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Scatter hoarders are animals (e.g. squirrels) who cache food (nuts) over a number of sites for later
collection. A certain minimum amount of food must be recovered, possibly after pilfering by
another animal, in order to survive the winter. An optimal caching strategy is one that maximizes
the survival probability, given worst case behaviour of the pilferer. We modify certain ‘accu-
mulation games’ studied by Kikuta & Ruckle (2000 J. Optim. Theory Appl.) and Kikuta &
Ruckle (2001 Naval Res. Logist.), which modelled the problem of optimal diversification of
resources against catastrophic loss, to include the depth at which the food is hidden at each caching
site. Optimal caching strategies can then be determined as equilibria in a new ‘caching game’. We
show how the distribution of food over sites and the site-depths of the optimal caching varies with
the animal’s survival requirements and the amount of pilfering. We show that in some cases, ‘decoy
nuts’ are required to be placed above other nuts that are buried further down at the same site.
Methods from the field of search games are used. Some empirically observed behaviour can be
shown to be optimal in our model.
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1. INTRODUCTION

Animals require a minimum consumption of energy over
time in order to survive, where the minimum level may
depend on random variables such as activity or ambient
temperature. To achieve this consumption when
internal storage of energy (e.g. fat or other chemical
processes) is not available, some animals are forced to
cache food during the foraging season to recover it
later, in the winter or a dry season. Some of these ani-
mals, known as scatter hoarders, disperse their food
supply over several locations and dig to various
depths to deposit them.

A problem with external caching of food is that in
the period between caching and retrieval, some of it
may be lost, either through natural events such as
floods, or through pilfering by other animals. So in
order to maximize the probability of surviving the
winter, the total problem faced by the scatter hoarder
has at least the following elements of optimization:
(i) how much effort to spend on foraging (food
accumulation);

(ii) how much effort to spend on caching (e.g. total
digging);

(iii) how to choose the number of caches;
orrespondence (s.alpern@lse.ac.uk).
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(iv) how to determine the sizes of the caches; and
(v) how to distribute the food vertically at each site

(caching depth).
A full production-inventory model that includes all these
elements is beyond the scope of this paper. Also, the possi-
bility that cachers may also be pilferers is beyond the scope
of our game theoretic model, so we must assume that these
are distinct. Our main model, based on ideas from the field
of search games, assumes that the first three parameters
(i)–(iii) are given. That is, we take the perspective of say
a squirrel who has m nuts to hide (i), can dig to a total
depth of DS (ii), and can hide the nuts over n sites (iii). If
we take our unit of digging length to be DS, we can normal-
ize this to DS¼ 1; so we are left with two squirrel
parameters m and n. The squirrel’s problem is how to
place the m nuts at the n sites (potential digging locations),
subject to the restriction that the sum of the depths of the
holes is no more than 1 (that is, the caching effort DS¼ 1).
The two parameters m and n determine the squirrel’s feas-
ible caching strategies, but to determine which strategies
are good, the squirrel needs to know two more parameters.
Firstly, he needs to know the minimum number k of nuts
that must be available at retrieval time in order to survive
the winter. Secondly, he needs to know the total digging
depth D ¼ DP that a pilferer has (or pilferers have) avail-
able. The number D can be thought of as an indirect
This journal is q 2011 The Royal Society
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measure of the amount of loss he can expect between cach-
ing and retrieval. In theory, he might only know the
distribution of D (a harder problem we will only touch on
here). The four parameters m, n, k, D determine what is
known as a (zero-sum) game against Nature or maximin
problem G ¼ G(m, n, k, D), which we call the caching
game. It can be described simply as follows.

— The squirrel hides the m nuts at chosen depths at the
n sites.

— The pilferer digs at the various sites to a total depth
of D, removing any nuts he finds.

— The squirrel wins (payoff is 1) if there are at least k
nuts left (otherwise, he loses; payoff is 0).

The well-known theory of zero-sum games says that this
game has a value, which we call P, or P(D) to show depen-
dence on D, which represents in this case the maximum
probability of surviving the winter that the squirrel can
guarantee against any digging strategy of the pilferer.

Themain theoretical contribution of the paper is the sol-
ution of the caching game G for some parameters. This
means in particular that we find the randomized dispersal
and depth strategy for the squirrel, which maximizes the
probability of surviving the winter (having k nuts left),
against a worst case pilfering strategy. Our view (as is
usual in games against Nature) is asymmetric; we view
the squirrel as an actual agent, but view the pilferer as a
theoreticalworst case ofNature. In this sense,wedetermine
optimal caching strategies of scatter hoarders, but not
strategies that we would recommend to pilfering animals
(who might well have other objectives than defeating squir-
rels). Our model is very abstract and very general—our
analysis is too simple at the moment to be applicable to
the study of particular species. However, we believe that
this approach gives an insight into the scatter hoarder’s
problems and with further development may indeed help
in the understanding of particular caching and pilfering
behaviours.

The model we present here is new and belongs to the
field of search games as studied in Garnaev [1] and
Alpern & Gal [2]; and more generally that of geometric
games [3]. More particularly, it is related to games
called accumulation games, as developed earlier [4–8].
These are somewhat more complicated than caching
games in that the hider (squirrel, in our formulation)
repeatedly adds material (corresponding to our nuts) to
the hiding sites, as they are pilfered over time. On the
other hand, the depth of caching is not modelled. These
games were aimed at military or economic applications,
where the stored material could be armaments or perhaps
financial investments in companies that might collapse
(equivalent to loss of nuts through storms or pilfering).
The Kikuta–Ruckle theory has recently been studied
by applying combinatorial ideas [9–11]. However, this
article represents the first attempt to model the problem
of depth of caching at a site.
2. RELATION TO THE SCATTER-
HOARDING LITERATURE

The nature of dispersal and digging strategies adopted
by various species of scatter hoarders has been widely
J. R. Soc. Interface (2012)
studied in the field and laboratory. This literature
has raised a number of theoretical questions for which
our model may be relevant. However, this section also
discusses issues that are not modelled in our caching
game, but could indeed be modelled in more elaborate
versions of our game.

