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Adenosine A5 Receptors in the Nucleus Accumbens

Bi-Directionally Alter Cocaine Seeking in Rats

Casey E O’Neill', Mckenzie L LeTendre' and Ryan K Bachtell*'+

'Department of Psychology and Neuroscience and Center for Neuroscience, University of Colorado at Boulder, Boulder, CO, USA and “Institute
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Repeated cocaine administration enhances dopamine D, receptor sensitivity in the mesolimbic dopamine system, which contributes to
drug relapse. Adenosine Ay receptors are colocalized with D, receptors on nucleus accumbens (NAc) medium spiny neurons where
they antagonize D, receptor activity. Thus, Aya receptors represent a target for reducing enhanced D, receptor sensitivity that
contributes to cocaine relapse. The aim of these studies were to determine the effects of adenosine A, receptor modulation in the
NAC on cocaine seeking in rats that were trained to lever press for cocaine. Following at least |5 daily self-administration sessions and
| week of abstinence, lever pressing was extinguished in daily extinction sessions. We subsequently assessed the effects of intra-NAc
core microinjections of the A,a receptor agonist, CGS 21680 (4-[2-[[6-amino-9-(N-ethyl-b-D-ribofuranuronamidosyl)-9H-purin-2-
yllamino]ethyl]benzenepropanoic acid hydrochloride), and the A, receptor antagonist, MSX-3 (3,7-dihydro-8-[(1 E)-2-(3-methoxy-
phenyl)ethenyl]-7-methyl-3-[3-(phosphonooxy)propyl- | -(2-propynyl)- | H-purine-2,6-dione  disodium salt hydrate), in modulating
cocaine- and quinpirole-induced reinstatement to cocaine seeking. Intra-NAc pretreatment of CGS 21680 reduced both cocaine-
and quinpirole-induced reinstatement. These effects were specific to cocaine reinstatement as intra-NAc CGS 21680 had no effect on
sucrose seeking in rats trained to self-administer sucrose pellets. Intra-NAc treatment with MSX-3 modestly reinstated cocaine seeking
when given alone, and exacerbated both cocaine- and quinpirole-induced reinstatement. Interestingly, the exacerbation of cocaine
seeking produced by MSX-3 was only observed at sub-threshold doses of cocaine and quinpirole, suggesting that removing tonic Apa
receptor activity enables behaviors mediated by dopamine receptors. Taken together, these findings suggest that A, receptor

INTRODUCTION

The mesolimbic dopamine (DA) system is involved in many
aspects of addiction, including drug reward, craving, and
relapse behaviors (Shaham et al, 2003; Shalev et al, 2002).
Activation of this pathway through stress exposure, drug-
associated cues, and pharmacological stimuli are known to
mediate relapse to cocaine seeking (Shaham et al, 2003).
The mesolimbic DA system consists of DA cells in the
ventral tegmental area that project to the nucleus accum-
bens (NAc) among other forebrain targets.

Drugs of abuse stimulate DA release in the NAc that is
mediated by two major classes of DA receptors that are
distinguished by their intracellular signaling cascades
among other aspects. DA binding at D, receptors increases
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adenylyl cyclase activity, while DA binding at D, receptors
decreases the activity of this enzyme (Lachowicz and Sibley,
1997). In addition, D, and D, receptors are primarily
expressed on two distinct populations of NAc neurons, with
D; receptors occurring mainly on dynorphin/substance
P-expressing neurons and D, receptors on enkephalin-
expressing neurons (Lu et al, 1998). These subpopulations
of neurons comprise the direct and indirect striatal path-
ways, respectively, that differ in their projection targets as
well as their influence on behavioral output (Aubert et al,
2000; Steiner and Gerfen, 1998).

