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Numerous gene sets have been used as molecular signatures for exploring the genetic basis of
complex disorders. These gene sets are distinct but related to each other in many cases; there-
fore, efforts have been made to compare gene sets for studies such as those evaluating the
reproducibility of different experiments. Comparison in terms of biological function has
been demonstrated to be helpful to biologists. We improved the measurement of semantic
similarity to quantify the functional association between gene sets in the context of gene
ontology and developed a web toolkit named Gene Set Functional Similarity (GSFS;
http://bioinfo.hrbmu.edu.cn/GSFS). Validation based on protein complexes for which the
functional associations are known demonstrated that the GSFS scores tend to be correlated
with sequence similarity scores and that complexes with high GSFS scores tend to be involved
in the same functional catalogue. Compared with the pairwise method and the annotation
method, the GSFS shows better discrimination and more accurately reflects the known func-
tional catalogues shared between complexes. Case studies comparing differentially expressed
genes of prostate tumour samples from different microarray platforms and identifying coron-
ary heart disease susceptibility pathways revealed that the method could contribute to future
studies exploring the molecular basis of complex disorders.
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1. INTRODUCTION

In the post-genomic era, many experiments have been
designed to explore the cellular basis of complex
human disorders [1–5]. The most common experimen-
tal strategy is to compare the molecular signatures of
cells in normal and anomalous samples and to construct
a functional set of genes with differential activities.
These functional gene sets are distinct but—in many
cases—related, and life scientists are often interested
in comparing or finding associations between two
of these gene sets. Here are some typical examples.
(i) Scientists compare results from different microarray
platforms using independent RNA samples to evaluate
the reproducibility, specificity, sensitivity and accuracy
of the platforms [6,7]. (ii) Scientists compare genes
associated with one disease to the genes associated
with another disease to evaluate the comorbidity of
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e authors contributed equally to the study.

plementary material is available at http://dx.doi.org/
011.0551 or via http://rsif.royalsocietypublishing.org.

ugust 2011
eptember 2011 1063
the diseases [8,9]. (iii) Scientists compare gene sets
associated with specific subtypes to find the molecular
pattern of each disease subtype for diagnosis [10].
(iv) Scientists compare genes associated with a disease,
and genes involved in a biological pathway to identify
the pathways disrupted by the disease [11].

Several methods have been developed for gene set com-
parison. Most methods use a common core strategy to
statistically analyse the gene annotation overlap between
gene sets, such as GOStats and the Database for Annota-
tion, Visualization and Integrated Discovery (DAVID),
which have allowed researchers to evaluate the associ-
ations between gene sets [12–14]. These methods offer
several advantages but also pose a number of challenges.
Even when the two gene sets contain no common genes,
the sets may be related to each other due to common
biological pathways. For instance, there are four major
groups of mitogen-activated protein kinases in mamma-
lian cells. These proteins are activated by specific
stimuli on the cell surface, and all terminate when the
cell proliferates, differentiates or migrates. However, the
genes involved in the four groups are different [15–17].
This journal is q 2011 The Royal Society
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Additionally, several methods, such as FatiGO and
Martini, allow for comparison of gene sets based on bio-
logical functions and separation of the significantly
enriched biological categories into one set with respect
to the other set [18,19]. However, these methods are
still more of an exploratory data-mining procedure
rather than a quantifying solution and fail to provide
a quantitative value and statistical analysis that
enhances reliability. Analysis of the shared biological
processes related to two gene sets provides only a hint
that the gene sets are related. In fact, randomly gener-
ated large gene sets may overlap falsely associated
biological categories, and the form of statistical analysis
is critical [20]. Therefore, a method must be constructed
that can be widely used to perform a systematic com-
parison and statistical analysis to identify associations
between gene sets.

This paper proposes a novel method for comparing
two gene sets, named Gene Set Functional Similarity
(GSFS), in the context of gene annotations (figure 1).
The method quantifies the functional association of
two gene sets using an improved semantic similarity
measure and evaluates the significance of the score.
To validate the performance of the method, 51 protein
complexes whose functional associations are known
in the functional catalogue (http://mips.helmholtz-
muenchen.de/genre/proj/corum/) were extracted and
used as the benchmark dataset. The results show that
the functional similarity scores determined by this
method were highly consistent with the sequence simi-
larity scores. Using clustering analysis based on GSFS
scores, the complexes were divided into five major clus-
ters corresponding to the known functional catalogue.
Comparison with the pairwise method and the annota-
tion method verified that our method could better
reflect the functional association between gene sets.
Then, two case studies, one comparing the differentially
expressed genes (DEGs) of prostate tumour samples
from different microarray platforms and the other iden-
tifying coronary heart disease (CHD) susceptibility
pathways, were performed. We believe this method,
and its associated web toolkit will enable future studies
to analyse the molecular signatures of complex human
diseases and will be helpful in exploring the molecular
basis of complex human disorders.
2. MATERIAL AND METHODS