Indeed, the caching or hiding of food items for later
consumption is widespread among birds and mammals
[12], and different species may use different tactics
shaped by the different ecological challenges that they
face [13]. Food-caching corvids—birds in the crow
family that includes the ravens, magpies and jays—for
example, cache perishable foods such as worms as well
as non-perishable nuts, and these birds can remember
not only where they cached the various food items,
but also how long ago, thus enabling them to recover
the perishable foods before they have become degraded
and inedible (see Clayton & Dickinson [14] and
Zinkivskay et al. [15], reviewed in Grodzinski & Clayton
[16]). By contrast, squirrels solve the problem of
perishability in a different way, by only caching the
non-perishable nuts [17].

Caching is risky, however, because other individuals
may attempt to steal as many of those items as they can.
Cache-pilferage is a great problem for storers, with pilferage
proportions ranging between 2 and 30 per cent per day, at
least for artificial caches [18]). If the pilferage rate is high
enough for the average non-cacher to do better than the
average cacher, then caching behaviour may be selected
against [19] unless there is reciprocal pilferage in which
each cacher not only hides their own food, but also steals
that which others hide (see Smulders [20] and Vander
Wall & Jenkins [18]). It is argued in Andersson & Krebs
[19] that for caching behaviour to be maintained as an evo-
lutionarily stable strategy, the cacher should rely on spatial
memory and other mechanisms that enhance successful
and efficient cache recovery by the original hoarder,
thereby giving them a recovery advantage over potential
pilferers [21]. However, in addition to spatial memory,
cachers have evolved a variety of cache-protection strat-
egies to reduce the pilferage risk [22]. For example, they
use distance, shade and barriers to minimize the chance
that onlookers can accurately see where the cacher has
actually hidden the food. Indeed, it has been suggested
that this is why many species scatter hoard their food
caches in multiple locations rather than merely defending
a single larder [12]. Hiding food items in many (dispersed)
locations reduces the probability that the bulk of their
caches will be found by the other animals foraging in the
same area [23–28]. What is less clear, however, is how
the scatter hoarder should best optimize the distribution
of such scattered caches, i.e. how many locations should
be used, and how many items should be cached in each
location. A further question concerns cache depth: should
individuals vary the depth at which they hide their
caches and, if so, what is the optimal way to do so? There
is also a trade off between digging deeper so that the
cache is buried at a greater depth and the likelihood of
being spotted in the act of caching by would-be thieves.

For many species including some tits and chickadees,
it is thought that the pilferers, or cache-robbers, come
across the caches by chance. Some mammals such as
squirrels may use smell, at least in part, to find the
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caches of others [12]. But for birds that have a poor
sense of smell, a more accurate method is to rely
on memory of where the individual has cached [21].
Furthermore, the ability to locate caches made by
others quickly and efficiently may be the important
difference between successful cache-robbing and poten-
tial aggression from the individual that hid the food.
So an obvious advantage of observing and remember-
ing where others have cached is that it allows a thief
with observational memory to efficiently steal caches
when others have left the scene, thereby eliminating
both the costs of caching and of fighting. Corvids
that are renowned for their intelligence [29] do rely on
observational memory when stealing the caches
that other birds have made (see Dally et al. [22] for a
comprehensive review).

There is certainly good evidence to suggest that cachers
are sensitive towhether or not other individuals are present
at the time of caching and that they can use protective tac-
tics to minimize the risk of cache loss. Here, too, the details
vary from species to species. A simple strategy is employed
by the Merriam’s kangaroo rat, for example: this solitary
species usually scatters many caches throughout its terri-
tory, but if it sees another rat stealing its caches then it
switches from scattering lots of caches to defending a
single larder [30]. In squirrels, it was found in Leaver
et al. [31] that grey squirrels not only space their caches
further apart, but also with their back to potential thieves
thereby blocking the onlooker’s view, but they do so only if
the onlookers are fellow grey squirrels. Interestingly, this is
not the case if the thief is a heterospecific corvid, suggesting
that the squirrel’s sensitivity to the risk of cache loss is
somewhat limited. One reason for this may the evidence
of Hopewell et al. [32, p. 1143] that
J. R. S
. . . scatter hoarders respond to conspecifics at a
food source primarily as competitors rather than
as potential pilferers; the squirrels increased the
rate at which they returned to the nut patch
when conspecifics were present rather than trans-
port the nuts farther away to minimize the risk of
pilferage. In contrast, and in line with previous
studies, the squirrels responded to a reduction in
the availability of food by increasing the distance
at which they stored the food from the source.
In the case of corvids, however, the cache protection
tactics are even more developed, perhaps because of the
cognitive challenges and demands imposed by the fact
that the pilferers rely on observational memory to
steal the caches whenever they wish so [33]. These
birds not only adjust their caching behaviour in the
presence of a conspecific audience [34–37], but they
also keep track of which particular individual was
watching when they cached and take protective action
accordingly, moving those caches that particular bird
has watched them cache [38]. Furthermore, some
species even attend to heterospecific observers as well
as conspecific ones, differentiating between the risks
that conspecifics and heterospecifics represent to their
caches. Stellar’s jays steal grey jays’ caches, whereas
both grey jays and Clark’s nutcrackers do not steal.
oc. Interface (2012)
Thus, while grey jays cache as usual in front of a conspe-
cific or a Clark’s nutcracker, they cease caching in the
presence of a Stellar’s jay [39].

Corvids also differentiate between knowledgeable and
ignorant potential pilferers, adjusting their caching tactics
accordingly [40] and young ravens, in developing their
skills, use play caching to assess this [41]. Furthermore,
they make use of a variety of ‘deceptive’ strategies, which
function to reduce the risk of disclosing information
about the location of their own caches, by hiding the food
behind barriers so that the potential pilferer cannot see,
and using distance and shade to reduce the visual acuity
of the onlookers [34,35,42,43], and even know when to con-
ceal auditory information, namely when the potential
pilferers can hear but cannot see [44]. But perhaps most
striking of all is the fact that these cache protection tactics
depend on having had the specific experience of being a
thief oneself. Ignorant corvids who have not pilfered any
caches do not engage in these behaviours [36]. This finding
suggests that these thieves relate information about their
previous experience as a cache-robber to the possibility of
future stealing by another individual, and change their
caching strategy accordingly, suggesting that ‘it takes a
thief to know a thief’.