Repeated cocaine administration produces alterations in
DA receptor-mediated responses. Thus, repeated cocaine
administration produces cross-sensitization with DA D,
receptor agonists (Ujike et al, 1990), and while D, and D,
receptors are necessary for the acquisition of behavioral
sensitization, only D, receptors are necessary for its
expression (Fontana et al, 1993). In self-administration
models, systemic and intra-accumbens stimulation of DA
D, receptors produces robust reinstatement to cocaine
seeking (Bachtell et al, 2005; De Vries et al, 1999; Dias et al,
2004; Khroyan et al, 2000; Schmidt and Pierce, 2006;
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Self et al, 1996), and D, receptors appear to mediate cue-
induced relapse to cocaine seeking (Cervo et al, 2003; Gal
and Gyertyan, 2006). Therefore, tempering D, receptor-
mediated behaviors following chronic cocaine administra-
tion could prove useful in preventing relapse.

A known modulator of DA neurotransmission is adeno-
sine. Adenosine activity is mediated by subtypes of
adenosine receptors, including A,, receptors that are
heavily expressed in the striatum, where they are highly
colocalized with D, receptors on enkephalin-containing
neurons of the indirect pathway (Fink et al, 1992;
Svenningsson et al, 1999b). Adenosine A,, receptors exert
tonic inhibitory control over D, receptor signaling within
the striatum (Farrar et al, 2010; Hakansson et al, 2006;
Harper et al, 2006; Nagel et al, 2003; Weber et al, 2010).
Thus, A, receptor stimulation decreases DA binding at D,
receptors (Ferre et al, 1991b). A recent study has suggested
that this may be mediated by heteromeric receptor
complexes comprised of A,, and D, receptors (Marcellino
et al, 2010). Interestingly, cocaine was shown to reduce the
expression of the A,,-D, receptor heteromer, which may
partially explain the enhanced D, receptor-mediated
behaviors following repeated cocaine administration (Mar-
cellino et al, 2010).

Recent studies have shown an involvement of adenosine
A, receptors in the behavioral effects of cocaine. For
example, systemic A,, receptor stimulation impairs the
initiation of cocaine self-administration (Knapp et al, 2001),
reduces cocaine sensitization (Filip et al, 2006), and blocks
reinstatement of cocaine seeking (Bachtell and Self, 2009).
The nonspecific adenosine antagonist, caffeine, produces
modest reinstatement (Green and Schenk, 2002; Worley
et al, 1994), while specific antagonism of A,, receptors
enhances cocaine sensitization (Filip et al, 2006). It remains
unclear whether these A,, receptor effects on cocaine
behaviors are mediated by A,, receptors in the NAc.
Therefore, this study examines whether adenosine receptor
effects on cocaine seeking are mediated by A, receptors
localized to the NAc. These experiments test the effects of
intra-NAc A,, receptor stimulation or blockade on cocaine
seeking in animals extinguished from cocaine self-admin-
istration. Local infusions of CGS 21680 (4-[2-[[6-amino-
9-(N-ethyl-b-p-ribofuranuronamidosyl)-9H-purin-2-ylJamino]
ethyl]benzenepropanoic acid hydrochloride), a selective
A, receptor agonist, and MSX-3 (3,7-dihydro-8-[(1E)-2-
(3-methoxyphenyl)ethenyl]-7-methyl-3-[3-(phosphonooxy)
propyl-1-(2-propynyl)-1H-purine-2,6-dione disodium salt
hydrate), a phosphatase prodrug of the A,, receptor
antagonist MSX-2 (Hauber et al, 1998; Sauer et al, 2000),
were made into the medial division of the NAc core, a site
where DA D, receptor stimulation is sufficient for
reinstatement (Bachtell et al, 2005; McFarland and Kalivas,
2001).

MATERIALS AND METHODS
Animals

Male Sprague-Dawley rats (Charles River, Wilmington,
MA) initially weighing 275-325g were individually housed
with food and water available ad libitum. All experiments
were conducted during the light period of a 12-h light/dark
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cycle in accordance with the guidelines established by the
Institutional Animal Care and Use Committee at the
University of Colorado at Boulder.