2.1. Data sources

In the present study, gene annotation data were based
on gene ontology (GO), which assigns biological cat-
egories to genes based on the properties of their
encoded proteins [21]. The GO database is widely
adopted by the life sciences community to study gene
products at the functional level, which is crucial for a
variety of applications [22,23]. Gene annotation data
were downloaded from the official GO Consortium web-
site (http://archive.geneontology.org/full/2010-01-01/).
In the original downloaded dataset, genes are assigned
to the most specific GO categories. To implement
gene set enrichment analysis and semantic similarity
measurements, we compiled the original dataset and
J. R. Soc. Interface (2012)
inferred gene associations from the lower-level to
higher-level GO categories according to the ontology
structure. In our study, the functional similarity score
between two gene sets was calculated based on the bio-
logical process, which is a series of events accomplished
by one or more ordered molecular functions. Regardless
of the associated evidence codes, we used all GO–gene
associations to build comprehensive functional profiles
of input gene sets.

Protein complexes were used as gene sets with known
functions in this study. These sets were compiled from the
latest Comprehensive Resource of Mammalian protein
complexes (CORUM) database (release 02.09.2009),
which contains 1343 human protein complexes (each
protein complex can be regarded as a gene set) [24]. Infor-
mation on these complexes was obtained from individual
experiments published in the primary literature and was
used to assign a functional catalogue. We disregarded
protein complexes containing fewer than 15 genes
because a small number of genes may yield a null-
enriched category set, which would result in 51 human
protein complexes (see electronic supplementary
material, table S1). We used these 51 protein complexes,
whose functional associations are known from the
functional catalogue, as the benchmark dataset for
validation and comparison of our method.

2.2. Calculating functional similarity score
between two gene sets

First, we identified significant category sets using
enrichment analysis for each gene set. When a gene
set fell into a category, enrichment analysis was
adopted to measure the enrichment significance values
(ESVs) of the category. The lower the ESV, the more
relevance a category has to the gene set [25]. Here,
the cumulative hypergeometric test was used as follows:

PðX � qÞ ¼ 1�
Xq�1

x¼0

n
x

� �
N � n
M � x

� �

N
M

� � ;

where N is the number in the GO background, M is the
number of given genes, n is the number of genes anno-
tated in a certain category and q is the number of
given genes that are annotated in this category.

Second, the semantic similarity between two signifi-
cant categories was then calculated [26,27]. The
information content (IC) of a category was computed
as 2log p(c). The p(c) calculation was based on deter-
mining the number of times that a specific GO category
or any directly or indirectly related offspring appeared
in annotated genes. This value is the number of genes
annotated in that category divided by the number of
all genes annotated to the GO domain. One of the
most well-known semantic similarity measures was
introduced by Resnik [28]. This measure relies on
the minimum subsumer of the two categories, which
is their common ancestor with the most informative
content in the GO-directed acyclic graph most informa-
tive common ancestor (MICA), max

c[aðci ;cj Þ
ð� log pðcÞÞ:

Taking into account the differences between categories,
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Figure 1. The GSFS algorithm. The method for identifying the association of two gene sets is based on gene annotations. Step 1:
enrichment analysis is applied to identify significantly enriched functional category sets for each gene set. Steps 2 and 3: the
improved semantic similarity measure is used to calculate the functional similarity score. Step 4: a randomization test is used
to give a p-value and a fold-change value to determine the statistical significance of the GSFS score.
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a normalized measure was developed by Lin [29]. It is
given by the formula

Simðci; cjÞ ¼
MICAðcÞ

ICðciÞ þ ICðcjÞ
¼

2 max
c[aðci ;cj Þ

ð� log pðcÞÞ

� log pðciÞ � log pðcjÞ
:

Considering that these categories have different levels
of relevance to a gene set, the functional similarity score
between two gene sets is influenced by ESVs. Thus, we
defined a function w( pi, pj) as the weight of the semantic
similarity of categories ci and cj. As the relevance of the
category increases with the decrease in ESV, the seman-
tic similarity between two categories is weighted by
J. R. Soc. Interface (2012)
ð1� ð pi=aÞÞð1� ð pj=aÞÞ, where pi, and pj represent
the ESVs of categories and a represents the threshold
of enrichment analysis. The application of the formula
provides a more appropriate result for two categories
from two gene sets. Thus, the improved semantic
similarity between two categories is defined as

iSimðci; cjÞ ¼ Simðci; cjÞ � wð pi; pjÞ

¼
2 max

c[aðci ;cj Þ
ð� log pðcÞÞ

� log pðciÞ � log pðcjÞ
� 1� pi

a

� �

� 1� pj

a

� �
:
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Third, based on the improved semantic similarity
measure for the two categories, we implemented
measures to investigate the functional similarity of the
two category sets identified from the gene sets. For
the two category sets A and B with sizes nA and nB, a
similarity matrix iSimij(i ¼ 1,. . .,nA, j ¼ 1,. . .,nB) is
calculated. The matrix contains the similarity scores
of each category pair (ci, cj), where category ci is in
set A, and cj is in set B. The final similarity score
between two category sets can be calculated by the
best-matched average measure (BMA) using the
scores in matrix iSimij [30]. It is given by the formula

GSFS score ¼

1=nAÞ
PnA

i¼1 max
1�i�nB

iSimij þ ð1=nBÞ
PnB

j¼1 max
1�j�nA

iSimij

2
:

Indeed, there are several alternative measures such
as Jiang & Conrath’s measure and graph information con-
tent measure [30,31]. These measures were implemented
and evaluated in Collaborative Evaluation of GO-
based Semantic Similarity Measures (CESSM) [32,33].
In order to reason our choice of Lin measure with the
BMA method, we have compared our choice with other
frequently used measurements and validated our choice
with CESSM. The detailed results are presented in the
electronic supplementary material, table S2.

Thus, one can implement an improved semantic
similarity measure as a scoring method for the func-
tional similarity between two gene sets. The GSFS
method was used to investigate the association of two
gene sets at the functional level. Scores close to 1 indi-
cate high functional similarity, whereas scores close to
0 indicate low similarity.

2.3. The evaluation of the significance of the
similarity score

The similarity score is affected by the size of the
gene sets. It thus requires further statistical analysis.
Therefore, we constructed a statistical model to deter-
mine the significance of the similarity score of two
gene sets. An empirical p-value (EP) is estimated for
each similarity score by Monte Carlo random sampling
that is obtained by randomly assigning the genes to
each gene set of the same size. For each pair of genes
in a random gene set, the functional similarity scores
are calculated; the EP is the probability of getting the
same or higher similarity score. Assuming that the
GSFS score is the similarity score between two gene
sets given by the method and n similarity scores,
random GSFS scorei(i ¼ 1,. . .,n) values are calculated
from random gene sets. The estimate of the EP for
the test is computed as

EP ¼
Xn

i¼1

si

n
;

where

si ¼
0; if random GSFS scorei � GSFS score
1; if random GSFS scorei . GSFS score

�

is an indicator function.
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The fold-change value is computed as

f ¼ GSFS score
avg(random GSFS scoreÞ ;

where

avg(random GSFS score) ¼ 1
n

Xn

i¼1

random GSFS scorei

is the average score for random gene sets.
3. RESULTS

3.1. Validation of gene set functional similarity
based on the sequence similarity of protein
complexes

It is a biological tenet that genes with similar sequences
exhibit similar functions; therefore, gene sets with highly
similar sequences should have high functional similarity
[34]. To test the efficacy of the GSFS in quantifying
the association between gene sets, we decided to deter-
mine how the GSFS performs with respect to sequence
similarity. We assumed that if the GSFS were successful
in quantifying association between gene sets, then the
GSFS scores would be correlated with the sequence simi-
larity scores. To test this hypothesis, protein complex
data were analysed by calculating the GSFS scores of
each pair and correlating these scores with the sequence
similarity scores. Here, 1275 protein complex pairs
generated by the 51 complexes were compared.

We used the NCBI BLAST suite program
‘BLASTN’ (Basic Local Alignment Search Tool for
searching Nucleotide databases) to analyse the simi-
larity between the nucleotide sequences. This program
uses the ‘bit score’ as a measure of sequence similarity
between two proteins. Then an integrated method is
given for the average bit score between each nucleotide
in a complex and its most similar nucleotide in another
complex, averaged with its reciprocal to obtain a sym-
metric score. Therefore, the sequence similarity score
between two gene sets can be calculated.