Scatter hoarding appears to reduce the proportion of
caches that are lost, as a number of studies have found
that widely spaced caches are more likely to survive than
caches placed close to one another [30,45–47]. There is
also evidence, albeit limited, to suggest that storers
adjust the density at which they cache as a function of
their social status. For example, territorial (breeding)
common magpies make their caches closer together, and
nearer to the food source, than non-breeders [48]. This
difference in cache spacing is thought to occur because
magpie caches are most often stolen by conspecifics.
Thus, birds with exclusive territory use would experience
less cache pilferage, a factor that would be reflected in
their ‘optimal’ cache density [49]. While the ecology of ter-
ritorial and non-breeding magpies might differ
significantly, and therefore have implications for their use
of cache sites, this finding highlights the need for further
research on the sensitivity of food-storers to the risk of
cache theft.
3. THE GAME G

We assume the squirrel has m nuts and needs k of them
to survive the winter (‘win’); so he wishes to hide them in
such a way as to maximize the probability that k nuts
remain after pilfering. This assumption is based on the
observation that if fewer than k nuts remain, the actual
number only affects how long into the winter the squirrel
will survive, and thus does not greatly affect his fitness
(which is very low in any case). If more than k nuts
remain, the actual number does affect fitness somewhat.
But it seems that our binary cutoff criterion of k nuts
does capture the essential problem. To complete the
squirrel’s side of our model, we assume that there are n
potential caching sites. A ‘site’ represents a location
where a single hole might be dug, and where one or
more nuts might be placed at different depths. We
assume that the squirrel has enough energy to dig a
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Figure 1. Three caching strategies of the squirrel. (Online
version in colour.)
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total depth DS (S for squirrel) at these sites. That is, the
sum of the depths reached at all the sites cannot exceed
his energy resources DS. Thus, a squirrel strategy
describes how he places his m nuts at various depths
among the n caching sites, subject to his energy (digging)
constraint DS. He has the option of placing nuts at differ-
ent depths at the same site, although this may not at
first glance appear to be a good idea.

After the squirrel places his nuts, the pilferer arrives.
He knows the location of the n sites but not which ones
have nuts or at what depths they are hidden. He can dig
to different depths at the sites, subject to his own
energy constraint that the total depth (summed over
all sites) does not exceed some constant DP (P for pil-
ferer). A smart pilferer can make future digging plans
that depend on what he has found so far; a normal
pilferer can just choose the depths at each site. In this
note, we will analyse both cases. An empirical question
raised by this distinction is whether pilferers switch
sites when they find a cache (one or more nuts placed
at a certain depth at a site), or continue to look for a
deeper cache at the same site. We assume throughout
that the pilferer can only detect a nut visually, when
the earth above it has been removed. No other signals
(e.g. olfactory) are available.

3.1. Optimal strategies with smart pilferers,
m 5 n 5 2, k 5 1

To illustrate the ideas involved in calculating P(D), we
analyse the simple case where the squirrel has to hide
two nuts at two sites and survives (wins) if at least
one nut remains after pilfering (the parameter values
are m ¼ n ¼ 2 and k ¼ 1). We note that the theory of
zero-sum games requires that, in general, the squirrel
will have to use randomized strategies (called mixed
strategies) in order to achieve the best survival prob-
ability P(D). Here, we assume the pilferer is smart, as
defined already, in that he can alter his digging depend-
ing on what he does or does not find up to a given time.

We assume, without loss of generality, that the squir-
rel can dig to a total depth DS ¼ 1, and he needs one
nut left after pilfering to survive and hence ‘win’ the
game. We also assume the pilferer has a fixed total
depth DP ¼ D to which he can dig, which may be a
sum of depths dug in each hole. We no longer need
the subscript on D to distinguish the pilferer’s dig-
ging from the squirrel’s, as the squirrel’s has been
normalized to 1. So

D ¼ DP

DS
:

Note that if D , 1, the squirrel can always win
(P(D) ¼ 1) by hiding both nuts together in one site at
depth 1. If D � 2, and the pilferer digs to depth 1 at
each of the two separate sites, any nuts placed by the
squirrel will be lost. Thus, there cannot be any strategy
for the squirrel giving him a positive probability of
surviving, and hence in this case P(D) is 0. To exclude
these trivial cases, we assume that 1 � D , 2. The
solution of this problem splits into two cases:

Proposition 3.1. If the pilferer’s digging depth
constraint D satisfies 3/2 � D , 2, then it is optimal
J. R. Soc. Interface (2012)
for the squirrel to place both nuts at maximum depth 1
at a single random site. In this case, the maximin survi-
val probability P(D) is 1/2.

Proof. Suppose the squirrel places both nuts at depth
1 at a site chosen randomly. Then because D , 2, the
pilferer cannot dig to depth 1 at both sites, and if he
guesses wrongly (which has probability 1/2) he will
dig at the wrong site and the squirrel will survive.
This squirrel strategy thus guarantees a survival prob-
ability of 1/2. There may be a better squirrel strategy,
but certainly this shows that P(D) � 1/2.

The pilferer can guarantee the squirrel will win with
probability no more than 1/2 by digging to depth 1 at
one site and to depth 1/2 at the other (choosing equi-
probably between the sites). It is then easy to verify
that however the nuts are buried, the pilferer will find
them both at least 1/2 the time. To see this,
note that the squirrel can plant a nut at a depth greater
than 1/2 at only one site, and if this is the site where the
pilferer digs to depth 1, the squirrel loses. Because this
occurs with probability 1/2, we have established the
claim that P(D) � 1/2.

Combining the bounds on P(D) demonstrated in the
previous two paragraphs shows that P(D) ¼ 1/2, as
claimed in the proposition. B

Proposition 3.2. If the pilferer’s digging depth con-
straint D satisfies 1 � D , 3/2, then it is optimal for
the squirrel to hide his two nuts at depths 1/2 and 1 at
a single random site, with probability 2/3; and at depth
1/2 at each of the two sites, with probability 1/3. (The
three equiprobable configurations are shown in figure 1,
where S1 and S2 denote the two sites.) In this case, his
maximin survival probability P(D) is 2/3.

