multiple time scales, for example in fast–slow
systems of the form

1
d
dt

x ¼ f ðx; y; 1Þ ð1:3Þ

and

d
dt

y ¼ gðx; y; 1Þ: ð1:4Þ

1 . 0 is assumed small, x is the fast variable and y is the
slow variable. These equations possess a template struc-
ture comprising a slow manifold and its fast foliation,
under the hypothesis that the layer equations (d/dt)x ¼
f(x, y) have negative eigenvalues along the critical mani-
fold C defined by f ¼ 0. See the study of Arnold et al.
[21] for a more complete treatment. In a fast–slow model
of animals, the fast attraction of such a template implies
that we are only likely to observe animals near the low-
dimensional slow manifold (figure 2). This is an example
of the posture principle of Full & Koditschek [1].

The theory of normal hyperbolicity establishes the
existence of invariant manifolds with fast foliations
in more general settings than fast–slow systems. Still,
this theory relies upon rate conditions that require
convergence rates towards an invariant manifold S be
faster than convergence/divergence of trajectories
within S. The smoothness of S depends upon the ratio
of these rates. Application of these theories to stable
periodic orbits yields templates when there is a suffi-
ciently large spectral gap that separates large and
small Floquet multipliers of the periodic orbit. Such
gaps are not a necessary condition for the existence of



limit cycle

template with
slow recovery

posture error,
fast recovery

state
space

Figure 2. Slow–fast dynamics as a template. The periodic
limit cycle is shown as a thick dark loop with an arrow. The
template (a slow manifold) is shown as a grey oval band repre-
senting a family of trajectories and is the target for all
perturbed states. Perturbations (shown by a light grey vertical
wall perpendicular to the template band) that generate states
that are not part of the template manifold collapse quickly
(double arrows, dashed line) to the template. Perturbations
that generate valid template states (are on a slow manifold)
collapse back to the cycle much more slowly (thin spiral
arrow on oval template band).

2Also known as being a Gaussian random matrix.
3It is not obvious that given a Gaussian N(0,1) distribution of vector
inputs xi and vector outputs yi of a map, the distribution of least-
squares regression estimates M of the matrix mapping Mxi ¼ yi

would have the same (up to scale) spectrum as a (real, Gaussian)
random matrix. Our numerical experimentation show that this is
true at least to a very close approximation.
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templates but they do affect their persistence when a
system is perturbed [22].

Our approach will focus on the distribution of eigen-
values of periodic orbits in the presence of measurement
noise: uncertainty owing to measurement accuracy, and
system noise: uncertainty deriving from unmodelled dis-
turbances applied to the system. Invariant spaces of A
in equations (1.2) that are governed by small eigenvalues
of L yield empirical trajectory data similar to the noise
itself. We regard the noise dynamics subspace to be the
maximal subspace where this happens. Its complemen-
tary subspace contains significant dynamics—dynamics
that require a model which is not noise-like. We consider
the case of significant dynamics governed by a small
number of large eigenvalues to be evidence of a template.

1.2. Stochastic oscillators

There is a modest literature on attractor reconstruction
based upon time-series analysis [23], but these methods
do not recover the dynamics off of an attractor as we
seek to do here. Observation of dynamics off of a periodic
orbit requires that the system is perturbed from the per-
iodic orbit time to time, either by an external influence
or by stochastic elements within the system. We
assume that the motion we observe is stochastic and
use a stochastic differential equation (SDE) to model
the system. We investigate an SDE with stochastic com-
ponents that are small enough that the system can be
viewed as random perturbations of an underlying deter-
ministic system. Our goal is to reconstruct the
characteristics of the underlying deterministic system
along with information about the probability distri-
butions of the SDE from typical sample paths drawn
from the solution space. This problem occurs much
more broadly than the setting of animal locomotion.

Our search for templates has three steps: (i) reconstruct
the periodic orbit from time-series data; (ii) generate a
J. R. Soc. Interface (2012)
randomized ensemble of estimates of the Jacobian of a
return map; and (iii) partition the eigenvalue spectra of
the estimated Jacobians into a noise-like part and its
complement. We have encountered several mathematical
questions that we have been unable to answer rigorously,
so we adopted an empirical approach and used numerical
experiments to test our methods.

The stochastic models we study assume that the
underlying system has an oscillator, and that it has
been transformed to Floquet coordinates. We analyse
equations of the form

d
dt

w ¼ 1þ nw

and
d
dt

y ¼ Ay þ ny;

9>=
>; ð1:5Þ

where nw and ny are Wiener processes whose variances
are state-dependent.

Our first task is to compute a stochastic return map for
a chosen cross section of the system given by equations
(1.5). We expect this return map to take the approximate
form s(y) ¼ Ly þ h, where h is a Gaussian random vari-
able and L a matrix. Here, we assume that the coordinate
system is centred at the intersection of the cross section
with the periodic orbit. Our data analysis seeks to fit s

directly from time-series measurements. However, we
also seek to estimate confidence limits on L, so we
resort to resampling methods to estimate a distribution
of L matrices that plausibly fit the data.

