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Abstract
Mood disorders are highly heritable forms of major mental illness. A major breakthrough in
elucidating the genetic architecture of mood disorders was anticipated with the advent of genome-
wide association studies (GWAS). However, to date few susceptibility loci have been conclusively
identified. The genetic etiology of mood disorders appears to be quite complex, and as a result,
alternative approaches for analyzing GWAS data are needed. Recently, a polygenic scoring
approach that captures the effects of alleles across multiple loci was successfully applied to the
analysis of GWAS data in schizophrenia and bipolar disorder (BP). However, this method may be
overly simplistic in its approach to the complexity of genetic effects. Data mining methods are
available that may be applied to analyze the high dimensional data generated by GWAS of
complex psychiatric disorders. We sought to compare the performance of five data mining
methods, namely, Bayesian Networks (BN), Support Vector Machine (SVM), Random Forest
(RF), Radial Basis Function network (RBF), and Logistic Regression (LR), against the polygenic
scoring approach in the analysis of GWAS data on BP. The different classification methods were
trained on GWAS datasets from the Bipolar Genome Study (2,191 cases with BP and 1,434
controls) and their ability to accurately classify case/control status was tested on a GWAS dataset
from the Wellcome Trust Case Control Consortium. The performance of the classifiers in the test
dataset was evaluated by comparing area under the receiver operating characteristic curves (AUC).
BN performed the best of all the data mining classifiers, but none of these did significantly better
than the polygenic score approach. We further examined a subset of SNPs in genes that are
expressed in the brain, under the hypothesis that these might be most relevant to BP susceptibility,
but all the classifiers performed worse with this reduced set of SNPs. The discriminative accuracy
of all of these methods is unlikely to be of diagnostic or clinical utility at the present time. Further
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research is needed to develop strategies for selecting sets of SNPs likely to be relevant to disease
susceptibility and to determine if other data mining classifiers that utilize other algorithms for
inferring relationships among the sets of SNPs may perform better.
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Background
Previous research from family, twin and adoption studies shows that genetic factors play an
important role in the etiology of mood disorders [1, 2]. With the advent of genome-wide
association studies (GWAS), there was a great deal of enthusiasm that susceptibility loci for
these disorders would be quickly identified. However, success has been limited and much of
the heritability of these disorders remains unexplained. The genetic architecture of these
disorders appears to be very complex and likely involves multiple genes from different
molecular pathways acting independently and interactively. Current approaches for
analyzing GWAS data which typically focus on testing one variant at a time may not be
sufficient for capturing the complexity of these genetic effects [3–5].

Recently, a polygenic scoring approach was successfully applied to the analysis of GWAS
data on schizophrenia and bipolar disorder (BP) [6]. The number of putative risk alleles
associated with disorder in single SNP tests of a training GWAS dataset were weighted and
summed to derive a polygenic score. The polygenic score was then found to be significantly
associated with disorder status in another test GWAS dataset. This approach is of interest
because it simultaneously considers the effects across multiple loci and reveals levels of
association that are more compelling than tests of single SNPs. However, it may be overly
simplistic as it merely sums these effects and does not adequately account for the complex
relationships between putative risk alleles that may exist on the etiologic pathway to disease.

Data mining methods are available that may be better suited to analyzing the high
dimensional data generated by GWAS of complex psychiatric disorders. Data mining is the
process of extracting the complex relationships and correlations hidden in large data sets. It
also includes computer modeling of learning processes and the discovery of new facts
through observation and experimentation. There are different algorithms for carrying out
data mining, and the prediction accuracy of these algorithms may vary [7, 8]. Several
examples include self-organizing maps [9], decision tree [10], support vector machines [11],
Bayesian network [12], neural networks [13], and genetic algorithms [14]. There are several
software suites freely available for implementing these algorithms, including Weka [15] and
GIST [16]. Recently data mining has been used in many domains of biomedicine, including
protein classification [17], classification of cancer sub-types [18, 19], prediction of protein
secondary and tertiary structure [20], text mining[21], and protein-protein interactions[22].