Proof. Suppose that the squirrel hides his two nuts at
depths 1/2 or 1 in one of the configurations shown in
figure 1, with equal probabilities of 1/3 for each. It
is easy to see that the pilferer’s digging constraint
D , 3/2 prevents him from finding both nuts in more
than one of these three hiding configurations: if the
pilferer digs to depth 1 at one site, he will win in one
of the configurations (a) or (c) but in neither of the
others; otherwise, he will only be able to win in
configuration (b). Consequently, P(D) � 2/3.

Suppose that the pilferer adopts the following two
digging strategies with probability 2/3 for stay and
1/3 for switch: (stay) pick a random site and dig to
the bottom; (switch) dig at a random site and switch
to the other site if and when you find a nut. Now any
strategy of the squirrel can be characterized as either
a one-site strategy (both nuts at the same site) or a
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Figure 2. Survival probability P*(D) against normal pilferers,
1 � D � 2. (Online version in colour.)
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two-site strategy (one nut at each site). If the squirrel
adopts a one-site strategy, he will lose half the time
against stay and so will lose the game with probability at
least (1/2) . (2/3) ¼ 1/3. Similarly if he adopts a two-
site strategy, he will lose against switch (regardless of his
two depths, because they sum to only 1), so with prob-
ability at least 1/3. So in any case, he loses with
probability at least 1/3, and hence P(D) � 2/3.

Combining the two bounds on P(D), we have
P(D) ¼ 2/3. B

The strategy drawn in figure 1 for the squirrel has the
unusual property of nuts at different levels at the same
site. Why can the squirrel not improve (or at least do
as well) by changing the placement in cases (a) and (c)
to putting both nuts at the bottom? To see why this
does not work, suppose that the pilferer always uses
the switch strategy. Then the squirrel loses always
when he adopts (b) and loses half the time when he
adopts (a) or (c). So if, as before, he adopts all three
with probability 1/3, he wins (survives) with probability
only (1/2) . (2/3) ¼ 1/3 which is worse than 2/3.
3.2. Solution for normal pilferers

Note that in the last proof, the pilferer’s switch strategy
requires that he is smart, in the sense we defined in §1.
Suppose, on the other hand, that the pilferer is normal,
and adopts a simple strategy that picks two depths d1

and d2 ¼ D 2 d1 for the sites, which will be dug without
reference to what is found. It is clear that in this version,
every squirrel strategy is dominated by one that places
the nuts at the two sites with respective depths s1 and
s2 ¼ 1 2 s1. (There is no point in placing nuts at different
depths at the same site.) We denote by P*(D) the squir-
rel’s maximum survival probability against a normal
pilferer. Note that we always have P*(D) � P(D).

We now show that restricting the pilferer to simple
strategies does not help the squirrel when D � 4=3;
but it does indeed help him when D , 4=3: For example,
Pð5=4Þ ¼ 2=3 but P�ð5=4Þ ¼ 3=4; as given by the later
result.

Proposition 3.3. Let q be a positive integer
and let the pilferer’s total digging depth D satisfy
1 þ 1/(q þ 1) � D , 1 þ 1/q. Assume the pilferer is
normal, as defined already. Then the optimal squirrel
strategy is to pick i randomly from the q þ 1 values 0,
1, . . . , q and to bury his two nuts at respective depths
i/q and (q 2 i)/q at the two sites, in a random order.
J. R. Soc. Interface (2012)
In this way, the squirrel achieves the maximin survival
probability P*(D) of 1 2 1/(q þ 1), as shown in
figure 2.

Proof. Consider the squirrel mixed strategy Sq, which
picks s1 ¼ i/q with the q þ 1 values i ¼ 0, . . . , q taken
equiprobably. Suppose a pilferer strategy d ¼ (d1, d2)
wins against more than one of the squirrel strategies.
Then it is clear that it wins against two consecutive
ones, say i and i þ 1. Then we must have

d1 �
i þ 1

q
and d2 �

q � i
q

;

so D ¼ d1 þ d2 � 1þ 1
q
;

which is larger than we are allowing. So all but one
of the strategies i must win, and hence P*(D) �
q/(q þ 1).

Next consider the pilferer simple mixed strategy of
d1 ¼ j/(q þ 1) with j ¼ 1, 2, . . . , q þ 1 chosen equiprob-
ably among the q þ 1 possibilities. If a squirrel strategy
s1 wins against all of these, then for every j we have either

s1 .
j

q þ 1
or 1� s1 . D � j

q þ 1
:

This means that for all j,

s1 is not in the interval Ij ¼
j

q þ 1
þ ð1� DÞ; j

q þ 1

� �
:

This is equivalent to saying that the intervals Ij

cannot overlap, or that

D � 1 ,
1

q þ 1
; which is the same as D , 1þ 1

q þ 1
;

contrary to our assumption. So at least one of the q þ 1
strategies d1 ¼ j/(q þ 1) gets both nuts, and hence
P*(D) � q/(q þ 1) ¼ 1 2 1/(q þ 1). The result follows
by combining the two estimates. B

Note that in this proof (as in the previous ones),
the pilferer’s strategy is analysed to show that there
is no squirrel strategy that is better than the one
we propose.
3.3. Letting DS, DP vary

A knowledge of the exact adversarial digging DP is a
rather sharp assumption. Perhaps, we should assume
a Bayesian squirrel whose subjective probability gives
a distribution on DP. For example, we might assume
for the case m ¼ n ¼ 2 and k ¼ 1 that we studied
earlier, that DS ¼ 1 and total depth DP dug by the
pilferer (or Nature) is uniform on the interval [1,2].

We might further ask how much digging DS the
squirrel allocates from his limited energy resources E,
rather than as above taking it as given. The idea is
that while increasing his total digging DS increases his
probability of winning the caching game and hence of
surviving the winter, the increased effort exerted in dig-
ging would lower his conditional fitness, given survival.
His fitness would depend on whether or not he survives
the winter and, if so, also on his remaining energy. So
we might assume a multiplicative fitness function,
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given the distribution of DP, of the form

FðDSÞ ¼ QðDSÞ � OðE � DSÞ; ð3:1Þ

where Q(DS) is the probability the squirrel survives the
winter if he allocates an amount of digging equal to DS

from his energy resources E, and O represents his out-
side option in the sense of how he could use the
energy saved from digging to achieve fitness in other
ways. Here, Q(DS) is not conditional on the value of
DP or any other factors that may contribute the
whether or not the squirrel survives the winter. This
fitness O is relevant to total fitness only in the case of
surviving the winter, hence the multiplicative form.
Here, the constant E represents the energy he has
available for other activities if he does no digging.