The functional similarity score was generated by the
GSFS (see §2). The GSFS and sequence similarity
scores for 1275 complex pairs were determined and
assessed for correlation. The distribution of sequence
similarity scores in different groups of complex pairs
was analysed with respect to different functional simi-
larity scores. Figure 2 shows the distribution of
sequence similarity scores for different functional simi-
larity score bins of complex pairs. As expected, the
complex pairs with high sequence similarity scores
tended to have high GSFS scores. A greater sequence
similarity for two complexes resulted in a more similar
function as determined by the GSFS computation.
We calculated Pearson’s correlation between sequence
similarity scores and functional similarity scores for
1275 complex pairs. The obtained correlation coefficient
is 0.4519. To test the null hypothesis that the coefficient
is equal to 0 versus the alternative hypothesis that
the coefficient is not equal to 0, we get a p-value
2.2�10216 using one sample t-test. Given this result,
we would be inclined to reject the null hypothesis
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and conclude that there exists correlation between
functional similarity and sequence similarity.
3.2. Validation of gene set functional similarity
on complex functional catalogue

We used the known functional annotations for protein
complexes in CORUM to evaluate the efficacy of the
GSFS method for quantifying gene set associations.
We assumed that a relatively high score from GSFS
for two protein complexes indicated that these com-
plexes should have the same or a similar functional
catalogue. Therefore, we analysed the functional simi-
larity score matrix between all protein complex pairs.
We applied a complete-linkage hierarchic cluster analy-
sis on this score matrix using Cluster þ TreeView to
group functionally similar complexes [35]. These com-
plexes were separated into seven clusters by setting
the height cutoff value to 3 and then into two clusters
that included one complex and five clusters that included
all multiple complexes (figure 3). Remarkably, the clus-
tered complexes were involved in the same or similar
functional catalogues as the CORUM annotation.
For example, the PA700 complex, PA700–20S–PA28
complex, PA28–20S proteasome, PA28 gamma–20S
proteasome and 26S proteasome were gathered into a
cluster that was annotated under the functional catalo-
gue ‘proteasomal degradation’. The clustering results
reveal that the GSFS scores can favourably distinguish
functional associations between complexes.
3.3. Comparison with other methods using
complex functional catalogue

To illustrate the advantages of determining the associ-
ation of two gene sets using the GSFS method, we
carried out a comparison of the GSFS method with
J. R. Soc. Interface (2012)
the gene pairwise method and the gene set annotation
method. The gene pairwise method defines a summary
for the gene set score that is the best-match average
of the separate gene pair similarity scores. Gene pair
similarity scores were implemented by GOSim [36].
The gene set annotation method is based on the best-
match average of the similarity scores between two
annotated category sets for each score, which was
implemented by GOSemSim in this study [37]. We hap-
pened to choose GOSim and GOSemSim, but the
semantic similarity analysis of categories and genes by
other tools would be similar.

First, according to the annotation information for
the complexes in the CORUM Functional Catalogue,
1275 pairs of complexes were divided into four groups.
The first group consisted of 176 pairs in which the com-
plexes were not annotated with any common functional
catalogue. There is a low functional association between
two complexes in any pair of the first group. The second
group consisted of 241 pairs in which the complexes
were annotated with a common functional catalogue
in the first level. The third group consisted of 521
pairs in which the complexes were annotated with a
common functional catalogue in the first and the
second levels. The fourth group consisted of 337 pairs
in which the complexes were annotated with a
common functional catalogue in at least three levels.
There is a high functional association between two com-
plexes in any pair of the fourth group, according to the
CORUM database.

We computed the functional similarity scores for
each complex pair using three methods and classified
the scores into four groups, as described earlier. By ana-
lysing the scores of the four groups, the functional
association between complexes can be explored. It is
reasonable to expect that the complexes in closer func-
tional catalogue would likely have larger functional
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similarity scores. The scores from the four groups are
compared in figure 4. As shown in figure 4b,c, the
results of the gene pair method and the gene annotation
method do not agree with the expected results for
groups 1, 2 and 3, and these methods yielded relatively
high median scores for group 1. In figure 4a, the GSFS
score increases from the first group to the fourth group,
showing that the GSFS method has a high consistency
with the functional catalogue information for protein
complexes. Further, we calculated the average variance
rate (AVR) for evaluating the discrimination of the
three methods. Based on the median, we normalized
the variance of the similarity scores from each
method. The AVR was defined as follows:

AVR ¼
X3

i¼1

Mðgiþ1Þ �MðgiÞ
3MðgiÞ

;

where M(gi) is median of the ith group. The AVR of our
method was 16.44 per cent, and the AVRs of the other
methods were 8.79 and 2.22 per cent (figure 5). This
finding suggests that the GSFS method would be the
most discriminatory. The comparison between the
GSFS and the other methods clearly shows that our
method could better reflect the functional association
between complexes.