Surgery

Surgical implantation of jugular catheters and intracranial
cannulae occurred in concert. Catheters were implanted
into the jugular vein under halothane anesthesia (1-2.5%).
Each rat was then placed into a stereotaxic instrument, the
scalp was incised and retracted, and the head was
positioned with bregma and lambda at the same depth
coordinate. Screws were secured into the skull and holes
were drilled in order to bilaterally insert guide cannulae into
the NAc core (A/P: +1.7; M/L: +/—1.5; D/V: —5.7 from
bregma; Paxinos and Watson, 1998). Once inserted, the
guide cannulae were fixed in place with dental cement.
Dummy stylets extending 1mm beyond the tip of the
cannulae were placed into the guide cannulae to maintain
patency. Animals showing signs of post-surgical distress
were administered (S)-(+)-ketoprofen (5mg/kg), a non-
steroidal anti-inflammatory analgesic (Carabaza et al, 1996).
Catheters were flushed daily with 0.1 ml heparinized saline
and rats were allowed 4-7 days recovery in their home cage
before experimental procedures began.

Drugs

A,s receptor agonist, CGS 21680, was purchased from
Tocris Bioscience (Ellisville, MO). A,, receptor antagonist,
MSX-3, D,-selective agonist, quinpirole ((—)-quinpirole
hydrochloride), and cocaine hydrochloride were obtained
from Sigma-Aldrich (St Louis, MO). All drugs were
dissolved in sterile-filtered physiological (0.9%) saline.

Cocaine Self-Administration, Extinction, and
Reinstatement Procedures

Self-administration procedures were performed in operant
conditioning chambers (Med-Associates, St Albans, VT)
equipped with two response levers and an infusion pump
system. Animals were initially trained to lever press for
sucrose pellets to facilitate acquisition of cocaine self-
administration. After 24-48 h of food restriction, rats were
trained to lever press for sucrose pellets on a fixed ratio 1
(FR1) reinforcement schedule until acquisition criteria was
achieved (100 sucrose pellets in one session). After lever-
press training, animals were fed ad libitum for at least 1 day
before surgery (see above).

After recovery from surgery, animals were allowed to self-
administer intravenous cocaine (0.5 mg/kg/100 pl injection)
on an FRI reinforcement schedule in daily 4-h sessions for
5-6 days per week. Cocaine injections were delivered over
5s concurrent with the illumination of a cue light above the
active lever and was followed by a 15 s time-out period (TO
20s) when the house light remained off and responding
produced no consequence. Inactive lever responses pro-
duced no consequence throughout testing.

After a minimum of 15 cocaine self-administration
sessions, animals remained in their home cages for 7 days
of forced abstinence. On days 8-13 following self-adminis-
tration, animals returned to the operant conditioning



chambers for extinction training. Extinction sessions
occurred in the absence of cocaine reinforcement in 4-h
test sessions. Responses on the lever previously paired with
cocaine injections during self-administration (drug-paired
lever) and on the inactive lever were recorded, but had no
programmed drug or cue delivery.

Each reinstatement session was initiated with 2h of
extinction conditions, followed by a 2-h reinstatement test
period. In most experiments, an intra-NAc pretreatment
was administered before a pharmacological prime (see
below), which was immediately followed by the 2-h
reinstatement test period. Responses at both the previously
drug-paired and inactive levers were recorded, but resulted
in no cue or drug delivery during testing.

A, Antagonist (MSX-3)-Primed Reinstatement

Two groups of animals were used to assess the effects of
systemic and intra-NAc treatments of MSX-3 on reinstate-
ment. MSX-3 is a prodrug of the selective A,, receptor
antagonist MSX-2 that is rapidly converted to its active
form by phosphatases in vivo (Muller et al, 1998; Sauer et al,
2000), and has been shown to be suitable for intracranial
microinfusion (Hauber et al, 1998). Animals in one group
were given systemic injections of MSX-3 (vehicle, 3, and
6 mg/kg, intraperitoneally) following the extinction session.
Animals in a separate group were given intra-NAc
injections of MSX-3 (vehicle, 5, 10, and 20 ug per side).
Immediately following the systemic treatments and 5 min
after the intra-NAc microinjections, the animals underwent
2h of reinstatement testing. Animals in both groups were
tested under all conditions in a randomized order and
received a maximum of four treatments. Responses at both
levers were recorded, but resulted in no cue or cocaine
delivery.