Our null hypothesis was that the L we found is owing
to ‘chance alone’, which we take to be: (i) the mean of the
distribution of L matrices being the zero matrix and the
entries in these matrices being identically distributed
(i.i.d) Gaussian random variables;2 (ii) no correlation
between consecutive intersections of stochastic tra-
jectories with the cross section; (iii) absence of any
preferred directions in the covariance of intersection
points, i.e. a scalar covariance matrix. This null hypoth-
esis is not a statement about the covariance matrix of h
in the model; instead, it expresses limits to our ability to
estimate L from the data. We use this simple scalar
noise model because of our poor understanding of the
interplay between cov(h) and the distribution of L

estimates, especially given meager data.
Our task in this paper requires us to produce an esti-

mated spectrum of L from a distribution of estimates of
L and to partition that spectrum into template-derived
and non-template-derived subsets. Here, we venture
into the theory of Gaussian random matrices. Let Md(s)
be the space of real-valued matrices of dimension d,
whose entries are independently and i.i.d Gaussians
N(0,s) with mean 0 and variance s.2 Our null hypothesis
is that trajectories intersect a cross section at i.i.d
Gaussian random points. This leads3 to matrices whose
eigenvalue distribution satisfies the circular law [24],
which states that the eigenvalues of Mdð1=

ffiffiffi
d
p
Þ
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Figure 3. The circular law approximated by sampling 4096 matrices of size 27 � 27 with entries taken from the standard Gaussian
Nð0; 1=

ffiffiffiffiffi
27
p
Þ. Density contours on the complex plane (a) show that distribution is similar to a uniform density disc of radius 1,

except for added mass on the real line. (b) Shows the distribution of real parts of real eigenvalues (lower thick line, black) and the
distribution of real parts of all eigenvalues (upper thick line, blue). We also plotted the distribution of the real part of eigenvalues
binned by the ordinal position of their real part (thin lines); this shows that eigenvalues are distributed throughout the disc for
each matrix, leading the ordinals of the real part to be fairly well-localized on the real line. Each of the bell-shaped curves in (b)
shows the density of real parts of a specific ordinal of eigenvalue (e.g. the leftmost shows the distribution of the real parts of the
eigenvalue with the smallest real part). (Online version in colour.)

960 Finding the dimension of slow dynamics S. Revzen and J. M. Guckenheimer
approach the uniform distribution in a complex disc of
radius 1 around 0 as d!1.

We expect that invariant subspaces associated with
small eigenvalues of L will satisfy the circular law and
hope that there will be a complementary subspace that
yields a template. We define a statistically significant
template to be a slow stable manifold whose eigenvalues
are inconsistent with the circular law. Our statistical test
for a template is thus formulated as a one-sided
confidence interval on the spectrum of eigenvalue magni-
tudes of the linearized return map L. It should be noted
that the fact that any given mode is observed to belong
to the template, i.e. to exist with a slower time-constant
than expected by noise dynamics, does not immediately
imply that it plays any role in controlling some variable
of interest to the investigator (e.g. centre of mass
velocities). Relating the mode to state variable modu-
lations requires recovery of the Floquet multipliers and
not only the Floquet coordinates (eigenvalues)—a topic
for a future publication.

Figure 3 illustrates the circular law for matrices of
the dimension derived from our experimental data
J. R. Soc. Interface (2012)
with two-dimensional histograms #x,y of the eigenvalue
points, presented using contours of log(1 þ #x,y). The
log-transformation converts Gaussian distributions to
paraboloids that are easy to identify visually and thus
makes density plots easier to interpret. The eigenvalue
distribution shown in the figure (up to scale) is used as
one of our null hypothesis in the sequel—it is the eigen-
value distribution of the return map of noise dynamics
expected with no template at all. Because of the special
role the real line plays in the circular law distribution,
we also visualized the density of real parts of the
eigenvalues, and the density of real eigenvalues.
1.2.1. The cumulative spectral density
Looking at the isochron at phase f, we could have esti-
mated a single return map matrix from all the available
data. However, such a computation would not have pro-
vided us with confidence bounds on the matrix and its
eigenvalues, and as Hurmuzlu & Basdogan [25] already
noted for human gait data, these eigenvalues (the
Floquet multipliers) vary between Poincaré sections in
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empirical data in a manner counter to what the theory
for deterministic and noiseless dynamical systems leads
us to expect.

To address these concerns, we obtained P[f ]—the
empirical distribution of return map matrices at phase
f—by using a resampling method described in detail
in the appendix A. We searched for a means of quanti-
tatively characterizing this empirical P[f ] so that we
may identify the template dimension and associated
invariant subspace of the return map. We required
that the method provide consistent answers at sections
with different values of f. In both experiment and simu-
lation, we observed that while the density of eigenvalues
on the complex plane seems to vary with f, variations
in the distribution of eigenvalue magnitudes are much
less pronounced.

Given a matrix M, we define rk(M) to be the magni-
tude of the kth eigenvalue of M, in increasing order.
Any distribution of matrices M � P induces a cumulat-
ive distribution h(k,r,P) that gives the probability
rk(M) , r for M � P. We call h the cumulative spectral
density of P. If h(k,r,P) . 1 2 p, the chance of observ-
ing any of the first k eigenvalues being larger than r is
less than p. Choosing a confidence level p, we invert
h(.) obtaining a function r̂(k,P) ( p being understood
from the context), such that h(k,r̂(k,P),P) ¼ 1 2 p.
The function r̂(k,P) determines the confidence level
1 2 p in terms of a threshold on the kth eigenvalue mag-
nitude. In other words, with confidence of error less
than p, we expect that matrices in the distribution P

have their kth eigenvalue magnitude smaller than
r̂(k,P). A template with eigenvalues larger than some
rT must, in terms of statistical confidence p, have
dimension n 2 k for any k for which r̂(k,P) , rT. We
used the functions r̂(.) to provide an upper bound on
template dimension.

Our family of null models is constructed from the
cumulative spectral densities of Md(s) for dimensions
d and scales s, expressing the eigenvalue magnitude
spectra of random matrices. We know that for any
scale factor b, h(k,br,Md(b)) ¼ h(k,r,Md(1)), since
multiplying a matrix by a scalar scales all eigenvalues
of the matrix by that scalar. Similarly, r̂(k,Md(s)) ¼
sr̂(k,Md(1)). Thus, these models reduce to the one
parameter family hd(k,r) ¼ h(k,r,Md(1)) taken as
a function of the parameter d. We abbreviate
r̂dðkÞ ¼ r̂(k,Md(1)).