3.4. Diversification: scatter versus
larder hoarding

It was shown in Clarkson et al. [25] that magpies are
more likely to spread out their caches if the risk of
cache theft is high. See also Birkhead [49]. We show
that this is predicted by a version of our model (prop-
ositions 3.1 and 3.2). In this case, there are two sites
for caches; so we define the dispersion d of a squirrel
strategy as the probability that nuts are placed in
both sites. This can be interpreted as the probability
of scatter hoarding, considering the use of a single site
as larder hoarding. The probability that there is a pil-
ferer in the region (modelling the ‘risk of cache theft’)
is a variable called r. The proofs of these propositions
show that (with D ¼ DP/DS),

d ¼
1
3 if 1 � D , 1:5
0 if 1:5 � D , 2:

�
ð3:2Þ

Suppose that the pilferer’s digging capacity DP is fixed
at say DP ¼ 1, and the squirrel can choose his digging
effort DS; so D ¼ DP/DS ¼ 1/DS. However, there is a
cost in fitness that will matter if he survives the
winter, so that if he does survive the winter he will
have fitness O(E 2 DS) ¼ E 2 DS (in the terminology
of §3.3). We are making the simplifying assumption
here that the squirrel cannot use his energy resources
E to achieve fitness in any way other than by caching
his nuts. Recalling that P(D) is the optimal probability
of the squirrel’s survival for a given digging ratio D ¼
DP/DS, the probability Q(DS), unconditional on DP,
that the squirrel survives the winter is Q(DS) ¼
rP(D) þ (1 2 r)1 ¼ P(1/DS) þ (1 2 r). If there is no
pilferer (probability 1 2 r), this probability is 1. If
there is a pilferer, then P(D) is the probability that
the squirrel survives, with best play on both sides.
Using these expressions for Q and O in (3.1), we
obtain the following equation for the squirrel’s fitness
F as a function of r and his choice variable DS.

FðDSÞ ¼ FðDS; rÞ

¼ rP
1

DS

� �
þ ð1� rÞ

� �
ðE � DSÞ: ð3:3Þ

We must assume that the squirrel can use any amount
of energy for digging up to DS ¼ E, so that if he uses all
his energy for digging, then he is totally exhausted and
J. R. Soc. Interface (2012)
dies. Propositions 3.1 and 3.2 say that

PðDÞ ¼

1 if D , 1;
2
3 if 1 � D , 1:5;
1
2 if 1:5 � D , 2;

0 if D � 2;

8>>><
>>>:

or P 1
DS

� �
¼

1 if DS . 1;
2
3 if 2

3 , DS � 1;
1
2 if 1

2 , DS � 2
3 ;

0 if DS � 1
2:

8>>><
>>>:

ð3:4Þ

So the formula (3.3) becomes

FðDS; rÞ ¼

E �DS if DS . 1;
2
3 r þ ð1� rÞ
	 


ðE �DSÞ if 2
3 , DS � 1;

1
2 r þ ð1� rÞ
	 


ðE �DSÞ if 1
2 , DS � 2

3 ;
ð1� rÞðE �DSÞ if DS � 1

2 :

8>><
>>:

Clearly it is best for the squirrel to choose DS either
just above 1 (call this 1þ), just above 2/3 (call this
2/3þ), just above 1/2 (call this 1/2þ), or equal to 0.
So we have

Fð1þ; rÞ ¼ E � 1;

F
2
3

þ
; r

� �
¼ 2

3
r þ ð1� rÞ

� �
E � 2

3

� �
;

F
1
2

þ
; r

� �
¼ 1

2
r þ ð1� rÞ

� �
E � 1

2

� �

and Fð0; rÞ ¼ ð1� rÞE:

So it turns out that the optimal value of DS is DS ¼ 1þ

if r . 3/(3E 2 2), DS ¼ 2/3þ if 3/(3E 2 2).r .

6/(6E 2 1), DS ¼ 1/2þ if 6/(6E 2 1) . r . 2/(2E þ 1)
and DS ¼ 0 if r , 2/(2E þ 1). Note that in the case
that r . 3/(3E 2 2), the solution specifies that the
risk that there is a pilferer in the area is sufficiently
high that the squirrel should optimally bury his nuts
completely out of reach of the pilferer. Similarly, in
the case that r , 2/(2E þ 1), the risk that there is a pil-
ferer in the area is sufficiently low that the squirrel
should optimally not bother using any of his energy
resources to hide his nuts. We exclude these cases
from our attention and suppose that 2/(2E þ 1) ,

r , 3/(3E 2 2), which, if for simplicity we take E ¼ 2,
is equivalent to 2/5 , r , 3/4. Then we see that if
DS ¼ 2/3þ, then D , 3/2 and by (3.2) the dispersion
factor is d ¼ 1/3, while if DS ¼ 1/2þ, then D . 3/2
and d ¼ 0. Taken together, these observations show
that d ¼ 0 when the risk r of cache theft is relatively
small (r , 6/(6E 2 1) ¼ 0.55 in the case of E ¼ 2)
and d ¼ 1/3 when the risk of cache theft is relatively
high (r . 6/(6E 2 1) ¼ 0.55 if E ¼ 2). So in our
model, the squirrels are more likely to spread out their
caches if the risk of cache theft is high, as observed in
Clarkson et al. [25].
3.5. Digging costs non-additive over sites

Up to this point, we have been assuming the digging
effort (energy) required to achieve a given depth is a
linear function (energy per unit depth is constant)
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Figure 3. Strategy sets when D ¼ 4/3. (Online version in
colour.)
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and that the energy required to dig to given depths at
say two sites is the sum of the energies required at
each site (additivity). An anonymous referee has
suggested that these assumptions should be relaxed in
order to be able to adequately model a wider class of
situations. In this section, we show how our techniques
can be modified to deal with these relaxed assumptions.
We show that our previous analysis, with a suitable
interpretation, already deals with nonlinear energy
requirements at each site, as long as we make the
obvious assumption of monotonicity (deeper holes
require greater energy to dig). On the other hand, if
the individual energies at sites do not simply add to a
total energy requirement, then the game changes and
the optimal strategies are different.