Effects of A,, Receptor Stimulation and Blockade on
Cocaine-Primed Reinstatement

The effects of intra-NAc adenosine A,, receptor stimula-
tion on cocaine-primed reinstatement were tested by a
pretreatment of the A,, agonist, CGS 21680 (vehicle, 0.5,
1.0, 2.5, 5.0, and 10 ng per side), 5min before the priming
injection of cocaine (vehicle or 15 mg/kg, intraperitoneally).
In a separate group of animals, the effects of intra-NAc
adenosine A,, receptor blockade on cocaine-primed
reinstatement was tested by a pretreatment of the A,
antagonist, MSX-3 (5 and 10 pg per side), 5min before a
priming injection of cocaine (vehicle, 5, or 10mg/kg,
intraperitoneally).

Effects of A,, Receptor Stimulation or Blockade on D,
Agonist-Primed Reinstatement

The effect of intra-NAc adenosine A,, receptor stimulation
on DA D, receptor-primed relapse behavior was assessed by
a pretreatment of the A,, agonist, CGS 21680 (vehicle or
2.5ng per side), administered 5min before quinpirole
treatment (0.3 mg/kg). The effect of intra-NAc adenosine
A, 4 receptor antagonism on DA D, receptor-primed relapse
behavior was assessed by administration of a pretreatment
of the A,, antagonist, MSX-3 (vehicle and 10 pug per side,

Adenosine A;p receptors in NAc alter cocaine seeking
CE O'Neill et al

intra-NAc), 5 min before quinpirole treatment (vehicle, 0.1,
0.3, and 1.0 mg/kg, intraperitoneally).

Sucrose Reinstatement

Animals were trained to self-administer sucrose pellets on
an FR1:TO 20s schedule as described above. After 15 daily
sessions (50 pellets per session), animals remained in their
home cages for 7 days of ‘abstinence’, and were then
subjected to extinction training in five daily 4-h sessions.
Following extinction training, animals were tested for
reinstatement of sucrose seeking. A pretreatment of CGS
21680 (2.5ng per side, intra-NAc microinfusion) was
administered 5min before sucrose reinstatement testing.
Reinstatement testing was initiated by non-contingent
sucrose pellet delivery in a single 2-h test immediately
following 2 h of extinction conditions. During the reinstate-
ment phase, animals were presented with the non-con-
tingent delivery of a sucrose pellet every 2 min for the first
10 min of the session (total of 5 pellets). Responding at both
levers was recorded, but resulted in no cues or sucrose
pellet delivery.

Locomotor Testing

Locomotor activity was recorded in plexiglass chambers
(San Diego Instruments) measuring 16 x 16 x 15in. with 16
pairs of photobeams spaced 1in. apart on both the x- and
y-axis. All locomotor tests were performed in darkened
chambers during the light phase of the light: dark cycle. At
1 week following the completion of the self-administration
and reinstatement procedures, animals were habituated to
the locomotor testing chambers for 2h (1 day before
cocaine-induced locomotor activity testing). On test day,
animals were habituated for 1.5h, and given a pretreatment
of CGS 21680 (vehicle, 2.5, or 5ng per side, intra-NAc
microinfusion). At 5min following the pretreatment, all
animals received cocaine (15mg/kg). Total locomotor
activity was measured by the number of beam breaks
during the 2-h testing period.

Histology and Microinjections

Microinjections were administered as pretreatments 5min
before challenge injections. All microinjections occurred in
the NAc at a volume of 0.5-1.0 pl. Infusions occurred over a
1-min period, and the microinjectors were removed 1min
after the full volume of the infusion was given to ensure
absorption into the tissues. In these experiments, reinstate-
ment was assessed over repeated sessions and animals
received a maximum of five treatments in a randomized/
counter-balanced order. All animals did not receive all
treatments owing to concerns of residual testing and
weakening of reinstatement responding over repeated trials.