In terms of cumulative spectral density, the circular
law states:

lim
d!1

hd

�
bdb c;b

ffiffiffi
d
p �

¼ b 0 � b � 1
1 b . 1:

�
ð1:6Þ

Taking d to be the dimension of the noise dynamics sub-
space and P to be the sampled distribution of return
map matrices, we expect that for k � d the empirical
r̂(k,P) and the null hypothesis r̂dðkÞ match up to a scale.
We developed a test that finds an optimal d for which
such a correspondence holds. The complement of this
d-dimensional subspace contains dynamics that are unex-
pectedly slow with respect to the noise model, satisfying
our requirements for a statistically significant template.
J. R. Soc. Interface (2012)
2. DATASETS

We used simulated data to assess the properties of our
algorithm, which was also applied to experimental
kinematic data from running cockroaches.

2.1. Stochastic simulation

We constructed an SDE simulation of a system exhi-
biting a template structure. The system we chose
comprised 12 coupled Van Der Pol oscillators (VDPs
hereon; see figure 4 for an example trajectory), which
are coupled along a bi-directional chain with stronger
forward coupling and weaker backward coupling. Our
intuition that such a coupling structure would lead to
phase-locking and allow us to easily manipulate the
larger eigenvalues was born out of the numerical
experimentation.

2.1.1. Simulation details
The parameters of the oscillators and their coupling
were selected at random and then easily tweaked to
achieve phase-locked limit cycle oscillations with three
large eigenvalues by allowing strong two-way coupling
for the first three oscillators.

The SDE for this system is:

dxk ¼ mk xk �
1
3

x3
k � yk

� �
dt þ dwk ;

dyk ¼ m�1
k xkdt þ dvk þ

P
j
n j;kðyj � ykÞdt

and dw; dv � N ð0;h2Þ;

9>>>>=
>>>>;
ð2:1Þ

where the vector of parameters mk gives the standard
parameter for VDPs, and governs the convergence
rate to the limit cycle in xk, yk, when coupling is taken
to zero. n is a tri-diagonal matrix, expressing the coup-
ling between adjacent VDPs (its diagonal elements are
ignored). It is best described as two vectors: the forward
coupling coefficients n upper, and the backward coup-
ling coefficients n lower. Finally, Wiener processes wk,
vk with isotropic variance h2 introduce system noise.
The values of all of the parameters used for our simu-
lation are in table 1.

As our Poincaré section, we used the positive zero
crossing of the mean of yk for all 12 VDPs.

2.2. Cockroach data

We chose cockroaches as our study animal because tem-
plate models have been developed for cockroach running
(Holmes et al. [14] and references therein). We hope that
by providing a numerical means for obtaining a tem-
plate, we provide an empirical anchor-point to which
existing and new theoretical models may be related.
Cockroaches are large, easy to raise and state infor-
mation in the form of leg posture is readily measured,
suggesting cockroaches as a natural target for predictive
models based on leg state.

We used two datasets collected with different ex-
perimental systems. Most of our analysis was done on
kinematic data of cockroaches running on a transparent
treadmill, and photographed from below through
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Figure 4. State-space trajectory of our SDE simulation. Each sub-figure plots one of the Van Der Pol oscillators. Circles and dots
indicate corresponding times on the different trajectories. (Online version in colour.)

Table 1. Parameter values for the stochastic differential equation simulation.

m 20.019 20.022 20.063 0.005 20.215 0.159
20.043 0.221 20.076 20.04 20.113 0.097

n upper 0.97 0.93 0.77 0.39 0.7 0.08
0.71 0.58 0.73 0.65 0.42

n lower 21 20.925 20.445 20.0085 20.011 20.0075
20.0405 20.0435 20.0445 20.0075 20.028

962 Finding the dimension of slow dynamics S. Revzen and J. M. Guckenheimer
the treadmill belt [26,27]. Animals ran in the transpar-
ent arena of size 80 � 200 cm, while a robot tracked
their movements using a high-speed camera with a
zoom lens.

We used 34 adult Blaberus discoidalis cockroaches of
both sexes (mass 3.3+0.34 g; body length 49+2.6 mm)
in the treadmill experiment. The dataset consists of
45 132 frames of 500 fps video, each with body pos-
ition and orientation, and tarsal claw (tip of the foot)
position for all six legs in two dimensions. These data
contain about 800 cycles of running, tracking six legs
and two body-axis points, giving a 16-dimensional
time-series of measurements yk

(n). The data were con-
verted to a 27-dimensional series of state estimates
xk
(n) comprising positions and velocities of tarsi in the
J. R. Soc. Interface (2012)
body frame (6 � 2 � 2 ¼ 24 dimensions), velocity of
the centre of mass (two dimensions) and angular vel-
ocity of the body in the world frame (one dimension).

We were concerned that results from aggregated data
from multiple individuals may not be representative of a
single animal because of the potential for different
values of the m in equation (1.1) interacting adversely
with the unbalanced experimental design inherent in
differences of trial length. The problem with such a
design is that the sample variance of estimates based on
pooled data from different animals may not decrease
with increasing amounts of data even when the underlying
distributions do have convergent second moments. This
results from a perennial problem in biostatistics—the
problem of controlling for individual variation.



