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Spatial organization and noise play an important role in molecular systems biology. In recent
years, a number of software packages have been developed for stochastic spatio-temporal simu-
lation, ranging from detailed molecular-based approaches to less detailed compartment-based
simulations. Compartment-based approaches yield quick and accurate mesoscopic results,
but lack the level of detail that is characteristic of the computationally intensive molecular-
based models. Often microscopic detail is only required in a small region (e.g. close to the cell
membrane). Currently, the best way to achieve microscopic detail is to use a resource-intensive
simulation over the whole domain. We develop the two-regime method (TRM) in which a mol-
ecular-based algorithm is used where desired and a compartment-based approach is used
elsewhere. We present easy-to-implement coupling conditions which ensure that the TRM
results have the same accuracy as a detailed molecular-based model in the whole simulation
domain. Therefore, the TRM combines strengths of previously developed stochastic reac-
tion–diffusion software to efficiently explore the behaviour of biological models. Illustrative
examples and the mathematical justification of the TRM are also presented.

Keywords: stochastic modelling; reaction–diffusion processes; multi-scale
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1. INTRODUCTION

Stochastic spatio-temporal simulations have been suc-
cessfully used in a number of biological applications,
including models of morphogen gradients [1], MAPK
pathway [2], signal trasduction in Escherichia coli
chemotaxis [3] and oscillation of Min proteins in cell div-
ision [4]. However, detailed stochastic spatio-temporal
models are often computationally intensive to simulate.
This is one of the reasons why whole cell simulation has
been recognized as a ‘grand challenge of the 21st century’
[5]. In this paper, we address this problem using a model-
ling approach that has computational complexity only in
regions of interest.

Spatio-temporal biological processes are often mod-
elled using deterministic reaction–diffusion models that
are written in the form of partial differential equations
(PDEs) for concentrations of biochemical species [6].
However, cellular or subcellular processes usually take
place on very small spatial scales. With such small
scales, it is not uncommon for populations of biochemical
species to be so small that deterministic (PDE-based)
approaches are completely inappropriate. Several stochas-
tic reaction–diffusion models have been introduced in the
literature. In general, these models can be divided into
two distinct classes [7]. The first class of models is com-
partment-based, which is characterized by a
discretization of the spatial domain into compartments
[8]. At any particular time, the best approximation to
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the localization of any individual molecule is the compart-
ment that the molecule is in. Molecules that are in the
same compartment and are of the same species are com-
pletely indistinguishable. Molecules are free to migrate
in the form of discrete jumps from one compartment to
another via diffusion. Compartment-based modelling
techniques are very popular and are used in a number of
available self-contained simulation packages, for example
MesoRD [9] and SmartCell [10]. While compartment-
based models do not specifically represent the true noisy
trajectory of the molecules, it has been shown that these
models can provide accurate results by choosing the
mesh spacing carefully [11,12]. The second class of
models is based on Brownian dynamics (molecular-
based) simulation. The characterizing property of this
method is that each molecule has an exact location on a
continuous domain. Molecule diffusion is simulated by
calculation of its noisy trajectory. There are a number of
simulation packages that implement molecular-based
simulation, for example Smoldyn [13,14], MCell [15,16]
and Green’s function reaction dynamics (GFRD) [17].

Brownian dynamics simulation is popular because of
its better representation of the microscopic physics. How-
ever, if precise information about the trajectories of each
molecule is not important, then the effort placed on
tracking them is a waste of computational resources. As
a general rule, if concentrations are really small, tracking
every molecule’s trajectory is achievable, but becomes
less practical as concentrations increase, when compart-
ment-based methods (or even deterministic methods)
This journal is q 2011 The Royal Society
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Figure 1. Graphical representation of the two-regime method.
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are preferred. Often it is difficult to choose the most
appropriate stochastic model when large spatial concen-
tration variations, specific regions of interest and/or
small systems coupled to larger systems are involved. In
each of these cases, it would be ideal if a Brownian
dynamics model may be used for localized regions of par-
ticular interest in which accuracy and microscopic detail
is important (such as near the biological cell membrane
[18]), and a compartment-based model may be used for
other regions in which accuracy may be traded for simu-
lation efficiency.

In this paper, we propose a spatially hybrid model,
the two-regime method (TRM), which includes the
best parts of each type of model and therefore optimizes
simulation results. The TRM uses both a compartment-
based approach and a molecular-based approach. It
divides the computational domain V into two non-over-
lapping parts which we will label VM and VC, i.e. V ¼
VM < VC. Modellers compartmentalize that part of the
domain in which they feel a compartment approach is
best suited (labelled VC in this paper) and consider
molecules in VM as free molecules diffusing and reacting
on a continuous space using molecular-based modelling
rules. Therefore, molecules jump from compartment to
compartment in the spatially coarse regime in VC and
move according to Brownian motion in VM with an
exact location. The purpose of this paper is to outline
the best way to couple these two regimes. That is, we
address the following questions. Where and when does
a molecule jump from a compartment in VC into the
molecular-based region VM? And, how does a particle
migrate from the molecular-based regime in VM into a
compartment in VC? Both of these questions relate to
the way in which molecules experience the interface
between the two regimes that we will denote as I, i.e
I ¼ VM > VC. The schematic of the geometry of the
TRM is shown in figure 1. To explain this method, we
have to first summarize important facts about the com-
partment-based and molecular-based regimes. This will
be done in §1.1 and §1.2. The TRM is then explained in
full detail in §2.1.
1.1. Compartment-based modelling