After all experimental procedures were complete, rats
were euthanized with carbon dioxide gas and 1.0 pul per side
of 0.1% cresyl violet was infused intracranially to verify
cannulae tip placements. Placements were determined from
coronally sliced sections and recorded on histological maps.
Data from rats with incorrect placements were excluded
from these studies.
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Statistical Analyses

The numbers of animals in each experimental group ranged
from 4 to 17 and are reported for each experiment in the
figure captions. All reinstatement data (dependent vari-
ables: active lever and inactive lever responses) were
analyzed by a two-way ANOVA with lever (within) and
treatments with A,, agonists/antagonist-cocaine/quinpirole
(between) as the factors, unless otherwise noted. Significant
interactions were followed up with simple main effects
analyses (one-way ANOVA) and post hoc tests (Bonferroni’s
comparisons). Sucrose reinstatement data were analyzed by
two separate two-way ANOVAs, with session (within) and
the CGS 21680/cocaine treatment (between) as the factors.
Significant effects were followed up with appropriate post
hoc tests. The effect of CGS-21860 pretreatment on cocaine-
induced locomotor activity was analyzed by one-way
between-subjects ANOVA. Statistical significance was set
at p<0.05 for all tests.

RESULTS

Intra-NAc Adenosine A,, Receptor Stimulation Dose-
Dependently Blocks Cocaine-Induced Reinstatement

Animals were trained to self-administer cocaine for 3 weeks
(avg. intake: X=74.0+3.5) and lever responding was
extinguished in daily sessions (Figures la and b).
Figure 1c illustrates that an intra-NAc pretreatment of the
adenosine A,, agonist CGS 21680 dose-dependently reduces
cocaine-induced drug seeking. A significant lever x treat-
ment interaction (Fs 7, =8.65; p<0.0001) and significant
main effects of lever (F, ;,=27.82; p<0.0001) and treat-
ment (Fq ,,=8.77; p<0.0001) were observed. Subsequent
analysis of the interaction found that the cocaine prime in
the absence of the CGS 21680 significantly induced active
lever pressing, which was dose-dependently decreased by an
intra-NAc pretreatment with CGS 21680 (F¢, 7, =8.726;
p<0.0001). Significant effects of CGS 21680 were also
observed on the inactive lever (Fq 7, =2.929; p <0.05).

Intra-NAc Adenosine A,, Receptor Stimulation Blocks
D, Agonist-Induced Reinstatement

Animals in this experiment averaged 76.2.+5.07 cocaine
infusions over the last 5 days of self-administration.
Figure 2a demonstrates that a pretreatment of CGS 21680
(2.5 ng per side) blocks quinpirole-induced reinstatement. A
significant treatment x lever interaction (F; 35=23.67;
p<0.0001) and significant main effects of treatment (F; 3=
24.16; p<0.0001) and lever (F; 35=31.33; p<0.0001) were
observed. Simple main effects analysis of the interaction
found that quinpirole significantly increased active lever
pressing, and that an intra-NAc pretreatment with CGS
21860 prevented this increase (F; 3s=24; p<0.0001). A
simple main effects analysis of inactive lever and treatment
found that quinpirole alone significantly increased inactive
lever responding when compared with CGS 21680 alone
(F53,36=3.52; p<0.05). While systemic stimulation of A,,
receptors is not sufficient to completely block D, agonist-
induced reinstatement, our findings suggest that intra-NAc
stimulation of A,, receptors effectively inhibits quinpirole-
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Figure 1 |Intra-nucleus accumbens (NAc) administration of the
adenosine Aya agonist CGS 21680 dose-dependently blocked cocaine-
induced reinstatement. (a) Average number of cocaine infusions in each 4 h
session over the 3week cocaine self-administration phase. (b) Extinction
training was performed in 6 daily 4h sessions. (c) The adenosine Aja
receptor agonist, CGS 21680, dose-dependently reduced cocaine-
induced active lever responding. (d) Injection sites of animals included in
the data set. Number of animals per treatment group: 0.0 CGS/saline =
17, 0.0 CGS/I5mg/kg cocaine= 16, 0.5ng CGS/I15mg/kg cocaine =6,
1.0ng CGS/I5mg/kg cocaine=7, 25ng CGS/I5mg/kg cocaine=13,
50ng CGS/15mglkg cocaine= 10, and 10.0ng CGS/15 mg/kg cocaine =
10. *Significant from 0.0 CGS/saline (p<0.0001 Bonferroni's post-test);
#significant from 00 CGS/I5mglkg cocaine (p<0.0001 Bonferroni's
post-test).