Algorithm 1. Estimating template dimension from
measurements y (idealized version)

1: x̂  N � T state estimates of dimension dstate derived
from N � T values y of dimension dmeasured

2: ŵ  N � T phase estimates derived from x̂
3: ô estimate of the cycle ôðŵÞ derived by taking x̂ as a

Fourier series in ŵ

4: choose phase f for use as a Poincaré section
5: interpolate x̂ to obtain the N �K values x̂ðfÞ, e.g. using

linear interpolation
6: q̂ðfÞ  offsets from cycle x̂ðfÞ � ôðfÞ
7: S  N � ðK � 1Þ input–output pairs kq̂ðfÞ; q̂ðfþ 2pÞl

of the return map, each of dimension 2� dstate

8: for as many samples as wanted j ¼ 1; . . . ; J do
9: bootstrap S to obtain ~Sj , a N � ðK � 1Þ set of input–

output pairs taken with replacement from S
10: estimate a return map matrix Mj ½f;fþ 2p� by least-

squares regression of ~Sj

11: end for
12: P½f�  Mj ½�; ��

� 	
j[J the (empirical) distribution of

matrices at the Poincaré section f.
13: find maximal dimension d such that the smallest d

eigenvalues of M�P[f ] follow the circular law, i.e. the
distribution of eigenvalues of random matrices Md(s) for
some scale s.

14: return the codimension of d as the statistically
significant template dimension
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A common approach to dealing with individual vari-
ation in a statistic is to generate one such statistic per
individual, and then combine the individual statistics.
This is often done with the sample mean of a normal dis-
tribution where each individual’s measurements have
Gaussian measurement errors: given different numbers
of samples from different individuals, the sample mean
of each sample is an unbiased estimator of the individual’s
value, and the mean of the means is an unbiased estima-
tor of the sought-after population mean.4 Such an
approach was impossible in our case because the stat-
istic we wish to obtain is a return-map estimate,
which cannot be computed from short trials at all.

To address this limitation, we developed a bootstrap-
like approach for constructing a balanced (re-)sample
from the data which can then be used to estimate a
return map. The approach is a multiple imputation
method. Multiple imputation is an approach for dealing
with incomplete data in statistical samples using a stat-
istical model. One of its advantages is that at the same
time as it addresses the incomplete data, multiple impu-
tation also provides bounds on the effects it introduces
into the result. The main innovation in our multiple
imputation approach is that the statistical model we
use is itself non-parametric, and thus makes weak
assumptions about the underlying distributions that
are being simulated. Details of our multiple imputation
approach are provided in appendix A.

Because of the novel nature of the statistical tools
employed in the treadmill experiment, we developed
an alternative experimental system—the arena—for
validation and control. The arena allowed us to collect
enough data from a single individual animal to estimate
a return map. We hoped that by finding a return map
similar to that found through the multiple imputation
procedure, we would support the notion that the stat-
istical methods we employed on the treadmill did not
grossly distort our results.

For the arena experiment, we used three adult cock-
roaches (mass 3.1+0.12 g; body length 47+0.8 mm).
After checking that the arena kinematics are typical
with respect to previously collected treadmill data, we
selected the individual with the most available data for
further analysis. Arena data for that individual com-
prised 15 trials totaling 8565 frames with over 280 cycles.
3. ALGORITHM

This section describes an idealized Floquet analysis
algorithm and modifications we made in applying it
to our simulation and cockroach data.

3.1. Idealized algorithm

The idealized algorithm outlined in algorithm 1 is suited
to modelling equation (1.1) with very large datasets
having small measurement noise and the same constant
m for all trials. It assumes that data consist of N trials
(unrelated to n of the previous section), each with T
4We also draw the reader’s attention to the fact that the confidence
intervals for the population mean obtained in this way are
somewhat pessimistic, as the individual measurement noise can ‘leak
in’ through the smaller samples.
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measurements yk
(n), n [ 1, . . . , N, k [ 1, . . ., T at equally

spaced intervals over exactly K ¼ T/t cycles. We assume
a method to reconstruct a state estimate x̂ðnÞk from yk

(n)

whose errors satisfy (i) k Fðx̂;mÞ � Fðx;mÞ k is small
when compared with the magnitude of the stochastic
term in the evolution of x, and (ii) k x̂ � x k is small
relative to the diameter of the cycle q.

The SDE simulation employed only a single Poincaré
section, and thus applied only steps 4 and above, with
the assumption that ôðfÞ is the sample mean kx̂ðfÞl.
3.2. State reconstruction (step 1)

Since we expected our cockroach systems to function as a
mechanical oscillator (see Holmes et al. [14] for possible
models), we computed velocity estimates to accompany
the position measurements of the cockroach and used
both to represent the complete state of the animal. The
velocity estimates were generated in tandem with an
improved position estimate by applying a Kalman
smoother [28] to the position measurements.

The Kalman smoother requires knowledge of
measurement error covariance and system noise covari-
ance. We tuned both these values from a calibration
trial that used a dead animal moved by a positioning
stage to generate a baseline. We identified the measure-
ment noise by comparing the stage position with the
recovered pixel positions. We chose the system noise
level to be the scalar value that produced the best fit
in the calibration trial, using a nonlinear line search.
While such an approach disregards the system noise
introduced by animal-produced motions, it accounts
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for uncertainty in motions of the body and tarsi intro-
duced by the moving belt.
1: select parameters m and c
2: skip all short trials, i.e. any trial k such that Lk,m/c
3: for each trial k with Lk�m/c do
4: let Ŷ

ðkÞ
be an m-tuple of measurements chosen at

random, with replacement.
5: end for
6: the concatenation of all Ŷ

ðkÞ
is the required imputed

balanced sample.
3.3. Estimating phase (step 2)

In our animal data, the range of motion of individual
legs shifts slowly in individual trials. We estimated
phase directly from the raw measurements, rather
than our state reconstruction. For each trial, we
detrended the fyignk

i¼1 time series by subtracting a base-
line fbignk

i¼1 obtained by lowpass smoothing the data
with a four cycle cut-off order 3 Butterworth filter in
a zero-phase lag (forward–backward) configuration
[29]. The resulting zero mean position time series were
fed into the Phaser phase-estimation algorithm of
Revzen & Guckenheimer [30].