The goal of this study was to examine the application of various data mining methods to the
analysis of GWAS data, and to evaluate their ability to predict disorder status. We further
compared the performance of these methods against the recently reported polygenic scoring
approach.
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Materials and Methods
Datasets

For this study, we used GWAS datasets on BP from the Bipolar Genome Studies (BiGS)
Consortium [23] for the training dataset and from the Welcome Trust Case Control
Consortium (WTCCC) [24] for the test dataset. The BiGS dataset consisted of two GWAS
samples that have been reported on separately: the Genetic Association Information
Network (GAIN) European American [25] and the Translational Genomics Research
Institute (TGEN) (submitted) samples. The BP cases for both samples were collected by the
National Institute of Mental Health Genetics Initiative Bipolar Disorder (NIMH-BP)
Consortium [26]. Eligibility and assessment procedures for these cases have been described
previously [27, 28]. Briefly, they were assessed with the Diagnostic Interview for Genetic
Studies (DIGS) and this along with information from family informant data and medical
records was used to assign diagnoses with best estimate procedures based on DSM-III-R or
DSM-V criteria [29]. All cases were unrelated Caucasians and had a diagnosis of either
bipolar I disorder (BPI) or schizoaffective disorder, bipolar subtype (SABP). The controls
for the two GWAS samples came from a separate recruitment effort [30]. All control
subjects completed a psychiatric questionnaire and those endorsing a history of BP,
psychosis or major depression were excluded. Controls were matched by ethnicity, age and
sex to the BP cases. The BP cases and controls in both GWAS samples were genotyped
using the Affymetrix 6.0 array. Strict quality control (QC) measures were applied to the
resulting data including dropping subjects with missing data rate ≥ 1%, and dropping SNPs
with minor allele frequency < 1%, missing data rate ≥ 5%, and Hardy-Weinberg
Equilibrium p-value < 10−6 among the controls. Principal component analysis with
Eigenstrat was used to identify evidence of population stratification in the sample and to
remove subjects who were outliers in terms of ancestral background. We combined the
GAIN-EA and TGEN samples into one dataset consisting of 2,191 cases with BP and 1,434
controls genotyped on a total of 673,715 SNPs.

The testing dataset was obtained from the Wellcome Trust Case Control Consortium
(WTCCC). Cases were ascertained from multiple sites around the United Kingdom (UK)
and assessed using semi-structured lifetime diagnostic psychiatric interviews (in most cases
the Schedules for Clinical Assessment in Neuropsychiatry). All cases had a diagnosis of a
bipolar related disorder by Research Diagnostic Criteria. A common set of 3000 controls
were obtained from the 1958 British Cohort study and selected from UK blood donors. The
cases and controls were all Caucasian of European descent and were genotyped on the
Affymetrix 500K Mapping Array [31]. QC procedures were applied to the genotyped data
and included dropping subjects with missing data rate ≥ 5%, and dropping SNPs with
quality score < 90%, minor allele frequency < 1%, missing data rate ≥ 5%, and Hardy-
Weinberg Equilibrium p-value < 10−6 among controls. After QC, the WTCCC sample
consisted of 1868 cases and 2996 controls with genotype data on 397,333 SNPs. To ensure a
common set of SNPs across the training and testing datasets, we imputed the WTCCC
dataset using phased haplotype data from HapMap I & II release 24 [32] as the reference
panel. We used the program BEAGLE [33] to verify the orientation of the WTCCC dataset
in the positive strand and then to generate most likely genotype probabilities for autosomal
SNPs in the cases and controls. We retained for downstream analyses only those SNPs with
a minor allele frequency ≥ 1%, R2 > 0.3, and HWE p-value > 1×10−6 among the controls.
For computational efficiency, we selected a random subset of 1000 bipolar I cases and 1000
controls for the testing dataset.
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Feature Selection
To render the comparisons of the different classifiers more computationally feasible, we
explored two different approaches for selecting a subset of SNPs to build the case/control
prediction models (i.e., feature selection). The key parameters of these different approaches
are described in Table 1. First, we used PLINK [34] to perform allelic tests of association
between each SNP and case/control status in the training dataset, and then used the results to
carry out the two different approaches for feature selection. We used the LD-based clumping
procedure in PLINK to prune the number of SNPs to a relatively uncorrelated set of the
most significantly associated SNPs. We examined two different combinations of p-value and
r2 parameters for guiding the pruning. We refer to these as the Whole Genome 1 (WG1) and
Whole Genome 2 (WG2) sets. In the second approach, we focused only on a set of
approximately 13,000 genes that prior experimental work [35] has suggested are expressed
in the brain. We hypothesized that genes expressed in the brain are most likely to be relevant
to a psychiatric disorder like BP. We extracted all SNPs within these genes plus/minus 30 kb
in our combined GWAS dataset and performed the LD-based clumping procedure using the
same two combinations of p-value and r2 parameters as above. We refer to these as the Brain
Expressed 1 (BE1) and Brain Expressed 2 (BE2) sets.