The characterizing property of compartment-based
stochastic models of reaction–diffusion processes is the
J. R. Soc. Interface (2012)
fact that the domain is discretized. Molecules do not
have exact locations as they do in Brownian dynamics
simulations, but rather they are only assigned to be
located within one of the compartments at a given
moment in time. In particular, computer implemen-
tations of compartment-based models only store and
evolve numbers of molecules in compartments (for
each biochemical species). In what follows, we will con-
sider the discretization of the computational domain
using the compartments of the same size. This means
that, in the case of three-dimensional simulations, com-
partments will be small cubes with the side equal to h.
Similarly, compartments will be squares with the side h
(respective intervals of length h) for two-dimensional
(respectively one-dimensional) models. In each case, dif-
fusion is modelled by allowing jumps of molecules
between neighbouring compartments with rate D/h2,
where D is the diffusion constant [19].

Compartment-based models postulate that chemical
reactions only occur if the reactant molecules are in
the same compartment [9]. Let us consider a general
system of N chemical species that are subject to M chemi-
cal reactions in a domain VC that is discretized into
K compartments. Then compartment-based models
assign a propensity function ai,j(t), i ¼ 1,2, . . . , M,
j ¼ 1, 2, . . . , K, to each chemical reaction in each
compartment. Here, the product ai,j(t)dt is the prob-
ability that the i-th chemical reaction occurs in the j-th
compartment during the infinitesimally small time
interval [t,t þ dt]. The propensity ai,j(t) depends on the
number of available reactants in the compartment, the
kinetic rate constant and the compartment size h [7]. In
a similar way, one can assign the propensity of diffusive
jumps from the j-th compartment, j ¼ 1,2, . . . , K, to its
neighbouring compartments to be ai,j(t) ¼ D/h2, where
i ¼Mþ1, . . . , M þ dj and dj is the number of available
compartments adjacent to the j-th compartment. In
this way, the reaction events and the diffusive jumps are
both contained in the propensities ai,j.

Because a real diffusing molecule’s trajectory is con-
tinuous, if a molecule leaves a compartment, it enters a
neighbouring compartment. This necessarily places a
constraint on the time step in which the system is
updated. Commonly, there are two separate ways of
simulating molecule migration from compartment to
compartment. The first is by designation of the time
step Dt [20]. We will call this the time-driven approach.
This is a less accurate, but simpler, method of simu-
lation. Regardless of how small the time step is, there
will be a non-zero probability for molecules to move
more than one compartment, which leads to inaccura-
cies in the results. However, accuracy is assured so
long as the probability for a single molecule to move
just one compartment, DDt/h2, is small (which makes
the probability for two compartment jumps negligible).
Further restrictions on the time step might also be
provided by fast chemical reactions.

A more common approach to compartment-based
modelling is given by event-driven algorithms, which
simulate the evolution of the system by picking the
time step that corresponds to the next diffusive jump
or reaction event [21,22]. Examples include the Gille-
spie algorithm [21], next reaction method [22] and
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next subvolume method [9]. In the next reaction
method, the time t þ ti,j for each reaction and diffusion
jump is computed putatively by

ti;j ¼
1
ai;j

ln
1

ri;j

� �
; ð1:1Þ

where ri,j is a uniformly distributed random number in
(0,1). In particular, if the compartment size h is reduced,
then the propensities D/h2 of the molecules to migrate
between compartments increases, which causes the time
step between diffusive events to decrease in turn. Thus,
in both time-driven and event-driven algorithms, the
time step and the compartment size are inherently
linked (either by the constraint of small jumping
probabilities or by correlation between the randomly
selected time step and the compartment size).

1.2. Molecular-based modelling

Computer implementations of molecular-based models
in the literature store and evolve the positions of all bio-
molecules of interest [13]. The trajectories of large
biomolecules (proteins) are computed through Brow-
nian dynamics [23]. This is done by the inclusion of a
random motion term that models the effect of solvent
molecules on the biomolecules of interest without the
need to simulate each solvent molecule individually.
In the time-driven algorithms, the position xi(t þ Dt)
of the i-th molecule at time t þ Dt is computed from
its position xi(t) at time t by

xiðt þ DtÞ ¼ xiðtÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffi
2DDt
p

z; ð1:2Þ

where z ¼ [zx, zy, zz] is a vector of three normally distrib-
uted random numbers with zero mean and unit
variance. Chemical reactions are then performed at
each time step according to the probability of each reac-
tion. Probabilities of bimolecular reactions also depend
on the distance of possible reactants [7,13]. Molecules
that migrate over domain boundaries are treated
depending on whether they are reflective, absorbing or
reactive boundaries [18].