induced reinstatement, suggesting a localized interaction of
A, and D, receptors within the NAc.

Effects of Intra-NAc Adenosine A,, Receptor
Stimulation on Cocaine-Induced Locomotor Activity

At high doses, systemic A,, receptor stimulation via CGS
21680 can reduce locomotor activity (Barraco et al, 1993,
1994). To ensure that reduced lever responding was not a
result of locomotor suppression, we assessed the effects of
two effective doses of intra-NAc CGS 21680 (2.5 and 5ng
per side) on cocaine-induced locomotor activity. These tests
were performed in a subset of animals that self-adminis-
tered cocaine. Figure 3 illustrates that intra-NAc pretreat-
ment of CGS 21680 at either dose does not produce
statistically significant reductions in cumulative cocaine-
induced locomotor activity over the 2-h session
(F5,10=1.086, p=0.37). However, qualitative differences
in the time course of cocaine-induced activity were
observed at the higher dose (5ng per side) of CGS 21680
(Figure 3b). Analysis of the locomotor time course revealed
significant main effects of time (F;s 160 =8.901, p<0.0001)
and group (F, 160=>5.908, p<0.01), but no significant
time X treatment interaction (Fsg, ;60 =0.3424, p=0.995).
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lever presses from the reinstatement session reveal that quinpirole alone significantly increases inactive lever presses, which was prevented by 2.5ng
CGS 21680. (c) Injection sites for animals included in the data set. Number of animals per treatment group: 0.0 CGS/saline = 10, 2.5 ng CGS/saline = 10, 0.0

CGS/0.3 mg/kg quinpirole = 10, and 2.5 ng CGS/0.3 mg/kg quinpirole = 10. *Significant from saline/saline (p<0.05 Bonferroni's post-test). *Significant from

saline/0.3 mg/kg quinpirole (p <0.05 Bonferroni’s post-test).

25000 1

20000 1 T

15000

o

10000 - T

5000 -

Total Beam Breaks (2h) &
Beam Breaks (10 min)

0.0 2.5 5.0
CGS 21680 (ng/side)

5000 -

4000 4

-0~ Vehicle
-8 2.5 ng/side CGS 21680
-0~ 5.0 ng/side CGS 21680

Timecourse (minutes)

Figure 3 Adenosine A agonist CGS 21680 does not alter cocaine-induced locomotor behavior. (a) No significant differences were observed in total
cocaine-induced locomotor activity over the 2-h test period of animals between receiving a pretreatment with 0.0, 2.5 and 5.0ng per side CGS 21680
before cocaine (15 mg/kg, intraperitoneally). (b) Time course of locomotor activity illustrating the last 30 min of the habituation period (—30 to Omin),
followed by the effects of |5mg/kg cocaine (intraperitoneally) with and without a pretreatment of intra-nucleus accumbens (NAc) CGS 21680. Note the
significant differences in the time course of the cocaine-induced locomotor activity at 5 ng per side CGS 21680 (p <0.01 Bonferroni's post-test). Number of
animals per treatment group: 0.0 CGS/15 mg/kg cocaine =4, 2.5 ng CGS/15 mg/kg cocaine =5, and 5.0 ng CGS/15 mg/kg cocaine =4.

Simple main effects analysis of treatment revealed a
significant reduction in locomotor activity of the group
receiving 5.0ng per side CGS 21680 compared with the
vehicle group (p <0.05).