Statistical Analyses
We trained five different data mining classifiers on the training dataset using the program
WEKA and the four sets of SNPs described in Table 1. The five data mining methods were
Bayesian networks (BN), support vector machine (SVM), Random Forest (RF), Radial Basis
Function network (RBF), and logistic regression (LR). Each of these methods takes a
different approach for modeling the relationship between covariates and provides a predicted
probability of the outcome. In our case, the covariates were the SNP genotypes and the
outcome was BP case versus control status. We assessed how well the trained models
predicted case/control status in the testing dataset. We used the default parameters in WEKA
for training and testing.

We used PLINK to implement the polygenic score approach for predicting case/control
status using the four sets of SNPs described in Table 1. We calculated polygenic scores for
the subjects in the testing dataset by taking the weighted sum of the number of “risk” alleles
at each of the SNPs in the set, where the weight was based on the odds ratio for association
of the SNP with case/control status in the training dataset. We then used R [36] to fit a
logistic regression model with the polygenic score as a covariate and examined how well the
model predicted case/control status in the testing dataset.

We compared the performance of the data mining and polygenic scoring classifiers in the
testing dataset using area under the curve (AUC) analyses. In the AUC analyses, the
sensitivity of the classifier was graphed against the value “1- specificity” of predicting case/
control status at different thresholds of the predicted probabilities from the model, and the
area under the resulting curve was calculated. The AUC can be interpreted as the probability
that a classifier will correctly predict the case from a randomly chosen pair of cases and
controls. The greater the AUC, the better is the performance of the classifier. Figure 1 shows
the overall workflow for these analyses.

Results
Figure 2 shows the results of applying the six classifiers to the testing dataset using the
whole genome SNP sets. With the WG1 set of 3,514 SNPs, the BN performed the best of the
five data mining classifiers. However, none of the data mining classifiers performed
substantially better than the simple polygenic score classifier. The results were essentially
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the same with the set of 14,634 SNPs in WG2. Interestingly, the LR classifier could not be
successfully fitted with the larger set of SNPs. Figure 3 shows the results of applying the six
classifiers to the test dataset using the brain expressed SNP sets. Again, the BN performed
slightly better than the other data mining classifiers, but none of these did better than the
polygenic score classifier. All the classifiers performed worse with the smaller number of
SNPs in the brain expressed set compared to the whole genome set.

Recent findings with the polygenic score approach have suggested that it performs better as
even more liberal p-value thresholds for including SNPs in the score calculation are used. A
report on schizophrenia [30] showed that the best AUC was achieved at p-value thresholds
as high as 0.5. In order to determine if this was true with our BP datasets, we examined how
the polygenic score approach performed in predicting case/control status in the testing
dataset using p-value thresholds of 0.1 and 0.5 without clumping in the whole genome
SNPs. The results are shown in Figure 4. For comparison, the results of the polygenic score
approach using BE1, BE2, WG1, WG2 sets are shown again here. As in the previous report
on schizophrenia, the performance of the polygenic score approach improved as more SNPs
were included in the score calculation with more liberal p-value thresholds. Notably, we
were unable to test the data mining classifiers using these larger sets of SNPs because of
computational burden.