Taken as a number in R/Z, phase on a stable cycle is
defined up to an arbitrary additive constant which can
be taken as a choice of which cycle point has zero
phase. Phaser uses a ‘zero Poincaré section function’
z(.) to define zero phase consistently across trials with
different stable cycles q(m). It takes the zero crossing
point oðtÞ [ qðmÞ with zðoðtÞÞ ¼ 0 increasing to be the
(unique) point with phase zero on q(m). We used the
sum of the fore-aft positions of the tarsi with alternating
signs going around the body, a distinctly oscillatory quan-
tity for the tripod gait adopted by running cockroaches,
as our zero Poincaré section function. Phase zero there-
fore corresponds to mid-stance.

We used the phase estimates produced from Phaser
fŵ ðkÞi g

nk
i¼1 k ¼ 1; . . . ;N to generate Poincaré sections

and to compute an orbit model.
3.4. Orbit model (step 3)

We constructed the orbit model by taking the x̂ time
series as functions of phase, and fitting an order 11
Fourier series model of the orbit ôðwÞ using trapezoidal
integration. The order of the Fourier series was chosen
such that incremental changes in the model order pro-
duce changes that are an order of magnitude smaller
than the measurement errors. It is unclear how o
depends on m, and thus how to compute ô from the
different trials. At one extreme, a single ô can be com-
puted from the entire dataset, by taking ôðnÞðwÞ of
trial n and averaging over the index n. This implies
an assumption that o does not change as a function of
the sample values of m, and such averaging is therefore
an estimator of the true o. At the other extreme, a
different ôðnÞðwÞ can be used for the orbit in each trial.
This requires each trial to be sufficiently long to allow
a good estimate of the orbit to be computed. As neither
assumption is valid for our data, we chose an intermedi-
ate solution. We shifted and scaled ôðwÞ to have the
same mean and standard deviation as the ôðnÞðwÞ
fitted to the individual trial, thereby adapting two of
the 23 Fourier series coefficients on a trial-by-trial basis.
3.5. Poincaré sections (step 4)

We sectioned a q̂ trajectory at a phase f by linearly
interpolating between the surrounding samples. When
ŵ j � f � ŵ jþ1, q̂ðfÞ was computed from q̂j and q̂ jþ1.
J. R. Soc. Interface (2012)
We computed intersections of the observed trajec-
tories with cross sections at 20 equally spaced phases
around the cycle. At 50 samples a cycle, more sections
would have introduced spurious correlations between
adjacent sections.

3.6. Bootstrap sampling (steps 7 and 9)

If we just computed a return map from the sample S, we
would have a single matrix, with no ability to identify
which part of this matrix is significant. Instead we boot-
strapped S to obtain many ~Sj using the multiple
imputation algorithm 2, allowing multiple return map
estimates to be computed in the following steps.

3.7. Linear regression (step 10)

The return map matrix Mj ½f;fþ 2p� maps a d 2 1-
dimensional Poincaré section to itself, but does so in
the d-dimensional state–space coordinates. Because
the input (q̂�i ) and output (q̂þi ) points used for the
regression are restricted to d 2 1-dimensional subspaces,
these data do not determine the d � d matrix produced
by least-squares linear regression of the output states
with respect to the input states in the direction normal
to the section surfaces. However, the behaviour of the
time-t map has an eigenvalue 1 with eigenvector along
the flow. Moreover, the time-t map sends the phase-
derived Poincaré section of the cockroach data to itself
because it is an isochron.

Using principal component analysis (PCA), we
obtained a d � d 2 1 orthogonal matrix R whose col-
umns span the tangent space to the section. R
comprises the basis for all but the least significant com-
ponent of the PCA. We performed the linear regression
solving for Â such that

RTq̂þi � ÂRT q̂�i : ð3:1Þ

Then the matrix M ¼ RÂRT is an approximation of
the linearized time-t map except that it has an eigen-
value 0 rather than 1 along the vector field. The
collection of these matrices was taken to be a sample
from the desired distribution of matrices P[f ].

3.8. Empirical distributions of matrices
(step 12)

Using the multiple imputation procedure, we generated a
sample from P[f ]—the distribution of return maps
matrices at section f. The imputed sample size we
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chose was NR ¼ 7290 (i.e. 27 � 27 � 10), which we felt to
be sufficiently large to characterize the local structure of a
distribution in the 729-dimensional space of 27 � 27 size
matrices we studied. We tested the resulting distributions
to determine whether they gave consistent and predictive
models of the return map dynamics.

The eigenvalues of return maps from different sec-
tions should have the same eigenvalues, but the
density plots in figure 5 show that this property does
not hold in practice. The estimated eigenvalue distri-
bution varies from section to section, especially in the
eigenvalues of intermediate magnitude. We believe
that this variation is partly owing to differences in
measurement noise at different phases. The phase
(in)dependence of eigenvalue estimates is important,
and bears further investigation.

3.8.1. Surrogate data
Following a similar method to the multiple imputation
generating P[f ], we generated a distribution of matrices
PS[f ] from surrogate data in the sense of Theiler
et al. [31] and Schreiber & Schmitz [32]. These data con-
sisted of return-map input–output pairs ðq̂þi; q̂�sðiÞÞ for a
random permutation s—meaning that each input was
associated with an output selected at random from all
outputs. Because the permutation destroys the temporal
and causal relationships between inputs and outputs, we
did not expect the matrices in the PS[f ] distributions to
have a template structure.