We first assume that the energy required to dig to
depth d is some digging cost function c(d). Up to this
point, we have taken c(d) ¼ d, but now we allow c to
be any monotone increasing function with c(0) ¼ 0
and c(1) ¼ 1. For example, if c(d) ¼ d2, so that the dig-
ging cost per unit length increases quadratically as you
dig deeper, then digging to depths x and y in the two
sites would require energy x2 þ y2. This might be exem-
plified in a soil type that is soft near the top, and harder
and more compact deeper down. So in the case of the
normal pilferer with two sites and two nuts, the squirrel
must choose a vector (x,y) with x2 þ y2 ¼ 1 and the
pilferer must choose a vector (x,y) with x2 þ y2 ¼ D.
For D ¼ 4/3, the strategy sets correspond to the two
half circles depicted below in figure 3.

Put another way, the squirrel must choose some
s � 1, corresponding to two holes of depths
ð ffiffiffisp ;

ffiffiffiffiffiffiffiffiffiffiffi
1� s
p

Þ and the pilferer must choose some p �
4/3, corresponding to two holes of depths
ð ffiffiffipp ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4=3� p

p
Þ. If the squirrel needs one nut to win

(k ¼ 1), then the pilferer wins if and only ifffiffiffi
p
p � ffiffiffi

s
p

and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4=3� p

p
�

ffiffiffiffiffiffiffiffiffiffiffi
1� s
p

, that is to say p �
s and 4/3 2 p � 1 2 s. This game is, therefore, equiv-
alent to the original game with D ¼ 4/3, which we
have already solved in §3.2 and has value P(D) ¼ 2/3.

In general, the game played using any digging cost
function c(d) as described already can be seen to be
equivalent to the original game in which c(d) ¼ d.
Optimal strategies can be constructed from optimal
strategies in the original game, whether the pilferer is
normal or smart, by replacing instances of ‘dig to
depth x’ with ‘dig to depth c21(x)’, and the value
J. R. Soc. Interface (2012)
P(D) remains unchanged. (Here y ¼ c21(x) represents
the inverse function of c; that is, y is defined by
c(y) ¼ x.) In the earlier-mentioned example, the squir-
rel’s optimal strategy for the original game with D ¼
4/3 is to choose equiprobably between digging depths
(1, 0), (1/2, 1/2) and (0, 1), so that the pilferer can
only check at most one of these configurations. If we
take c(d) ¼ d2, then an optimal strategy for the squirrel
is to choose equiprobably between (c21(1), c21(0)),
(c21(1/2), c21(1/2)) and (c21(0), c21(1))—that is
(1, 0), ð1=

ffiffiffi
2
p

; 1=
ffiffiffi
2
p
Þ and (0, 1).

We next consider a situation where digging effort is
not additive—that is, it cannot be represented simply
as the sum of the digging efforts at the various sites.
We take the simplest non-additive model, by imposing
a fixed cost C on searching at each site where digging
occurs. This could more accurately describe a situation
in which a significant amount of energy is required to
travel between different sites. For simplicity, we revert
back to the assumption that the variable digging
effort required in each site is linear in depth, so that dig-
ging cost function c(d) is given by c(d) ¼ C þ d . Thus,
the total digging effort required to dig to positive
depths d1 and d2 at say two sites is given by 2C þ
d1 þ d2, or simply C þ d1 if digging only at one site.
Suppose we take C ¼ 1/2 and once again consider the
game where there are two sites and two nuts with a
normal pilferer, and k ¼ 1. We can no longer take the
squirrel’s digging, DS to be normalized to 1, as this
would prevent him from digging in more than 1 site.
We therefore take DS ¼ 3/2, allowing the squirrel to
dig a hole of maximum depth 1 in each site (although
he can no longer dig two holes of total depth greater
than 1/2). Suppose the pilferer’s digging, DP ¼ 2.
Then the squirrel’s optimal strategy is to hide both
nuts at depth 1 in the same site with probability 2/3
at cost c(1) ¼ 1/2 þ 1 ¼ 3/2, and to hide the nuts in
different sites both at depths 1/4 with probability 1/3
at cost 2.c(1/4) ¼ 2(1/2 þ 1/4) ¼ 3/2. The pilferer
can only win against this strategy with probability
1/3, since the cost of digging a hole of depth 1 and a
hole of depth 1/4 is c(1) þ c(1/4) ¼ (1/2 þ 1) þ
(1/2 þ 1/4) ¼ 9/4 . DP. The pilferer can ensure that
he wins with probability at least 1/3 by making an
equiprobable choice of the three digging depths (1, 0),
(1/2, 1/2) and (0, 1). If the nuts are both in the same
hole, he trivially wins with probability 1/3, and if
they are in different holes neither can be deeper than
1/2, because this would require energy greater than
2C þ 1/2 ¼ 3/2 ¼ DS; so the nuts are found with
probability 1/3 by (1/2, 1/2).
3.6. Pilferer digging energy contingent
on success

An anonymous referee has suggested that it would be
more realistic to assume that the energy available to
the pilferer for digging is contingent on success, so
that when the pilferer finds a nut, he can eat it and con-
vert the energy into increased digging potential. This
possibility leads to an interesting augmented game
Gþ ¼ Gþ(D, h) (with associated value, or maximin sur-
vival probability Pþ ¼ Pþ(D, h)), in which the pilferer
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starts with digging potential D but also obtains an
additional digging depth h every time a nut is found.
So a strategy for the pilferer in the augmented game
describes how he will dig as a function of how many
nuts he finds. For simplicity, consider the case where
the pilferer needs to find two nuts to win—that is,
where k ¼ m 2 1. There are now qualitatively four
outcomes:

(i) he finds no nuts before his initial digging poten-
tial of D runs out (squirrel wins);

(ii) he finds one nut before D, but no additional nuts
with the extra h (squirrel wins);

(iii) he finds two nuts within his initial digging of D
(pilferer wins); and

(iv) he finds one nut within his initial digging of D,
and one (or more) additional nut with the
extra h (pilferer wins).