A time-driven Brownian model is simple to imple-
ment, but may not be efficient. Prescribing a time step
Dt to an arbitrary simulation can be difficult because if
the concentration is too small, then many time steps
will be calculated before any interactions or interesting
features may take place. Sometimes event-driven algor-
ithms are preferred for Brownian dynamical models. An
example is the GFRD method [17] that chooses a time
step based on the current system configuration. It
makes use of the fact that single-particle and two-particle
problems can be solved analytically using Green’s func-
tions, and selects the time step in such a way that the
system evolution can be approximated as a collection of
two-particle (or single-particle) problems.
2. RESULTS

2.1. Two-regime method

The TRM is a spatially hybrid model for stochastic reac-
tion–diffusion processes that uses a two-part domain V.
One part, VC, is discretized into compartments and
J. R. Soc. Interface (2012)
the other, VM, is a molecular-based subdomain (V ¼
VC < VM). The interface between the subdomains is
denoted as I ; @VC < @VM. The algorithm is graphi-
cally presented in figure 1. Some details of the
implementation of TRM are dependent on the choice of
algorithms governing each individual regime, i.e. whether
we use a time-driven or event-driven approach in VC and
VM. In this section, we focus on the most common case.
Other cases are discussed in §3.

Commonly, compartment-based stochastic reaction–
diffusion models are implemented using an event-driven
algorithm [9], while molecular-based stochastic reaction–
diffusion models are implemented using a time-driven
approach [13]. We therefore present the TRM that
integrates an event-driven compartment-based reaction–
diffusion regime (next reaction method [22]) and a time-
driven molecular-based reaction–diffusion regime (for
example, that used by Smoldyn [13]). The algorithm is
summarized in table 1.

Molecules in bothVC andVM are simulated according
to the rules defined by their particular algorithm. There-
fore, when initializing in step (i), molecules are placed
according to compartment in VC and according to coor-
dinate in VM. The propensity for molecules to migrate
from compartments adjacent to the interface I into VM

is given by F1D/h2 per molecule, where F1 is the
change in the propensity of migration (from that of an
internal migratory event) that is included to make the
molecular flux over the interface I consistent with diffu-
sion. We have determined F1 to be (see appendix A)

F1 ¼
2hffiffiffiffiffiffiffiffiffiffiffiffi
pDDt
p ; ð2:1Þ

whereDt is the fixed time increment defined for updating
the molecules in VM. We use (1.1) to find the putative
times t þ ti,j for the next reaction/migration events in
VC. We call these C-events. They include the jumps
from VC to VM, which have propensities equal to F1D/
h2 multiplied by the number of molecules in the
corresponding compartment. Therefore, we define dj to
be the number of available directions in which a molecule
may jump, including a jump over the interface I.
In step (ii), we also initialize the time of the next
update of molecules in VM as tM ¼ Dt (we call these
M-events).

The algorithm then proceeds by repeating steps (iii)
and (iv), which compute C-events and M-events
respectively. At each C-event, we track the reaction-
migratory events that occur in VC. At each M-event,
we update the entire system of molecules in VM by cal-
culating the new positions of molecules in VM using
(1.2) and the reactions using the method prescribed
by the specific molecular-based algorithm [13,23]. At
each M-event, we also introduce new molecules from
VC into VM by placing them at a distance x from the
interface I that is sampled from the probability
distribution f(x). These new molecules arise from
those C-events that have occurred since the previous
M-event. We have determined that (see appendix A)

f ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
p

4DDt

r
erfc

xffiffiffiffiffiffiffiffiffiffiffiffi
4DDt
p
� �

; ð2:2Þ



Table 1. The two-regime method (TRM) for stochastic reaction–diffusion simulation.

(i) Initialize numbers of molecules in compartments in VC and positions of molecules that are in VM.
(ii) Choose Dt, the time between updates of the molecular-based regime (M-events) in VM. Use (1.1) to calculate ti,j, the

putative times at which the next reaction or migratory events (C-events) will take place in VC (or are initiated in Vc for
jumps over the interface I). Set tM ¼ Dt and tC ¼ min(ti,j), where the minimum is taken over all i ¼ 1,2, . . . , M þ dj

and j ¼ 1,2, . . . , K.
(iii) If tC � tM, then the next C-event occurs:

— Update current time t :¼ tC.
— Change the number of molecules in VC to reflect the specific C-event that has occurred. If this event is one in which

a particle leaves VC bound for VM, then compute its initial position in VM according to the method described in the
text (using (2.2)) and remove it from the corresponding compartment adjacent to the interface I. Calculate the next
putative time for the current C-event by (1.1).

— For all propensity functions ai,j that are changed as a result of the C-event, determine the putative times of the
corresponding event by (2.4).

— Set tC :¼ min(ti,j).
(iv) If tM � tC, then the next M-event occurs:

— Update current time t :¼ tM.
— Change the locations of all molecules in VM according to (1.2).
— Initialize all molecules which migrated from VC to VM during previous C-events at locations computed in step

(iii), using (2.2).
— Perform all reaction events in VM.
— Absorb all molecules that interact with the interface I from VM (excluding those just initiated) into the

corresponding compartment in VC (or into the compartment which is closest to their final calculated position).
The molecules moving across the interface are selected with the help of (2.3).

— For all propensity functions ai,j that are changed as a result of the M-event determine the putative times of the
corresponding C-event by (2.4).

— Update tM :¼ tM þ Dt and, if necessary, set tC :¼ min(ti,j).
(v) Repeat steps (iii) and (iv) until the desired end of the simulation.
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where x � 0 is the distance from the boundary, and
erfcðxÞ ¼ 2=

ffiffiffiffi
p
p Ð1

x expð�j 2Þ dj is the complementary
error function. To sample efficiently from this dis-
tribution, one can follow the method presented in
Andrews [24, eqn (35)]. Note that the probability dis-
tribution (2.2) can also be interpreted as a
concentration profile created by diffusion over the
period of Dt from initial concentration given as a Hea-
viside function [25]. This implies that the molecular-
based algorithm ‘senses’ the compartment as a con-
tinuous, uniform, distribution of particles rather than
a single source of particles originating at the node of
the compartment or any other specific microscopic
arrangement.

