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Earth’s magnetic field is sustained by magnetohydrodynamic
convection within the metallic liquid core. In a thermally advecting
core, the fraction of heat available to drive the geodynamo is re-
duced by heat conducted along the core geotherm, which depends
sensitively on the thermal conductivity of liquid iron and its alloys
with candidate light elements. The thermal conductivity for Earth’s
core is very poorly constrained, with current estimates based on
a set of scaling relations that were not previously tested at high
pressures. We perform first-principles electronic structure compu-
tations to determine the thermal conductivity and electrical resis-
tivity for Fe, Fe–Si, and Fe–O liquid alloys. Computed resistivity
agrees very well with existing shock compression measurements
and shows strong dependence on light element concentration
and type. Thermal conductivity at pressure and temperature con-
ditions characteristic of Earth’s core is higher than previous extra-
polations. Conductive heat flux near the core–mantle boundary is
comparable to estimates of the total heat flux from the core but
decreases with depth, so that thermally driven flow would be con-
strained to greater depths in the absence of an inner core.
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The generation of the Earth’s magnetic field is directly coupled
to the thermal evolution of the liquid outer core, the cooling

of which is modulated by heat flux from the core into the base
of the mantle (1–6). In a simple thermally driven core, as, for ex-
ample, in the absense of a crystallizing inner core and associated
latent heat release and chemical buoyancy, heat transported by
conduction is not available to drive the geodynamo. Knowledge
of its relative contribution to thermal transport in the core is
therefore critical to understanding the long term stability of
Earth’s magnetic field, which has been present as far back as
3.45 billion years ago (7), when the core was likely too hot for
a solid inner core to crystallize (1, 4).

Existing estimates of thermal conductivity (kel) and electrical
resistivity (ρel) of Earth’s outer core are based on extrapolations
(8, 9) of resistivity measurements in shock-compressed Fe and
Fe–Si alloys (10–12) to core temperatures and pressures. These
extrapolations assume the direct proportionality of electrical
resistivity to temperature, its invariability along and across the
Fe liquidus, and adherence to the Wiedemann–Franz law,
which relates electrical resisitivity and thermal conductivity for
metals through the Lorenz number (13) λ0 ¼ kelρel∕T ¼
2.44 × 10−8 WΩ∕K2. No data are available for Fe alloys of the
other candidate light elements that have been proposed to ac-
count for the seismically observed density deficit of Earth’s core
relative to pure Fe (14). Previous high-pressure studies of the
electronic transport properties of Fe at high pressure (15–18)
were limited to low temperatures. Clearly, there is a need for
direct determination of electrical resistivity and thermal conduc-
tivity of ferro-metallic liquids at pressures and temperatures char-
acteristic of Earth’s outer core.

We compute kel and ρel for Fe, Fe7Si, Fe3Si, Fe7O, and Fe3O
liquid alloys (6.7, 14.3 wt% Si; 3.9, 8.7 wt% O) from first princi-

ples, using density functional theory and the Mermin functional
to determine finite temperature equilibrium charge density and
electronic structure (19–21). First-principles molecular dynamics
(FPMD) simulations are performed in the canonical ensemble
for temperatures of 2,000–8,000 K and volumes corresponding
to pressures of 0–360 GPa. Electronic transport properties are
subsequently computed for a series of uncorrelated snapshots
from the FPMD simulations using the Kubo–Greenwood equa-
tion (22, 23) (see Methods), which expresses the electronic
Onsager coefficients Lij directly in terms of the expectation values
of the electronic velocity operator (24).

Computed resistivities for pure Fe liquid (Fig. 1) closely agree
with the shock compression measurements of Keeler (10) and
the lowest pressure point of Bi et al. (11), at pressures where
Hugoniot temperatures (25) are comparable to those in our si-
mulations. Similarly, values for Fe3Si liquid are in agreement
with the shock measurements of Matassov (12) for the same
composition. Lower pressure shock compression measurements
are at progressively lower temperatures; the 18 GPa measument
of Keeler (10) is at 320 K, and agrees well with room temperature
static measurements in hcp Fe (17, 18), adding confidence to
the shock compression resistivity data, and our results. In light
of the large scatter in the Bi et al. (11) dataset, and the serious
disagreement between the data of Bi et al. (11) and Keeler (10)
above 120 GPa, we feel that comparison of our results with the
measurements of Keeler (10) is more appropriate. Computed low
pressure resistivity for pure Fe liquid is somewhat smaller than
experimental values (26, 27), yet computed ambient pressure
thermal conductivity does agree closely with experimental esti-
mates for liquid Fe at temperatures above melting (1,810 K) (28).

In drawing comparisons to the shock compression resistivity
measurements, we assume that the resistivity of liquid and solid
metal phases are similar, which is known to be the case for Fe at
low pressure (26, 27). In our comparison of thermal conductiv-
ities, we further assume the electronic contribution to heat trans-
port to be much larger than that due to transport by phonons
alone. In Fe liquid at ambient pressure, the latter is estimated
to be about 3 W∕m K (8), much smaller than the experimental
total conductivity of 40.3 W∕m K (28).