3.4. Analysis results from two prostate tumour
microarray datasets

Microarray experiments often produce a single gene set
associated with a disease phenotype, but scientists have
found that gene sets with the same or similar phenotype
from different platforms have few common genes. Some
authors have speculated that these different genes may
share the same or similar functions that cause the same
phenotype. Here, DEG sets with few overlapping genes
J. R. Soc. Interface (2012)
from two microarray platforms that had functional con-
sistency were compared. The cDNA and the oligo
microarray datasets for prostate tumour and adjacent
prostate tissue samples were used for analysis [38,39].
A comparison of the tumour characteristics of the two
datasets is provided in table 1. The two prostate
cancer datasets are very similar with respect to patient
clinical characteristics, and the two DEG sets yielded a
high functional similarity score.

DEGs by significance analysis of microarrays were
detected with 1 per cent false discovery rate (FDR) con-
trol [5]. The cDNA microarray DEG set consists of 3342
genes, while the oligo microarray DEG set contains 2724
genes. The overlap between the two DEG sets detected
from different microarray studies is 591 genes, and the
average number of overlapping genes in a randomization
test with 1000 repeats is 538, which indicates that it is
possible to generate a similar degree of overlap, even in
a randomly generated gene set. Next, the GSFS was
used to compare the functional similarity of the two
DEG sets. The average value of GSFS scores in a ran-
domization test with 1000 repeats was 0.200, and the
observed score was 0.505; the difference between these
two scores is statistically significant. Our method
yields a similarity score corresponding to the sample
similarity with respect to clinical characteristics. The
comparison results are shown in figure 5. The case
study analysis shows that GSFS is a useful and
reasonable method for comparing experimental datasets.
3.5. Identification coronary heart disease
susceptibility pathways using gene set
functional similarity

Pathways frequently exhibit specific biological func-
tions. Therefore, each pathway is defined as a gene
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set, and a test based on functional similarity for a query
gene set would retrieve related pathways. Thus, all path-
ways were compared with a gene set for CHD. First,
according to the CHD classification of the World Health
Organization (WHO), we manually extracted 39 CHD
genes (see electronic supplementary material, table S3)
from the Online Mendelian Inheritance in Man (OMIM)
database involved in myocardial infarction, angina,
arrhythmia, sudden cardiac arrest and ischaemic heart
disease [40]. Then we downloaded 165 biological pathway
datasets from the Metabolism, Genetic Information
Processing, Environmental Information Processing,
Cellular Processes and Organismal Systems catalogues
in the Kyoto Encyclopedia of Genes and Genomes
(KEGG) database [41].

The functional similarity scores between the CHD can-
didate gene set and each pathway were calculated by the
J. R. Soc. Interface (2012)
GSFS method. The 165 biological pathways were ranked
based on their similarityscores.The top10biological path-
ways are shown in table 2.Of the 10pathways seven (which
are marked with superscript ‘a’ in the table), reportedly
play important roles in CHD. Additionally, the remaining
three pathways (which are marked with superscript ‘b’),
have recently been associated with CHD [43,45–47,49–
51]. For example, the sigma-1 receptor causes the pathway
for neuroactive ligand–receptor interaction to malfunc-
tion, leading to memory process and cognitive disorders
[42]. Sympathetic changes lead to disorders in the neuro-
trophin signalling pathway [44]. Similarly and equally
importantly, the Fc epsilon RI signalling pathway can
be detected in injured cardiac mast cells [48]. All of these
disorders can cause cardiovascular diseases.