In step (iv), we also identify all molecules that
migrate from VM to VC during an M-event. These
include those molecules which have new locations calcu-
lated by (1.2) in VC. However, we also have to include
some molecules that have their new locations calculated
by (1.2) in VM. In appendix A, we show that every mol-
ecule has a probability Pm to migrate from VM to VC

during an M-event where

Pm ¼ exp
�Dxold Dxnew

DDt

� �
; ð2:3Þ

where Dxold is the distance of the molecule from
the interface I before the M-event and Dxnew is the
calculated distance from the interface I at the current
M-event. All molecules that migrate from VM to VC
J. R. Soc. Interface (2012)
are placed into the corresponding (nearest) compart-
ment in VC. It is worth noting that (2.3) is also
used in some stochastic reaction–diffusion algorithms
for the treatment of boundary conditions [13,18]. In
the TRM, the external (physical) boundary con-
ditions are implemented for each regime in the
usual way (e.g. [18]), where treatment of reflective,
absorbing and reactive boundaries is discussed.
Furthermore, it is also worth noting that implemen-
tation of absorbing molecules implicitly (using (2.3))
is very costly numerically. If one were to simply
allow transfer of molecules based on whether or not
they appear on the other side of the interface, an
error proportional to the net flux over the interface
would be the result.

For both C-events and M-events, when the propen-
sity ai,j is changed owing to a change in VC, we must
recalculate the putative time t þ ti,j for the next
C-event to take place. Following Gibson & Bruck [22],
we update ti,j as follows:

ti;j :¼ t þ
aold

i;j ðtÞ
anew

i;j ðtÞ
ðti;j � tÞ; ð2:4Þ

where ai,j
old(t) is the propensity before the event at time t

and ai,j
new(t) is the propensity after the event.

Migratory events from compartments into VM occur
at C-events. Until they are initialized, they have no
probability of interaction or reaction. The probability
of reaction is calculated after the initialization at the
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Figure 2. The TRM applied to the diffusion example which
was introduced in §2.2. We plot the spatial distribution of
molecules at time t ¼ 0.1 according to (2.6) (black line) and
TRM (compartment molecule probability density shown in
dark compartment bars and free molecules counted into com-
partments and shown in white bars). The compartmental
separation is h ¼ 0.025.
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next M-event depending on its initialized position in
comparison with other molecules that it may interact
with. This consideration does not affect the accuracy
of the algorithm because the time between a
C-event and the subsequent M-event is small (smaller
than Dt).

Mathematical justification of the TRM is given in
appendix A. In order to demonstrate the validity of
the TRM, we will present results for two test problems
for which one can derive analytically the exact solution.
We can therefore test our stochastic simulation by
increasing the number of realizations and observing
convergence between the exact solution and the sto-
chastic simulation. The first test problem is presented
in §2.2. It has been designed so that a large range of
different concentrations and fluxes will exist at some
stage on and across the interface so that theoretical
agreement will provide more compelling validation of
the algorithm in all possible situations. In §2.3, we
will apply the TRM to a particular model of protein
concentration gradients in order to demonstrate the
usefulness of the TRM to an existing biological
model [26].
2.2. Illustrative results: diffusion example

We will consider one-dimensional diffusion of N0 non-
interacting molecules with diffusion constant D ¼ 1 in
the domain V ¼ [0,1]. In this example, all parameters
are dimensionless. The boundaries of the domain V

are defined to be reflective. We assume that initially
all molecules are uniformly distributed in the subinter-
val [0,0.5]. Physically, this problem is nothing other
than the diffusion of molecules squashed into half a
room being suddenly allowed to fill the room. This pro-
blem can be stated as the following initial boundary
value problem for the (normalized) density @ of
molecules

@@

@t
¼ @

2@

@x2 ; 0 , x , 1; ð2:5Þ

where @(x,0) ¼ 2H(0.5 2 x), @x(0,t) ¼ @x(1,t) ¼ 0 and
H is the Heaviside function. The solution can be
found by applying the separation of variables technique
to (2.5) as

@ðx; tÞ ¼ 1� 4
X1
i¼1

ð�1Þi cosðð2i � 1ÞpxÞ
ð2i � 1Þp

� expð�ð2i � 1Þ2p2tÞ: ð2:6Þ

This solution will be used to test the validity of
the TRM.