In contrast with previous assumptions for Earth’s core (8, 9),
we find that the validity of the Wiedemann–Franz relation
depends strongly on temperature and composition. At core tem-
peratures, computed Lorenz numbers for Fe and Fe–Si liquids
are in the range of 2.2–2.4 × 10−8 WΩ∕K2; alloying of liquid
Fe with O results in a notable decrease in λ, with values as low
as 1.8 × 10−8 WΩ∕K2 for Fe3O liquid at high pressure and tem-
perture. This deviation from the Wiedemann–Franz relation sug-
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gests that electron scattering in Fe–O liquid alloys is strongly
anelastic, resulting in a breakdown of the simple relaxation time
picture of electronic migration.

We find electrical resistivity to vary linearly with temperature,
consistent with the prediction of the Bloch–Grüneisen equation
for systems where electrons are primarily scattered by phonons.
However, ρel is not directly proportional to T (Fig. 2), as is
assumed in the oft-used extrapolations of experimental measure-
ments to core conditions (8, 9). Augmenting the Bloch–Grünei-
sen formalism (29), we construct model descriptions for kel and
ρel as a function of volume and temperature for the different

liquid phases considered (Table 1; seeMethods). Combining these
models with a pressure–volume–temperature equation of state
for conductive liquids (30), we derive ρel and kel values along
a set of candidate adiabatic thermal profiles for Earth’s core, de-
rived from the range of Fe-melting temperatures (25, 31, 32).

Our kel values for the outer core are notably higher than pre-
vious extrapolations [Fig. 3; 30–60 W∕m K (8, 9)], reflecting the
incorrect temperature dependence of resistivity assumed in ear-
lier studies (Fig. 2). As a consequence, our predicted conductive
heat flux at the top of the core is 14–20 TW, larger than the
5–15 TW of total heat flux across the core–mantle boundary in-
ferred from intraplate volcanism (5). A lower heat flux at the top
of the core would require a smaller kel, which can be obtained
through a larger concentration of light elements in this region.
Indeed, an anomalous light element fraction at the top of the core
has been proposed on dynamical grounds (33) and is supported
by seismic observations (34). However, because this concentra-
tion of light elements likely results from inner core crystallization
and the associated chemical buoyancy, the difficulty posed by a
large conductive heat flux remains, especially in the absence of a
crystallizing inner core.
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Fig. 1. Computed electrical resistivity (ρel), thermal conductivity (kel), and corresponding Lorenz numbers (λ). Solid lines (top row) and dashed lines (middle and bottom
rows) show the Bloch–Grüneisen models of Fe liquid; the horizontal dotted line indicates the value of the Lorenz number expected via theWiedemann–Franz relation (W-F).
Hugoniot temperatures (25) for selected shock compression datapoints [K71 (10), M77 (12), B02 (11)] are shown to guide comparisons. Other experimental data (see text):
R83 (17), B61 (18), T71 (28), S89 (27), V80 (26).
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Fig. 2. Temperature dependence of electrical resistivity for pure Fe liquid at
136 GPa, determined using the model in Table 1 (solid red line), agrees very well
with the resistivity measurement of Keeler (10) at the same pressure. Stacey and
Anderson (8) used ρel ∝ T (dashed line) in their extrapolation of this measurement
to temperatures of the core near the core–mantle boundary. The shaded region in-
dicates the T range near the core–mantle boundary from the range of candidate
adiabats used (see text).

Table 1. kel and ρel model parameters for Eq. 5

Fe Fe7Si Fe3Si Fe7O Fe3O

ρ0R, μΩm 0.77 0.84 1.26 0.85 1.00
ρ1R, μΩm 0.084 0.13 0.0015 0.090 0.12
λR, WΩ∕K2 2.25 2.34 2.40 2.24 2.11
a 0.77 0.41 0.69 0.59 0.83
b 1.29 2.92 4.10 2.02 0.99
c −0.078 −0.13 −0.016 −0.053 −0.069
d −0.057 −0.12 −0.057 −0.096 −0.17

In all cases, TR ¼ 3;000 K and VR ¼ 7.0 cm3∕atom.
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Model conductive heat flux decreases rapidly with depth in
the core, primarily due to the spherical geometry. Excluding
the possible effects of radiogenic heating and latent heat released
through inner core crystallization, conservation of energy re-
quires total heat flux to remain constant throughout the core.
The fraction of the total heat flux transported via convection
would therefore increase with depth, suggesting that thermally
driven flow would occur mainly within the deeper portion of
the liquid core.