As a comparison, we also carried out a biological
pathway enrichment analysis on these 39 CHD genes



Table 2. Top 10 pathways identified by the gene set functional similarity method for coronary heart disease.

pathway name GSFS score DAVID (p-value) reference

neuroactive ligand–receptor interactionb 0.6217 .0.1 Waterhouse et al. [42]
calcium signalling pathwaya 0.61739 .0.1 Fareh et al. [43]
focal adhesiona 0.61697 .0.1 Luther & Birren [44]
neurotrophin signalling pathwayb 0.61333 .0.1 Tedgui & Mallat [45]
cytokine–cytokine receptor interactiona 0.61221 0.062 Aukrust et al. [46]
chemokine signalling pathwaya 0.6096 .0.1 Amasyali et al. [47]
adipocytokine signalling pathwaya 0.60692 .0.1 Amasyali et al. [47]
Fc epsilon RI signalling pathwayb 0.60537 .0.1 Marone et al. [48]
toll-like receptor signalling pathwaya 0.59985 .0.1 Satoh et al. [49]
Jak-Stat signalling pathwaya 0.59953 .0.1 Barry et al. [50]

aSeven of the 10 pathways play important roles in CHD.
bThe remaining three pathways have recently been associated with CHD.

Table 1. Comparison of tumour characteristics of two prostate tumour datasets.

characteristics cDNA microarray oligo microarray p-value

tumour sample 62 52
normal sample 41 50
age

mean 59.2 58.5
range 45–72 47–72

Gleason grade
2–6 24 (39%) 24 (46%) .0.05
7 22 (35%) 22 (42%)
8–10 15 (24%) 6 (12%)

stage
T2a 6 (10%) 7 (13%) .0.05
T2b 23 (37%) 25 (48%)
T3a 19 (31%) 16 (31%)
T3b 9 (15%) 4 (8%)
other 5 (8%) 0 (0%)
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using DAVID, which is frequently used in other stu-
dies. In this case study, only the cytokine–cytokine
receptor interaction pathway was identified as a CHD-
associated pathway by DAVID ( p-value ¼ 0.062,
adjusted p-value ¼ 0.81 with the Benjamini FDR
correction method).
4. DISCUSSION

Comparison between gene sets can provide further
knowledge relevant to the results of biological exper-
iments. For two gene sets, simply calculating the
reproducibility of the genes may not give the expected
results and does not indicate their association at the
functional level. This article shows that the GSFS can
be used to quantify the functional association between
two gene sets. The results of enrichment analysis are
integrated into the computation of semantic simila-
rity between categories and give a functional similarity
score for gene sets. The significance evaluation shows
whether two sets are functionally associated.

From the view of enrichment analysis, the sets of sig-
nificant categories are a rather defined functional
association. The advantage of the enrichment method
J. R. Soc. Interface (2012)
is that it addresses the biology of the gene sets and
takes into account the significance of the biological rel-
evance of the associations between gene sets and
categories. Therefore, weighting for functional cat-
egories, the GSFS could be more suitable for a
functional comparison. Additionally, the similarity
score is influenced by the number of gene sets. We
have developed a statistical model based on the distri-
bution of similarity that is obtained by randomly
generating two gene sets of the same size. The prob-
ability is used to estimate the association for two gene
sets. This computational comparison and systematic
analysis method provides a new way to evaluate the
associations between gene sets.

The correctness of the method is not completely jus-
tified because there is no gold standard for evaluating
the functional association of gene sets. To evaluate
the GSFS algorithm, we developed several tests based
on protein complex data that were annotated with func-
tional categories in CORUM; thus, the associations are
known. First, the GSFS was used to quantify functional
similarity, and BLAST was used to calculate sequence
similarity between complex pairs. The GSFS scores
were strongly correlated with the sequence similarity
scores. Second, an analysis was performed to determine
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whether the cluster result using the GSFS score was
consistent with the complex-annotation catalogue. As
expected, complexes with high functional relatedness
in CORUM were assigned to a cluster. Third, the
gene pairwise method and the gene set annotation
method were compared with the GSFS, and the results
showed that GSFS tended to be better for exploring
functional associations between complexes.

In previous studies, the gene sets of the DEGs
detected from different microarray studies for a pheno-
type or a condition have often been highly inconsistent.
We used the GSFS method to analyse the association
between two DEG sets for prostate tumour cells from
different platforms and verified that the GSFS method
is functionally consistent with the sample. Finally, by
ranking the functional similarity scores from GSFS, we
identified susceptibility pathways of CHD. The GSFS
method may be a novel and efficient means for further
studying the reproducibility of and for meta-analysis
of different gene sets, which may be useful to identify
the underlying functions of gene sets and to explore the
molecular basis of complex human disorders.
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