To apply the TRM, we divide V into the following
compartment-based and molecular-based parts: VC ¼

[0,0.5] and VM ¼ [0.5,1]. Therefore, the interface I is
located at I ¼ @VC > @VM ¼ f0.5g. The compart-
ment-based domain VC is discretized into K ¼ 20
compartments (subintervals) of the length h ¼ 0.025.
The compartment-based model will give us the time
evolution of a vector of integers n ¼ [n1, n2, . . . , nK],
where ni is the number of molecules in the i-th compart-
ment, i ¼ 1,2, . . . , K. Initially, all N0 molecules are
J. R. Soc. Interface (2012)
placed in VC in random compartments with equal prob-
ability. This constitutes step (i) in table 1. In step (ii),
we choose the time step Dt as Dt ¼ 1026; therefore, F1

given by (2.1) is approximately 28.
Figure 2 is a plot of the distribution comparing the

solution (2.6) and the distribution that is produced
using our stochastic algorithm at t ¼ 0.1. We use N0 ¼

2000 molecules in these simulations. For comparative
purposes, the molecules in VM are counted and compart-
mentalized so that we can see their relative concentration
to that of the compartments in VC. While good agree-
ment is observed, we require a more quantitative
comparison. It has been established in the literature
that the algorithms that govern the internal processes
ofVM andVC are consistent with diffusion, and therefore
we are most interested with the accuracy of the flux over
the boundary. For this reason, we compare the total prob-
ability to find molecules in VC with that predicted by
(2.6) (i.e.

Ð
0
0.5@(x,t)dx). A comparison of a theoretical

probability and simulation containing N0 ¼ 2000 mol-
ecules shows good agreement over time in figure 3.
Simulation of the TRM with N0 ¼ 3 � 104 overlaps that
of the theory in figure 3. Thus, in figure 4, we present a
plot of the error between the expected probability to
find molecules in VC and that of a simulation with
N0 ¼ 3 � 104 molecules over time to demonstrate that
there is no apparent time-dependent error that is associ-
ated with the algorithm; rather, there are unbiased
fluctuations around the true expected probability. The
test problem, therefore, provides very strong validation
of the proposed algorithm.

2.3. Morphogen gradient model

In the second test problem, we simulate a model of a dif-
fusing morphogen presented by Tostevin et al. [26].
Consider a system of no molecules on the semi-infinite
domain V ¼ [0,1). Morphogen molecules are produced
at the origin x ¼ 0 at a rate J ¼ 6.25 mm21 s21 and dif-
fuse with a diffusion coefficient of D ¼ 0.5 mm2 s21. We
implement a zero flux boundary condition at the origin.
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Figure 3. Plot of total probability to find a particle bound to a
compartment as a function of time (

Ð
0
0.5@(x,t)dx) according to

(2.6) (grey dashed line) and from simulation of 2000 molecules
(solid black line) using the TRM for the diffusion example
from §2.2.
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Figure 4. Relative stochastic error of the total probability to
find a particle bound to a compartment (

Ð
0
0.5@(x,t)dx)

between simulation of the diffusion example (given in §2.2)
using the TRM with 3 � 104 molecules and the theoretical
value calculated using (2.6), as a function of time.
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Figure 5. The TRM applied to the morphogen gradient model
that was introduced in §2.3. Plot of the expected morphogen
molecule count per compartment evaluated at t ¼ 3 s accord-
ing to (2.8) (black line) and 200 realizations of the TRM
simulation (compartment molecule probability density
shown in white compartment bars and free molecules counted
into compartments and shown in dark bars).
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The molecules undergo decay with rate m ¼ 1 s21.
Intuitively, because molecules are produced only at
the origin and decay as they diffuse away from the
origin, there will be a large concentration of molecules
near the origin that dissipate as x gets large. If a mol-
ecular-based algorithm were to be used for this model,
at small values of x, where there are characteristically
a lot of molecules, high computational effort will be
needed, whereas accurate and efficient results are
achievable using a compartment-based model. How-
ever, using a compartment-based algorithm for the
entire model would mean necessarily truncating the
domain and introducing errors associated with small
concentrations at large values of x. This type of problem
is ideal for the TRM because we would prefer to use the
efficiency of a compartment-based model for small x
and the precision of a molecular-based model for large
x. We, therefore, simulate the model using the TRM
and place the interface at an arbitrarily chosen location
(x ¼ 1mm). Therefore, VC ¼ [0,1) and VM ¼ [1,1). In
J. R. Soc. Interface (2012)
the large J limit, we expect the concentration of
molecules, @(x,t) to obey the PDE

@@

@t
¼ Dr2@� m@þ JdðxÞ; x . 0; ð2:7Þ

where d(x) is the Dirac delta function. While there is
zero flux over the boundary, the introduction of the
point source term at x ¼ 0 gives us a formal boundary
condition of @x(0,t) ¼2J/D. The initial condition is
@(x,0) ¼ 0. The time-dependent analytical solution is
given by Bergmann et al. [27]

@ðx; tÞ ¼ lJ expð�x=lÞ
2D

�
1� 1

2
erfc

2Dt=l� xffiffiffiffiffiffiffiffi
4Dt
p

� �

þ� expð2x=lÞ
2

erfc
2Dt=lþ xffiffiffiffiffiffiffiffi

4Dt
p

� ��
;

ð2:8Þ

where l ¼
ffiffiffiffiffiffiffiffiffiffi
D=m

p
is the characteristic decay length.

Using this analytical solution, we can discuss the
accuracy of the TRM by combining 5000 simulations
of this problem.