The first three cases are the same as in the original
game G, but the last case (iv) is new in the augmented
game Gþ, and this possibility may modify optimal play.
In particular, it may mean that placing decoy nuts is no
longer optimal for the squirrel. For example, consider
the case of the smart pilferer when there are two sites
and two nuts, and the squirrel needs one nut remaining
to survive (n ¼ m ¼ 2, k ¼ 1). When D ¼ 1, we saw in
§3.1 that the solution of the original game G was that
the squirrel should make an equiprobable choice
between three different configurations of the nuts; two
of these use a ‘decoy nut’ to try and trick the pilferer
(figure 1). However, for the new game Gþ, the solution
is different if we take, for example, h ¼ 1/2, so that if
the pilferer finds a nut he is given additional digging
depth 1/2. It is now optimal for the squirrel to hide
both nuts together at depth 1 at a randomly chosen
site, guaranteeing a win (for the squirrel) with prob-
ability at least 1/2. The pilferer has an optimal
strategy of digging a hole of depth 1, and then if he
finds 1 nut, using the extra energy h ¼ 1/2 to dig
another hole of depth 1/2 in the other site. It is easy
to see this guarantees a win for the pilferer with prob-
ability at least 1/2, so that the value of the game Gþ

with D ¼ 1 and h ¼ 1/2 is 1/2.
Note that for this choice of the parameters m, n, k, D,

h the augmented game is essentially the same as if the
additional digging effort were given to the pilferer at
the start of the game. That is, the solution of the
game Gþ with D ¼ 1, h ¼ 1/2 is essentially the same
as the solution of the original game G with D ¼ D þ
h ¼ 3/2. The squirrel’s strategy is the same, the pil-
ferer’s strategy is virtually the same and the value of
the modified game Gþ(D, h) is the same as that of the
original game G(D þ h) in which the pilferer starts
with the extra digging potential. Both players play as
if they are assuming that the pilferer already has the
additional energy h ¼ 1/2. In fact, if 1 � D þ h , 2,
the solution of the game Gþ(D, h) is always essentially
the same as the solution of G(D þ h) for this choice
of the parameters n, m, k, and this is true for both
the smart and the normal pilferer.

In other cases this is not so. For example, consider
the original game G when there are three sites and
J. R. Soc. Interface (2012)
two nuts. The analysis for this game has not been
included in this paper, but if 2 � D , 3, the squirrel’s
optimal strategy against the smart pilferer is to bury
both nuts at depth 1 in a single site, ensuring a win
with probability at least 1/3. The smart pilferer can
ensure that he wins with probability at least 2/3 by
employing the following strategy. He digs simul-
taneously at two randomly chosen sites; then if he
finds a nut in that site, he continues digging to depth 1
in that site. If he does not find the other nut, he continues
to look for it in the third site. Hence, the value of this
game is 1/3. However, in the augmented game
Gþ(D, h), where D ¼ h ¼ 1 (so that D þ h ¼ 2), the
same strategy is not available to the pilferer. In particu-
lar, if both nuts are hidden together at depth 1, then this
pilferer strategy will find the nuts with probability 0.
In fact, the squirrel can now guarantee a win with prob-
ability at least 2/3 by using the same strategy of hiding
both nuts together at depth 1. The pilferer can ensure he
wins with probability at least 1/3 by digging a hole of
depth 1 then if he finds a nut, digging two more holes
of depth 1/2, so that the value of the modified game
Gþ(D, h) is 2/3.
3.7. Effect of ‘food value’ (parameter k)

It has been shown [50] that caching behaviour depends,
to some extent, on the ‘value’ of the food that is being
cached, with higher value foods being cached in more
sites (smaller cache size). Their experiments involved
Kangaroo rats (Dipodomys merriami). In our model,
the ‘value’ of the food can be interpreted in terms of
the parameter k, the number of items required for survi-
val. Foods with higher caloric content would correspond
to a smaller parameter k. In §3.1, we considered a ‘valu-
able’ food source, for which a single (k ¼ 1) remaining
nut would be sufficient for survival. Under this assump-
tion, we showed in proposition 3.2 that for a range of
pilferer digging levels (D , 1.5), the optimal caching
strategy places the m ¼ 2 nuts at two sites with prob-
ability 2/3. (The optimal survival probability in this
case is 2/3.) For a less valuable food source, where
k ¼ 2 nuts are required to survive, the solution is sim-
pler. The squirrel strategy of placing both nuts at
maximum depth in a random site clearly wins with
probability at least 1/2 against any pilferer strategy.
Similarly, the pilferer wins with probability at least
1/2 with the strategy of searching a random site to
the bottom and the other one to depth D 2 1. So the
optimal survival probability with the less valuable
food is 1/2. We have not yet shown that the squirrel
cannot behave optimally using both sites. But clearly
against the stated pilferer strategy, the squirrel always
loses if he uses both sites, as at least one nut will
surely be lost. And because the squirrel can win with
probability 1/2, any two site caching strategy most be
suboptimal. Thus we have shown, in our simple case,
that more valuable nuts should be cached at two sites
with probability 2/3, while less valuable nuts should
never be cached at two sites. We believe that this prop-
erty, of wider dispersion of more valuable items, persists
for larger parameters.
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The Leaver & Daly [51] article cites research finding
similar effects of food value on dispersion in various ani-
mals: red squirrels (Tamiasciurus hudsonicus) [51],
yellow pine chipmunks (Tamias amoenus) [52], grey
squirrels (Sciurus carolinensis) [53] and heteromyids
[54]. The last two cited papers involve the complicating
factors of perishability and rarity of the cached food.
3.8. Caching without digging