3.8.2. Variance reduction
As an additional test of predictive ability of the return
maps in P[f ], we examined the distribution of ratios of
the variance of the residuals q̂þi �M q̂�i with the pre-
prediction variance of q̂þ (figure 7). Perfect prediction
would make this ratio 0, and simple numerical
J. R. Soc. Interface (2012)
experimentation attempting to predict data from a
random number generator produces ratios larger than
1. We ran this test on validation data that were not
used for the regression of M. Each set of validation data
consisted of input–output pairs that were not used in
constructing the model; such pairs arise naturally in the
multiple imputation algorithm. Thus, the only infor-
mation the model could have on the validation data
comes from the correspondences between the validation
data and the training data, and thus through the model
being a good representation of a systematic structure in
both the training and the validation data.

3.8.3. Density of eigenvalues
The circular distribution for finite-dimensional matrices
[24] predicts a mixture of real eigenvalues and complex
conjugate pairs. Figure 3 provides insight into how
these eigenvalues are distributed for noise dynamics
M27. We examined the eigenvalues of P[f ] with the
same visualization algorithm (figure 7), plotting the
distribution of eigenvalues in the complex plane as den-
sity contours and the separation of eigenvalue real parts
as kernel-smoothed histograms of distinct eigenvalues.
The visualization helped guide our investigations; in
particular, by illustrating that no obvious spectral
gaps were present and that the empirical eigenvalue dis-
tributions do depend on f.

3.9. Model selection (Step 13)

The previous steps of the algorithm produced distribu-
tions of approximate return map matrices. We wanted
to find the largest number d of ‘small’ eigenvalues that
span a noise dynamics subspace whose eigenvalue distri-
bution fits that predicted by the circular law. This model
selection problem is complicated by the unknown scale
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factor s in the family Md(s) of null models, which would
render the natural choice of ‘sum-squared error’P

k ðr̂ðk;PÞ � r̂dðkÞÞ2 useless, since r̂dðkÞ all scale with
the unknown s.

We formulated an alternative model selection cri-
terion by constructing a goodness-of-fit statistic Jd

that is independent of s.

Jd :¼
Xd�1

k¼1

j2
dðkÞ ð3:2Þ

and

jdðkÞ : ¼ ðlog r̂ðk þ 1;PÞ � log r̂ðk;PÞÞ
� ðlog r̂dðk þ 1Þ � log r̂dðkÞÞ: ð3:3Þ

The values jd(k) do not depend on the s: the magni-
tudes r̂ and r̂d scale with s, therefore their logarithms
have log s as an additive term that cancels out of the
difference sequences. The statistic Jd measures how
well the (logarithms of) ratios of magnitudes of con-
secutive eigenvalues match between r̂ and r̂d .

Our model selection criterion is extremely simple in
that it has no information criterion correcting for
model order, unlike classical model identification criteria
such as the Akaike Information Criterion [33]. Nonethe-
less, our criterion produced conclusive results when
applied to both cockroach data and simulation data.

4. RESULTS

4.1. Stochastic differential equation simulation
results

We compared the eigenvalue magnitude distributions
obtained from our simulation at various values of h to
the eigenvalues obtained when the simulation was deter-
ministic (h ¼ 0). The results are presented in figure 6.
J. R. Soc. Interface (2012)
The spectrum of the time-T map of the deterministic
system (marked with crosses) exhibits a clear separa-
tion of time scales, with 13 small eigenvalues less
than 2 � 1023 in magnitude, one of which (not
shown) is zero to numerical precision and associated
with Poincaré section plane itself.

Our simulation results are presented in figure 6.
These show that our model selection criteria identifies
the signature of large non-random eigenvalues even at
levels of noise for which the magnitude spectrum
looks smooth to the eye (figure 6a, h ¼ 0.09). The mag-
nitudes of the largest eigenvalues were correctly
identified for h � 0.03, and even at h ¼ 0.09, the
values of the deterministic system fell within the confi-
dence intervals. This suggests that our method would
not only identify the presence and dimension of statisti-
cally significant dynamical structure but also allow the
dynamics of the slowest modes to be estimated.

The plot in figure 6b shows that at moderate levels of
noise, the model-fitting error from equation (3.2) shows
a rapid increase beyond a certain dimension—thus, the
dimension of statistically significant dynamics seems to
be uniquely characterized.

From our simulations, we conclude that the method
presented here does indeed enable us to detect the pres-
ence and dimension of a template in a stochastic system
with the prerequisite properties.

4.2. Animal eigenvalue distributions

Our analysis attempted to reconstruct linearized return
maps directly from time series. We compared results
from our two datasets and from different cross sections
when inferring the dimension of the statistically signifi-
cant template. A preliminary scan of the variance
reduction values at different choices of f showed that
the overall variance reduction is similar: the norm of
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residuals was consistently 80 per cent of the norm of
the data—suggesting that the return maps have predic-
tive value. However, at certain choices of f, these
predictions were exceptionally good for a few coordinates.
In particular, this occurred for phases (p/4)(2n þ 1), cor-
responding to states where both velocities and positions
were equally far from zero—suggesting that better
numerical conditioning of the data was a contributing
factor to the improvement.