We chose the following parameters for our simulation
results; Dt ¼ 0.1 ms for the molecular-based model
and h ¼ 0.05 mm for the compartment-based model.
Figure 5 is a plot of the distribution comparing the
analytical solution (2.8) and the distribution that is pro-
duced using our stochastic algorithm averaged over 5000
realizations at time t ¼ 3 s. In order to test that the inter-
face properties of the TRM are accurate, we compareÐ

0
1@(x,t)dx computed by (2.8) with the total number

of compartment-bound molecules averaged over 5000
simulations and

Ð
1
1@(x,t)dx with the total number of

molecules in VM averaged over the same 5000 simu-
lations. The results are shown in figure 6. The
stochastic and analytical results are in clear agreement.
3. DISCUSSION

In this manuscript, we have successfully interfaced a
compartment-based model of diffusion to a Brownian
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Figure 6. Plot of total expected number of morphogen mol-
ecules found in both VC and VM as a function of time for
the analytical solution according to (2.8) (solid lines) and
TRM simulation results averaged over 5000 realizations
(dashed lines).
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dynamics model of diffusion. We have derived and veri-
fied, for any process that has diffusion as its dominant
form of molecule mobility, very particular rules in which
molecules may freely migrate between a compartment-
based regime and a free Brownian dynamics regime. The
ability to interchange the modelling approach in spatially
specific areas allows greater control in simulation and in
particular allows a modeller to have the precision of a mol-
ecular-based regime in regions where it is needed, while
having the computational efficiency of compartment-
based approaches where it is appropriate. In order to
interface the two regimes, one simply needs to migrate
molecules between regimes according to the rules
described in table 1 and using the coupling parameters
given in equations (2.1) and (2.2). Their mathematical
justification is given in appendix A.

It is important to note that, while we have focused on
presenting the TRM using an event-driven compart-
ment-based regime and a time-driven molecular-based
regime, it is possible to use any desired combination
of compartment-based and molecular-based regimes.
In the case where algorithms in both VC and VM are
event-driven (for example, using the GFRD [17] in
VM), the parameters F1 and f(x) are the same. Care
must be taken in this case. Molecule migration from
VM to VC occurs at the moment of first contact with
the interface I. Furthermore, equation (2.1) implies
that (in the case of an event-driven algorithm) F1 is
dependent on ti,j, which in turn determines the propen-
sity for the diffusive events on interfacial compartments
in VC and therefore determine ti,j itself. The putative
time for the migration of a particle from the boundary
compartment in VC to VM is calculated from some
current time in the following way:

ti;j ¼
h2

nbF1D
ln

1
r

� �
; ð3:1Þ

where nb is the number of molecules in the compart-
ment at the interface and r is a uniformly distributed
random number in (0,1). Notice from (2.1) that
F1

ffiffiffiffiffiffi
ti;j
p

is equal to 2h=
ffiffiffiffiffiffiffi
pD
p

, which is a constant with
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respect to ti,j. Therefore, using (3.1), we find that ti,j

can be computed by the following formula:

ti;j ¼
h2

nbðF1
ffiffiffiffiffiffi
ti;j
p ÞD ln

1
r

� � !2

¼ ph2

4n2
bD

ln2 r: ð3:2Þ

The illustrative algorithms that we presented were
effectively one-dimensional, but the algorithm naturally
extends by symmetry into higher dimensions with flat
interfaces. It still remains to extend the work into
curved higher dimensional interfaces and systems with
advection as a form of molecule mobility. Another impor-
tant extension is to consider unstructured meshes [28]
and complex geometries [29]. We are currently working
on these important extensions and we will report our
findings in a future publication. The presented algorithm
has the potential to significantly increase the accuracy
and speed at which stochastic reaction–diffusion simu-
lations are implemented by giving the simulator control
over modelling approaches in specific regions of interest.
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(KAUST). R.E. would also like to thank Somerville College,
University of Oxford, for a Fulford Junior Research Fellowship.

APPENDIX A. DERIVATION OF
PARAMETERS (2.1)–(2.3)
In this appendix, we derive equations (2.1) and (2.2),
i.e. we derive equations relating the TRM parameters
F1 and f(x) and the parameters of compartment-
based and molecular-based models. This derivation
will also make use of an auxiliary parameter F2

(which does not explicitly appear in the formulation
of the TRM, because its value is determined to be
equal to 2 in all cases). We also justify equation (2.3).

Without loss of generality, consider an interface at
x ¼ 0. To the left of this interface, a compartment-
based model is used with fixed compartment size h. To
the right of the interface, a molecular-based algorithm
is used, updated at fixed time increments of Dt. Our
aim is to choose the parameters that govern the transfer
of molecules across the interface from one model to the
other in such a way as to make the interface ‘invisible’
in the solution: the switch of models does not reflect any-
thing in the underlying physical processes, it is simply a
mathematical construct to aid the simulation.

To determine these parameters, we focus on the purely
diffusive problem, because bulk reactions have no effect
on boundary conditions [18]. Then the exact description
of the underlying physical problem is a set of N molecules
undergoing Brownian motion. We write �p ðx; tÞ for the
distribution function for this process, so that �p ðx; tÞdx
gives the probability of finding a given molecule in the
interval [x,x þ dx) at time t. In the purely diffusive case,
�p ðx; tÞ satisfies the diffusion equation.

The stochastic models we are using on either side of
the interface at x ¼ 0 both provide an approximation to
�p ðx; tÞ (as h! 0 and Dt! 0). We need to choose the
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coupling parameters so that these approximations join
together smoothly—that is, they both give the same
value of �p ð0; tÞ and �pxð0; tÞ, where the subscript
indicates partial differentiation.