Effects of Intra-NAc Adenosine A,, Receptor
Stimulation on Sucrose Reinstatement

As an additional control for potential motivational effects of
A,, receptor stimulation, we examined the effects of the
minimally effective dose of CGS 21680 (2.5 ng per side) on
reinstatement to sucrose seeking using non-contingent
delivery of sucrose pellets in animals previously trained to
self-administer sucrose pellets (Figure 4a). Figure 4c shows
significant sucrose seeking on the active lever in both
groups (F; 1, =48.71, p<0.0001) that was unaltered by the
minimally effective dose of CGS 21860 (F; ,=1.618,
p=0.23). A significant increase in inactive lever responding

was observed during the reinstatement session compared
with the extinction session; however, in both the extinction
session (p<0.05) and reinstatement session (p<0.0001),
active lever pressing was significantly higher than inactive
lever pressing (data not shown). While an intra-NAc
infusion of the A,, receptor agonist, CGS 21680, (2.5ng
per side) is sufficient to block both cocaine- and quinpirole-
induced reinstatement, it does not affect reinstatement to
natural rewards. This suggests that the effects of the agonist
on cocaine- and quinpirole-induced reinstatement in
cocaine-exposed animals can be disassociated from its
effects on sucrose seeking in cocaine-naive animals.

Systemic and Intra-NAc Blockade of Adenosine A,,
Receptors Moderately Reinstate Cocaine Seeking

Animals in these experiments had an average of
71.44£9.17 cocaine infusions over the last 5 days of
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self-administration. Figure 5a illustrates that a systemic
blockade of A, receptors with MSX-3 significantly
increases active lever pressing in a dose-dependent manner.
A significant treatment x lever interaction (F, 3; =6.545;
p<0.01) and significant main effects of treatment
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Figure 4 Sucrose reinstatement was unaffected by adenosine A, recep-
tor agonist CGS 21680. (a) Sucrose self-administration was conducted over
3 weeks, and animals’ latency to acquire 50 pellets was recorded.
(b) Extinction training was performed in 5 daily sessions until active
lever responding was reduced to levels comparable with inactive lever
responding. (c) Significant sucrose reinstatement was observed compared
with extinguished responding; however, an intra-nucleus accumbens (NAc)
pretreatment of 2.5 ng per side CGS 21860 failed to alter sucrose seeking
compared with vehicle control. Active lever responding is shown during the
last hour of extinction (white bars, extinction) and the reinstatement phase
(black bars, reinstatement). (d) Injection sites of animals included in the data
set. Number of animals per treatment group: saline=7 and 25ng
CGS =7. *Significant from extinction (p<0.0001).
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(Fy,51=5512; p<0.01) and lever (F, s =12.8; p<0.01)
were observed. Subsequent analysis of the interaction found
that a systemic MSX-3 pretreatment (6 mg/kg) significantly
induced active lever pressing (F, 3; =6.16; p<0.01). There
was no significant effect of systemic administration of
MSX-3 on the inactive lever (F, 3; =1.666, p=0.21).

Although a systemic blockade of A,, receptors resulted in
a significant increase in active lever responding, the overall
reinstatement produced appeared moderate compared with
cocaine- and quinpirole-induced cocaine seeking. To
determine if a blockade of A,, receptors localized to the
NAc would produce a more robust reinstatement, we
assessed the effects of intra-NAc MSX-3 on reinstatement.
Animals in these experiments had an average of 69.45 + 4.5
cocaine infusions over the past 5 days of self-administra-
tion. MSX-3 significantly increased active lever pressing in a
dose-dependent manner, but overall resulted in only a
modest reinstatement (Figure 5b). A significant treat-
ment X lever interaction (F; 3;;=4.488; p<0.01) and sig-
nificant main effects of treatment (F; 33 =5.636; p<0.01)
and lever (F; ;3=16.8; p<0.001) were observed. Subse-
quent analysis of the interaction found that local micro-
injections of MSX-3 (10 pg per side) significantly increased
active lever pressing (Fs 33 =5.499; p<0.01). There was no
significant effect of the intra-NAc MSX-3 treatment on the
inactive lever (F; 33 =2.462, p=0.08).