Figure 7 shows an analysis of the return maps P[p/4]
for treadmill data. Comparison of figures 7 and 3 shows
distinct structures in the eigenvalue distribution of the
return maps that are not noise-like. However, a central
disc of eigenvalues with magnitude ,0.3 may be noise-
like. Figure 5 shows density plots similar to figure 7a at
additional phases, for both datasets, for both P[f ] and
the PS[f ] control. The resemblance of the PS[f ] eigen-
value distribution to the circular law shown in figure 3
is obvious.
4.3. Cumulative spectral density

Figure 8 presents the cumulative spectral densities of
our data. It is apparent that the cumulative spectral
density plots are similar to one another at different
phases. As an example of the interpretation of
figure 8, we examine the point at ordinal 20, eigenvalue
magnitude 0.6 of the arena data in figure 8b. It implies
that when sorted by magnitude, 95 per cent of the 20th
J. R. Soc. Interface (2012)
eigenvalues are smaller than 0.6. Thus, (20,0.6) means
that only in at most 5 per cent of the imputed return
maps do we find more than seven of the 27 return
map eigenvalues larger than 0.6. Consequently, the
dimension of a template with eigenvalues slower than
0.6 is eight or less, with statistical confidence p ,

0.05. The template dimension implied in this example
is eight and not seven because we must always include
the direction of the cycle in the template, and it
corresponds to eigenvalue 0.

The more of the dynamics we choose to attribute to
the template, the faster the fastest recovery rates in the
template will be. The graphs in figure 8 directly rep-
resent the trade-off between the dimension of a
purported template and the fastest rate of recovery
allowed for modes in that template, as computed from
return maps at the sections p/4, p/2 and p.

The return maps of surrogate data PS[f ] test the
effect of breaking down the relationship between
return map initial states and final states. Instead of
taking the state of an animal in a particular trajectory
as an initial state, and mapping it to the state this same
animal had a stride later, a surrogate maps that initial
state to a randomly chosen state the animal had at the
same phase. The differences of eigenvalue magnitude
between r̂(k,P) (marked coloured lines) and r̂(k,PS)
(unmarked coloured lines) are substantial. Surrogate r̂
values are less than 1/2 of the corresponding eigenvalue
magnitude in the unmodified treadmill data (figure 8a)
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and less than 2/3 of the corresponding eigenvalue mag-
nitude in the unmodified arena data (figure 8a). This
demonstrates that eigenvalue magnitudes are strongly
tied to the causal relationship between the animals’
states in consecutive cycles.
4.4. Model selection

We decided the dimension of the template by solving
the model selection problem as posed in equation (3.2).
We compare the noise spectrum described by r̂d (see
§1.2.1) with the spectrum of the d smallest eigenvalues
from the return map estimates, leaving a problem of
selecting the best value of d. In terms of figure 8, the
J. R. Soc. Interface (2012)
model selection criterion we used consisted of taking
the best r̂d model at each order and computing its fit-
ting error Jd with the animal data (lines with
markers), to select the best fit (green line in grey
band is r̂21, matching eigenvalues 2 through 22).
Merely minimizing a sum-of-squares of the fitting
error Jd is typically insufficient because the error
grows as models are fit to more and more data—here
increasing d to fit a subspace with a larger dimension
to a bigger fraction of the measurements—leaving the
investigator to decide on some rational means of pena-
lizing models fit to fewer constraints. In our case, the
larger d models fit the data so much better than those
with small d that Jd decreased with the increase in d
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(figure 9), only to sharply increase when the noise sub-
space dimension grew beyond 21, so the question of
model selection criterion was moot.

We conclude that the animal data has a 21-dimen-
sional subspace in which the dynamics are noise-like,
and the remaining six dimensions, unaccounted for by
the null model, must be attributed to the template.
Such a structure is not evident in the surrogates, imply-
ing that it is owing to the stride-to-stride causal
structure in the animal data.

From figure 8, we obtained an estimated lower bound
on the magnitude of the eigenvalues of the template.
Rounding to one decimal place, the largest five eigen-
values are larger than 0.5 in 95 per cent of the
imputed return maps. The dimension of the noise sub-
space in surrogate data was that of the full space. We
therefore conclude that the six-dimensional dynamics
we found represent a causal effect allowing the animals’
state to be predicted stride-to-stride.

We observed the same excursion towards larger
eigenvalues in the five slowest modes of the arena con-
trol data (figure 8b) as we did in the treadmill data
(figure 8a). The similarity between the eigenvalue
magnitude distribution found in a single animal
(figure 8b) and that found from data combined from
multiple animals (figure 8a) supported the conclusion
that the results in figure 8a are a consequence of indi-
vidual animals having such an eigenvalue structure,
rather than the observed structure being a compu-
tational artefact of inter-animal variability. The
similarity of these results is the evidence that our mul-
tiple imputation approach does indeed allow us to
combine information from multiple subjects in a
useful way.
5. DISCUSSION

Comparing our results with those expected from tem-
plates such as the Lateral Leg Spring (LLS) [12,13],
we observe that our dimension matches the expected
dimension of six. However, we observe one key differ-
ence—whereas the LLS predicts a strong stabilization
of the yaw rate (angular velocity, the time derivative
of the yaw angle), we observe little variance reduction
in that quantity. It may be that angular velocity is
reduced so quickly that we only ever observe system
noise in the return map—i.e. this variable is too ‘fast’
for its dynamics to appear in a statistically significant
template as we defined the term. It may also (or alter-
natively) be that angular velocity does not vary
sufficiently to show a change larger than the measure-
ment errors, and thus appears to have no dynamical
structure. Finally, it may be that angular velocity
changes are not predicted by state variables which
we collected. We consider this last hypothesis less plaus-
ible, given the mechanical relationship of the predicted
and predictor variables—but it cannot be conclusively
ignored without further analysis.