We label the compartment [2kh, 2 khþ h) by k and
denote the probability of finding a molecule in it by
pk(t)h (so that pk(t) approximates the probability
density function �p ð�kh þ h=2; tÞ above). Since the
inter-regime interface does not work in the same way as
the interface between two neighbouring compartments,
we generalize the transition rate from the compartments
over the interface using the parameter F1. As discussed
in §2.1, this transition rate will be given as F1D/h2. If
the molecule is transmitted, we have to decide where to
place it: we suppose that it is placed at a random position
in x . 0 with the probability distribution function f(x)
(so that it is placed in the interval [x,x þ dx) with prob-
ability f(x)dx).

We introduce parameters c1 and c2 to control the flux
of molecules flowing fromVM toVC as follows. Let us con-
sider a system in which a molecule inVM is absorbed from
the interface (at x ¼ 0) and placed in the corresponding
compartment in VC with a probability c1 if, in a given
time step, it generates a negative x coordinate (say
2x 0 , 0) through the process of Brownian motion
(using equation (1.2)). Such molecules are therefore
reflected back into VM with a probability 1 2 c1 and, in
such circumstances, placed at x 0 . 0. Furthermore, con-
sider that a molecule starting at position y 0 . 0 is
calculated to randomly appear at x 0 . 0 at the end of a
given time step by equation (1.2). There is a probability
that this molecule has, in this time step, crossed
over the interface (at x ¼ 0) and made its way back to
x 0 . 0. This probability has been presented previously
by Andrews & Bray [13] and is given by

Pm ¼ exp � x 0y 0

DDt

� �
: ðA 1Þ

We consider, for a full description of the interface as it is
seen by molecules in VM, that, along with the probability
c1 to absorb molecules at the interface from VM, we also
absorb molecules with a probability c2Pm(x 0,y 0), where
c2 [ [0,1] is another parameter of the method.

If we denote by p(x,t) the probability density function
of the discrete-time molecular-based algorithm, then
these transmission/reflection rules are implemented in
the following way:

p1ðtþDtÞ¼ 1�DDt
h2

� �
p1ðtÞþ

DDt
h2 p2ðtÞ

�F1
DDt
h2 p1ðtÞ

þ
ð1

0

ð1

0

c1pðy;tÞ
h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pDDt
p exp

�ðxþyÞ2

4DDt

 !
dxdy

þ
ð1

0

ð1

0

c2Pmðx;yÞpðy;tÞ
h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pDDt
p exp

�ðx�yÞ2

4DDt

 !
dxdy

ðA2Þ
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and

pðx; t þ DtÞ ¼
ð1

0

pðy; tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pDDt
p 1� c1ð Þ exp

�ðx þ yÞ2

4DDt

 !"

þ 1� c2Pmðx; yÞð Þ exp
�ðx � yÞ2

4DDt

 !#
dy

þ DDtF1

h
p1ðtÞf ðxÞ: ðA 3Þ

The first and third terms of (A 2) represent the loss of
molecules in a given time step from the interfacial
compartment 1 into VM and compartment 2. The
second term in (A 2) represents the addition of mol-
ecules into the interfacial compartment 1 from
compartment 2 by standard-compartment-based jump-
ing. The fourth and fifth terms in (A 2) represent
those molecules that are introduced into compartment
1 from VM by the methods described by the probabil-
ities f1 and f2, respectively. The integral in (A 3)
represents the change in the probability density to
find molecules in VM owing to diffusion, including
losses to compartment 1 by both of the methods
described by the probabilities f1 (in term 1 of the
integrand) and f2 (in term 2 of the integrand). The
final term in (A 3) represents the addition of molecules
from compartment 1 distributed into VM according to
the distribution f(x). Denoting F2 ¼ c1 þ c2 and using
(A 1), equations (A 2) and (A 3) can be rewritten
as follows:

p1ðt þ DtÞ ¼ 1� DDt
h2

� �
p1ðtÞ þ

DDt
h2 p2ðtÞ

�F1
DDt
h2 p1ðtÞ

þ
ð1

0

ð1

0

F 2pðy; tÞ
h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pDDt
p exp

�ðx þ yÞ2

4DDt

 !
dxdy

ðA4Þ

and

pðx; t þ DtÞ ¼
ð1

0

pðy; tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pDDt
p

exp
�ðx � yÞ2

4DDt

 !
þ 1�F2ð Þ exp

�ðx þ yÞ2

4DDt

 !" #
dy

þ DDtF1

h
p1ðtÞf ðxÞ; ðA 5Þ

where 0 � F2 � 2. Note that if f(x) vanishes away
from x ¼ 0, then equation (A 5) reduces to the
Fokker–Planck equation for finite-time-step Brownian
motion and thus to the diffusion equation in the
limit Dt! 0. However, in the vicinity of x ¼ 0, there
is a boundary layer of width Oð

ffiffiffiffiffi
Dt
p
Þ [18]. We rescale

(A 4) and (A 5) using the (dimensionless) boundary
layer coordinate h ¼ x=

ffiffiffiffiffiffiffiffiffi
DDt
p

. We also denote the
probability density and placement function in this
boundary layer region by pinnerðh; tÞ ¼ pð

ffiffiffiffiffiffiffiffiffi
DDt
p

h; tÞ
and finnerðhÞ ¼

ffiffiffiffiffiffiffiffiffi
DDt
p

f ð
ffiffiffiffiffiffiffiffiffiffi
DDt
p

hÞ. Note the rescaling
of f, which is necessary to satisfy the normalization
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condition
Ð