Methods
First-Principles Simulations. The method used to compute electronic transport
properties is similar to that of refs. 22 and 23. Born–Oppenheimer molecular
dynamics (FPMD) is performed using the VASP code (35). To test for finite size
effects, we consider system sizes of 64, 128, 144, and 192 atoms (see below). The
exchange-correlation potential is represented in the generalized gradient approxi-
mation (GGA-PBE) (36), with valence electrons represented as planewaves with a
cutoff of 300 eV in the projector augmented wave (PAW) formalism (37, 38). The
Brillouin zone is sampled at the Γ point only. Simulations are performed in the NVT
ensemble for volumes V∕VX ¼ 1.0, 0.7, 0.65, and 0.6, where VX ¼ 7.121 cm3∕
mol atom, and temperatures of 2,000, 3,000, 4,000, 6,000 and 8,000 K, and cover

at least 20 ps of simulation time. The time dependent mean square displacement
is used to check that systems are indeed in the liquid state.

From each FPMD-generated phase trajectory, we extract atomic configuration
snapshots every 1,000 fs (i.e., 20 per P–T point) for which we compute the electrical
resistivity (ρel) and thermal conductivity (kel). Velocity autocorrelation functions
(39) for our simulations all decay within 250 fs, indicating that a 1,000-fs time
separation is sufficient for individual snapshots to be uncorrelated. In this way a
representative sampling of the liquid structure at each P–T point is obtained.

Electronic transport properties ρel and kel are computed using the
Kubo–Greenwood equation, as implemented in the Abinit code (22, 40). The equa-
tion, which follows from the electronic current autocorrelation function via Kubo’s
linear response formalism, is

Lij ¼ ð−1ÞðiþjÞ he2

V cell ∑
k0;k

lim
ϵ→0

f ðϵk0 Þ − f ðϵkÞ
ϵ

δðϵk0 − ϵk − ϵÞ

× hψkjv̂jψk0 ihψk0 jv̂jψkiðϵk0 − ϵFÞi−1ðϵk − ϵFÞj−1; [1]

ρel ¼ 1∕L11; [2]

kel ¼
1

e2T

�
L22 −

L2
12

L11

�
: [3]

In Eqs. 1–3 ϵF is the Fermi energy; ψk, ϵk, and f ðϵkÞ are the wave function, eigen-
value, and Fermi–Dirac occupation of eigenstate k, respectively; v̂ is the velocity
operator; and V cell is the simulation cell volume. For a given snapshot, the self-
consistent electronic relaxation is performed for electronic temperature equal to
the ionic temperature via the Mermin functional (21). ψk and ϵk are represented
by the Kohn–Sham eigenfunctions and eigenvalues for each given snapshot, while
v̂ is computed from the Hamiltonian gradient, hv̂ ¼ 2π∂Ĥ∕∂k.

Cells of 144 atoms for Fe and 128 atoms for Fe–Si and Fe–O alloys are used in
production runs; test simulations with 192 atoms at V∕VX ¼ 0.6 and 1.0 for
T ¼ 8;000 K yielded transport coefficients within 1% of the values determined with
the smaller systems. To avoid core charge overlap in the linear response calculations
at high degrees of compression, we constructed GGA-PAW atomic potentials with
small cutoff radii (0.9 Å for Fe and Si, 0.53 Å for O) (36, 41). A planewave basis
set cutoff of 400 eV is found to yield converged electronic transport coefficients.
Production runs sample the Brillouin zone only at the Γ-point. This choice is appro-
priate in large simulation cells, where the Brillouin zone edge is effectively folded
into its center. Test values computed using a 2 × 2 × 2Monkhorst–Pack k-point grid
(42) at V∕VX ¼ 0.6 and 1.0 for T ¼ 8;000 K vary by no more than 5% from the
single k-point results.

It should be noted that the Kubo–Greenwood equation determines the electro-
nic transport properties directly from the self-consistent electronic structure within
the Born–Oppenheimer approximation. Ionic and electronic scattering are impli-
citly included in the computation, but electron–phonon coupling is not described.
The approach is therefore well suited to characterizing high temperature electronic
transport coefficients, especially in liquid metals.

P-T Model for ρel and kel . We represent the temperature and volume dependence
of electrical resistivity via the Bloch–Grüneisen equation, with volume dependence
included through a power law dependence of the prefactor (29)

ρelðV;TÞ ¼ ρ0R

�
V
VR

�
a
þ ρ1R

�
V
VR

�
b T
TR

; [4]

where a and b are constants that include volume dependence of the vibrational
frequencies. The electronic thermal conductivity is represented self-consistently
through the Lorenz number using

kelðV;TÞ ¼ λðV;TÞT
ρelðV;TÞ ; [5]

by fitting the computed Lorenz numbers to

λðV;TÞ ¼ λR

�
V
VR

�
c
�
T
TR

�
d
: [6]

For the Fe liquid alloys we consider, reference volume and temperature are cho-
sen as TR ¼ 3;000 K and VR ¼ 7.0 cm3∕mol atom. Values for ρ0R, ρ1R, λR, a, b, c,
and d for each of the simulated systems is given in Table 1.
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Fig. 3. (Top) Electrical resistivity and (Middle) electronic thermal conductivity for
the various compositions considered in this study, evaluated using the models in
Table 1 along a range of candidate core adiabats (see text). (Bottom) Corresponding
heat flux values computed as 4πr2kel∇T, where r is the radius, compared to geophy-
sical estimates of core–mantle boundary (CMB) heatflux (5).
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