More broadly speaking, a reliable method for obtain-
ing reduced dimensional ‘template’ models of rhythmic
systems can have broad utility in many areas. For
example, many engineered systems are designed for
J. R. Soc. Interface (2012)
periodic operation. The rhythmic motions of legged
robots are a specific case where the construction of a
data-driven Floquet model along the lines of equations
(1.5) provides an approximation of the robot dynamics
without requiring a mechanical model. Such an
approximation can be used as a target for planning
and control, whereby the robot initiates a manoeuvre
by transiently perturbing its state away from the limit
cycle, in a manner similar to that which has been pro-
posed for cockroach turning [34]. The Floquet modes
and the associated eigenvalues provide insight into
the forms of persistent instability such a robot may
exhibit, and may also be used to validate the robot
design. A potential advantage of our approach is that
we model the dynamics of the animal or robot in, and
with, its environment as one complete system. Because
we make no distinction between closed or open loop
control, we can capture indirect and emergent conse-
quences of dynamics and passive structures that are
often missed when identifying an ‘open loop’ model
and then ‘closing the loop’ by placing it in the environ-
ment. We are currently pursuing an investigation of
robot dynamics with data-driven Floquet methods,
applied to both centipede-inspired [35] and cockroach-
inspired [36] robots. In a follow-up publication, we
plan to discuss the reconstruction of Floquet modes.

The trade-offs that govern the effects of trial length,
measurement noise, system noise (ny or equations (1.5))
and phase noise (nf of equations (1.5)) on the accuracy
of eigenvalue estimates are unknown. Our ability to
understand the factors that govern the recovery of the
Floquet structure of systems is severely limited by
lack of such theoretical results. For example, we want
to determine the distribution of the spectra of A þ d,
d [ Mn(g) for a matrix A with distinct eigenvalues
l1, . . . , ln. For g	 maxjljjn21/2, the answer is given
by the circular law. For g small enough, the answer is
given by sensitivity of the eigenvalues to perturbations.
In the intermediate range relevant to many practical
problems, little is known.

From a computational standpoint, the most obvious
improvement for our current algorithm would be simul-
taneous estimation of return maps at multiple phases.
The variability in eigenvalue estimates obtained from
different Poincaré sections suggests that the differences
between the sections make eigenvalues susceptible to
different biases. A return map estimation method that
simultaneously solves for the representation at multiple
sections may well be considerably more robust to
measurement errors.

This work was funded by NSF Frontiers for Integrative Biology
Research (FIBR); grant no. 0425878-Neuromechanical Systems
Biology. The authors would like to thank D. E. Koditschek and
M. Maus for their comments.
APPENDIX A. MULTIPLE IMPUTATION
APPROACH
We faced several obstacles in deriving estimates of
return map matrices. The number of cycles in each
trial was different, yet we wish all trials to be equally
represented in our estimate. This unbalanced trial
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length could not be resolved by reducing each trial to a
return map estimate and combining the estimates
because many of the trials were too short to determine
even a single return map matrix. Similarly, we could not
reduce the information provided by a trial regarding the
return map matrix to some summary statistics because
the underlying distribution in the space of matrices is
unknown, and has no obvious parametrization.

Consequently, we employed a procedure for con-
structing a balanced (re-)sample from the data—one
for which the longest and shortest trials are not too
far apart in length—and then generated large samples
of matrices from the data, using the samples themselves
to represent the distribution in a non-parametric way.
The approach is a form of multiple imputation, which
is a simulation-based approach to deal with incomplete
data [37,38]. In imputation, the investigator tries to fill
in values for missing measurements of some variable Z,
with guesses conditioned on a variable T that is never
missing from any measurement. In multiple imputation,
the investigator tries multiple possible imputations to
allow the effects of imputation on the statistics of inter-
est to be evaluated. It is convenient to define an
auxiliary variable M expressing what is sometimes
referred to as missingness—M ¼ 1 when Z is measured
and M ¼ 0 when it is missing.

By choosing a common length m for trial results,
we converted our data to the standard form used in
imputation methods. Our data indices had the range
k ¼ 1, . . . , N, i ¼ 1, . . . , m. The known measurement
Ti,k was a categorical variable holding the trial identi-
fier. The sometimes missing measurements Zi,k, i ¼ 1,
. . . , Lk consisted of input–output pairs of the Poincaré
section map. Mi,k ¼ 1[i � Lk] is the indicator variable
that is 1 for i values included in the trial and 0 whenever
i . Lk. We performed a non-parametric imputation
step, filling in the missing measurements by resampling
the available measurements in each trial until we have
m measurements in each.

We departed from the standard approaches used in
imputation in two ways. First, we discarded all trials
shorter than some minimal length m/c, for some c . 1
which we termed the leverage. This expresses our belief
that with very few measurements, the sample in a given
trial cannot adequately reflect the relevant properties of
the distribution for that trial, and the entire trial is
better discarded. Second, we re-sampled trials longer
than m with replacement down to m measurements—
an operation akin to the bootstrap. The integrity of the
maps was preserved under this resampling because each
measurement consisted of a map input and its consequent
output. Re-sampling ensured that with enough different
iterations of the multiple imputation procedure, every
measurement taken in the longer trials contributes to
the results. Our multiple imputation procedure is shown
in algorithm 2.

The procedure tends to give more weight to measure-
ments from short trials with Lk close to m/c, and does
not use all the measurements, and thus under-
represents trials with Lk 	 m. We chose m by an
optimization procedure. First, we selected the leverage
c. Leverages larger than e (the natural base) imply
that short trials are almost certainly duplicated. We
J. R. Soc. Interface (2012)
selected c ¼ 2, so as to allow a fairly broad range of
trial lengths while at the same time avoiding the near-
certain duplication of data points inherent in larger
leverages. Armed with the choice of leverage and know-
ing the length distribution of our trials, we computed
the number of input–output pairs that would remain
usable for each choice of m, and selected the m that
would admit the maximal number of such pairs while
still obeying the leverage limit.
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