There is another model that does not involve digging,
but only caching. The squirrel has n indistinguishable
sites where he can cache a total amount h of a continu-
ously divisible commodity (maybe approximated by
small seeds). His ‘strategy’ is a vector w ¼ (w1, w2, . . . ,
wn), with w1 � w2 � � � � � wn and w1 þ . . .þ wn ¼ h,
where the wi are the weights of material he places, in
order of weight. Thus, w1 is the amount in the largest
cache. Suppose he believes that pz is the probability
that of the n sites, z of them will be pilfered completely,
where 0 � z � n. How should he distribute his material
to maximize the probability that he has enough (nor-
malized to 1) to survive the winter? This is an
interesting (and unsolved) mathematical problem,
even in the apparently simple case that pz ¼ 1 for
some known value of z. In that case, the Kikuta–
Ruckle conjecture [4] says that the optimal distribution
puts equal amounts w1 ¼ w2 ¼ � � �¼ wa ¼ h/a in some
sites (and nothing in the other sites). Some positive sol-
utions to this conjecture have been obtained in Alpern
et al. [9] but the general conjecture is still open. This
leads naturally to the following ecological question:
Do scatter hoarders typically have equally sized
caches? Also we might ask how the squirrel chooses
the number of sites to cache material at.
4. CONCLUSION AND DISCUSSION

In this paper, we have modelled the optimal caching
problem faced by a scatter hoarder as a game against
Nature that extends the Kikuta–Ruckle accumulation
games by adding a ‘depth’ element to the caching strat-
egy. In a simple model, we determined the randomized
caching strategy (involving food distribution and depth
at each site), which maximizes, in the worst case, the
probability of having enough food left after pilfering
to survive the winter. To make the problem tractable,
we limited the number of sites available for caching to
two, though further work of a more mathematically
technical nature can deal with more complex problems.
But even our simplified model reveals a number of
qualitative results that may have explanatory value
for known observations and motivates the search for
certain behaviour. For example, we show how the cach-
ing strategy requires randomization and is sensitive to
the level of threat of pilfering and the food recovery
required for survival. We give a further model that
shows that optimal play requires the scatter-hoarder
to distribute his resources more widely when the
threat of pilfering is higher, as found empirically in
Clarkson et al. [25]. We show the need for the use of
‘decoy nuts’, placed above other nuts at the same
J. R. Soc. Interface (2012)
caching site—this can be seen as an experimental pre-
diction that field workers might want to look out for.

Perhaps more importantly, the limitations of our
model argue for further modifications so that many
interesting relationships can be brought into theoretical
view. Some of these are as follows.

— Variation in critical recovery (survival) quantity. In
our model, the scatter hoarder’s minimum require-
ment of food is exogenous (given), and was
normalized to one. However in the case of corvids,
there is evidence that they change their strategy sea-
sonally, caching items quickly and close to the
ground in the spring, and investing longer in digging
a deeper hole in which to bury the cache in the
autumn [55]. So it would seem that a natural exten-
sion would be to analyse the dependence of the
caching effort DS on the minimum survival level,
which is presumably lower in the spring (because
less is needed for summer) than in the autumn
(where more is needed in the winter).

— Multiple food types and perishability. In our model,
there is a single type of resource (all nuts are the
same). But, for example, it is observed in Clayton &
Dickinson [14] that jays cache both worms and
nuts, and keep track of which foods they have
hidden where and when. A more robust model
would designate which commodity bundles (amounts
of worms and nuts) are sufficient for survival. Given
this information, a caching strategy would have to
consider the caching of both types. To deal with per-
ishability questions, a multi-stage model would be
required. First the scatter hoarder hides the worms
and nuts, then some pilfering, then some recovery
(particularly of the more perishable worms), more
pilfering, more recovery.

— Spacing of caches. We noted earlier that grey squirrels
space their caches further apart if there are fellow grey
squirrels in the area [31]. Our model does not consi-
der the geometric configuration of the caching sites.
This could be another parameter of the caching
strategy. The configuration of sites, especially when
search is required to find them again, has been ana-
lysed in a related ‘find-and-fetch’ search game
context [56], where the optimal location of a nest in
terms of food sources was considered. The search for
an immobile target such as a cache has been studied
in Gal [57,58]. A related earlier observation that
could be brought into such an amended model is
that squirrels responded to a reduction in the avail-
ability of food by increasing the distance at which
they stored the food from the source [32]. A number
of studies have found that widely spaced caches are
more likely to survive than caches placed close to
one another [30,45–47].

— More information for pilferers. Our model assumes
that the pilferer knows the number and location of
the potential caching sites, but has no information
as to the actual burying of the nuts. Considerable
work (much of it cited in our review of the scatter
hoarding literature) has been carried out in studying
how the caching behaviour is affected when onlook-
ing potential pilferers may have partial information
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about the initial caching; for example, nuts may be
subsequently moved between sites. Such problems
cry out for game-theoretic analysis.

The next two items are related to useful comments
made by anonymous referees.

— Continuous dispersal of material over an area. The
assumption of a fixed number of known potential cach-
ing locations is rather strong, whereas the weaker
assumption that the nuts from a given tree dispersed
within a known radius might be more realistic. In this
case, a continuous search model might be more appro-
priate. The possibility of a continuous distribution of
resources over a circle has indeed been recently studied
in [11], and it is possible that it might be adapted to
deal with distributions over a disc (region within a
given distance from the tree). The strong assumption
made in this paper is in keeping with our ‘worst case’
analysis of the caching problem as a ‘game against
Nature’—in fact, the observation that the pilferer
might not be able to identify potential caching sites
means the squirrel should in fact be able to do even
better than our optimal strategies guarantee.

— Multi-period dynamic accumulation of resources. Our
game model is essentially a single period game, where
the squirrel hides nuts and then the pilferer takes
some. In fact, the original accumulation games of
Kikuta & Ruckle were multi-period games, where in
each period the squirrel (the hider) hides more nuts
and the pilferer comes back again. The game ends posi-
tively for the hider if after some fixed number of periods
a sufficient amount of material has been saved, or accu-
mulated (over time). Such games have proved difficult
to solve for more than one period, even as mathematical
abstractions, and much of the progress in this direction
has been in the one period case (called simply caching
games). So to apply these models to the dynamic bio-
logical setting, further mathematical advances will be
required. We hope that our model will stimulate work
in that direction.Thepossibilityof recaching (the squir-
rel moves nuts between locations) should also be
allowed in such models.

S.A. and R.F. wish to acknowledge support from NATO
Collaborative Linkage Grant 983583.
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