0
1f(x)dx ¼ 1 because (as we will see) f

vanishes outside the boundary layer. Thus, in the
boundary layer scalings, (A 4) and (A 5) become

p1ðtþDtÞ¼ 1� 1þF1ð ÞDDt
h2

� �
p1ðtÞþ

DDt
h2 p2ðtÞ

þF2

ffiffiffiffiffiffiffiffiffi
DDt
p

h

ð1

0

ð1

0
pinnerðj; tÞKðhþjÞdhdj

ðA6Þ

and

pinnerðh; t þ DtÞ ¼
ffiffiffiffiffiffiffiffiffi
DDt
p

F1

h
p1ðtÞfinnerðhÞ

þ
ð1

0
pinnerðj; tÞ Kðh� jÞ þ ð1�F2ÞKðhþ jÞð Þdj;

ðA7Þ

where K(x) ¼ (4p)21/2 exp(2x2/4). Now in order for
our two models to join smoothly, we require on the
compartment-based side that

p1ðtÞ � �p
�h
2
; t

� �
¼ �pð0; tÞ � h

2
�pxð0; tÞ þ � � �

and

p2ðtÞ � �p
�3h

2
; t

� �
¼ �pð0; tÞ � 3h

2
�pxð0; tÞ þ � � � ;

while, for the molecular-based side, we want no rapid
variation in the boundary layer, so that

pinnerðh; tÞ��pð0; tÞþ
ffiffiffiffiffiffiffiffiffi
DDt
p

ðhþCÞ�pxð0; tÞþ � � � : ðA8Þ

We have allowed here for a small shift C in where the
molecular-based region ‘sees’ the interface; we will
see that this extra degree of freedom is crucial. Equiva-
lently we could have said that pk(t) approximates
�pð�kh þ h=2� C

ffiffiffiffiffiffiffiffiffi
DDt
p

; tÞ rather than �pð�kh þ h=2; tÞ:
C is really a small phase shift between the spatial coordi-
nate in the two regions. Substituting these expansions
into (A 6) and (A 7) and equating coefficients of h0 and
h1 (with h �

ffiffiffiffiffi
Dt
p

as h,
ffiffiffiffiffi
Dt
p

! 0) gives

F1 ¼
hF2ffiffiffiffiffiffiffiffiffi
DDt
p

ð1

0

ð1

0
Kðhþ jÞdhdj ¼ hF2ffiffiffiffiffiffiffiffiffiffiffiffi

DDtp
p ; ðA 9Þ

F1 ¼ 2� 2F2

ð1

0

ð1

0
ðjþ CÞKðhþ jÞ dh dj

¼ 2�F2 �
2F2Cffiffiffiffi

p
p ; ðA 10Þ

1 ¼
ð1

0
ðKðh� jÞ þ ð1�F2ÞKðhþ jÞÞdj

þ
ffiffiffiffiffiffiffiffiffi
DDt
p

F1

h
finnerðhÞ

¼ 1�F2

2
erfc

h

2

� �
þ

ffiffiffiffiffiffiffiffiffi
DDt
p

F1

h
finnerðhÞ; ðA 11Þ
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and

hþ C ¼
ð1

0
ðhþ CÞðKðh� jÞ þ ð1�F 2ÞKðhþ jÞÞ dj

�F 1

2
finnerðhÞ

¼ hþ C þ ð2�F2Þ
e�h

2=4ffiffiffiffi
p
p � h

2
erfc

h

2

� � !

� CF2

2
erfc

h

2

� �
�F1

2
finnerðhÞ: ðA 12Þ

From (A 9) we find

F1

F2
¼ hffiffiffiffiffiffiffiffiffiffiffiffi

pDDt
p : ðA 13Þ

Then (A 11) gives

finnerðhÞ ¼
ffiffiffiffi
p
p

2
erfc

h

2

� �
; ðA 14Þ

corresponding to the unscaled

f ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
p

4DDt

r
erfc

xffiffiffiffiffiffiffiffiffiffiffiffi
4DDt
p
� �

; ðA 15Þ

which is denoted as equation (2.2) in the paper. The nor-
malization condition on f is automatically satisfied.

Substituting (A 14) and (A 10) into (A 12) gives

0 ¼ ð2�F2Þ
e�h

2=4ffiffiffiffi
p
p � h

2
erfc

h

2

� �
�

ffiffiffiffi
p
p

4
erfc

h

2

� � !
;

from which we find

F2 ¼ 2: ðA 16Þ

Because F2 ¼ c1 þ c2, where c1 and c2 are probabil-
ities, the only option is that both c1 and c2 are equal
to 1. This justifies the use of equation (2.3) in the
TRM, because equation (2.3) is the probability given
by (A 1). Substituting (A 16) in (A 9), we derive the for-
mula for F1, which is presented as equation (2.1) in the
paper. Finally, substituting this value into (A 10) gives

C ¼ � h

2
ffiffiffiffiffiffiffiffiffi
DDt
p : ðA 17Þ

One interpretation of this value of C is that we should
think of pk(t) as approximating �pð�kh þ h; tÞ, so that
p1(t) approximates �pð0; tÞ and not �pð�h=2; tÞ.
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