Discussion
We compared several novel approaches for analyzing high dimensional GWAS data that test
multiple SNPs simultaneously in order to detect relevant associations that might be missed
by more conventional approaches which test each SNP individually. In particular, we tested
five different data mining classifiers, including BN, SVM, RF, RBF and LR, and compared
their performance against a recently developed polygenic score approach that simply takes a
weighted sum of risk alleles across a number of SNPs as a predictor.

A recent report [6] has shown that the polygenic score approach can be used to effectively
capture the association effects of multiple loci with complex psychiatric disorders. A
subsequent paper examined in more detail the performance characteristics of this polygenic
approach [37]. We hypothesized that data mining approaches, which have been developed
specifically to analyze high-dimensional data, may provide a useful alternative for analyzing
GWAS data. Several studies in recent years have reported on various successful uses of data
mining methods for the analysis of genetic data [38, 39]. These studies have used SNPs from
select groups of targeted genes for the classification of data and to predict the susceptibility
to disease. To our knowledge, the current study is the first to examine the performance of
applying these data mining approaches in the context of GWAS.

Contrary to our expectations, we found that none of the data mining classifiers did any better
than the relatively simplistic polygenic score approach. We had reasoned that because of
their performance characteristics the data mining classifiers would be able to detect complex
interaction patterns between the SNP predictors and thereby better predict disease status.
However, either the data mining classifiers that we used in this study failed to detect the
complex interaction patterns between SNPs as we anticipated, or these complex interaction
patterns were not present in the GWAS data. The data mining classifiers suffered from the
additional limitation of not being able to analyze larger sets of predictor SNPs due to
computational burden. As has been shown in previous studies, we observed that the
polygenic score approach performed incrementally better with larger sets of SNPs. This may
be due to the fact that psychiatric disorders like bipolar disorder are highly polygenic and the
increased numbers of SNPs are tagging a greater proportion of this polygenic component.
With more efficient algorithms for fitting the data mining classifiers, it is possible they may
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also be applied to analyze GWAS data with greater success. A common challenge for all the
classifiers we tested is the problem of appropriate feature selection. Although we found that
the prediction improved with increasing numbers of SNPs included in the classifier models,
it is conceivable that we could do even better if we were able to identify and include only
the most etiologically relevant sets of SNPs. We sought to realize such improvements by
focusing on SNPs within genes that are expressed solely in the brain, guided by the notion
that such SNPs would be relevant for psychiatric disorders. This strategy was not successful
here, but other strategies that utilize alternative functional annotations for the SNPs merit
further investigation. Another limitation of these data mining approaches is that they are
often “black boxes” in terms of understanding how the selected features interact with one
another. Therefore it is difficult to draw inferences about the etiologic relationship between
the risk features and disease susceptibility.

It is important to note that while we have used the ability of these different methods to
classify disease status based on SNP genotypes as a means of comparing their performance,
none of them are sufficiently accurate to be used as a tool for prediction in clinical settings.
The hope is that with the further development of analytic algorithms for capturing complex
patterns in high dimensional data, the use of larger GWAS samples sizes for training the
prediction models, and new strategies for using functional information to select the
appropriate SNP features, we will successfully develop classifiers that are ultimately clinical
useful.
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Figure 1.
Overall workflow design of the study
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Figure 2.
Comparisons of the area under the receiver operating characteristic curves for prediction
with the data mining and polygenic score approaches in the testing dataset using the two
whole genome SNP sets. (NA: not applicable due to computational burden)
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Figure 3.
Comparisons of the area under the receiver operating characteristic curves for prediction
with the data mining and polygenic score approaches in the testing dataset using the two
brain expressed SNP sets.
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Figure 4.
Comparisons of the area under the receiver operating characteristic curves for the polygenic
score approach under different p-value thresholds
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Table 1

Parameters used to define four sets of SNP feature sets

Clumped Sets p-value r2 SNPs

Whole Genome 1 (WG1) < 0.01 0.25 3,514

Whole Genome 2 (WG2) < 0.05 0.25 14,634

Brain Expressed 1 (BE1) < 0.01 0.25 1,252

Brain Expressed 2 (BE2) < 0.05 0.25 5,366
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