Intra-NAc Blockade of Adenosine A,, Receptors
Potentiates Cocaine- and D, Agonist-Induced
Reinstatement

Because a blockade of A,, receptors via MSX-3 alone
resulted in only modest reinstatement to cocaine seeking,
we hypothesized that an intra-NAc pretreatment of MSX-3
may potentiate reinstatement to sub-threshold doses of
cocaine and quinpirole by enabling more potent stimulation
of NAc DA receptor stimulation. Animals in these experi-
ments had an average of 70.02 * 6.82 cocaine infusions over
the last 5 days of self-administration. Figure 6b demon-
strates that an intra-NAc pretreatment of MSX-3 signifi-
cantly increased active lever responding to a sub-threshold
dose of cocaine (5mg/kg), which alone does not produce
reinstatement. A significant treatment X lever interaction

€ Nucleus Accumbens Core

— ACTIVE A O
--- INACTIVE

Figure 5 Systemic and intra-nucleus accumbens (NAc) blockade of adenosine A,a receptors via MSX-3 produces cocaine seeking. (a) Systemic
administration of MSX-3 (3 and 6 mg/kg) increased active lever responding in a dose-dependent manner. Number of animals per treatment group:
saline =13, 3mg/kg MSX-3=7, and 6 mg/kg MSX-3=14. (b) Intra-NAc administration of MSX-3 (5, 10, and 20 ug per side) increased active lever
responding in a dose-dependent manner. The number of animals per treatment group: saline = 14, 5ug MSX-3 =6, 10 pg MSX-3= 11, and 20 pg MSX-
3=56. () Injection sites of animals included in the intra-NAc MSX-3 data set. *Significant from saline (p <0.01 Bonferroni's post-test).
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Figure 6 Intra-nucleus accumbens (NAc) blockade of adenosine Aja

receptors via MSX-3 potentiates reinstatement response to sub-threshold
doses of cocaine and quinpirole. (a) An intra-NAc pretreatment with 10 pug
per side MSX-3 potentiated active lever responding at a sub-threshold
dose of cocaine (5 mg/kg) compared with vehicle pretreatment. #Significant
from saline/5mg/kg cocaine (p<0.0001 Bonferroni's post-test). The
number of animals per treatment group: vehicle/saline = |3, vehicle/5 mg/
kg cocaine= 13, vehicle/|5mg/kg cocaine= 13, 10png MSX-3/5mg/kg
cocaine =12, and 10 pug MSX-3/15 mg/kg cocaine = |2. (b) Injection sites
of animals shown in MSX-3 effects on cocaine-induced reinstatement.
(c) An intra-NAc pretreatment of MSX-3 (10pg per side) significantly
increases active lever responding at a sub-threshold dose of quinpirole
(0.1 mg/kg) compared with vehicle pretreatment. *Significant from saline/
0.1 mg/kg quinpirole (p <0.05 Bonferroni’s post-test). The number of animals
per treatment group: vehicle/saline =29, vehicle/0.| mg/kg quinpirole = 12,
vehicle/0.3 mg/kg quinpirole =5, vehicle/I.0mg/kg quinpirole= 13, 10pg
MSX-3/saline= ||, 10pg MSX-3/0.1 mg/kg quinpirole= 11, 10ug MSX-3/
03 mg/kg quinpirole=12, and 10pg MSX-3/1.0mg/kg quinpirole = 2.
(d) Injection sites of animal included in MSX-3 effects on quinpirole-induced
reinstatement.

(Fy, 58 =13.07; p<0.0001) and main effects of treatment
(F4,58=9.279; p<0.0001) and lever (F; s3=283.06;
p<0.0001) were observed. A simple main effects analysis
of the interaction found that the pretreatment of MSX-3
significantly increased active lever responding to a sub-
threshold dose of cocaine (F4, 55 =10.98; p<0.0001). While
significant effects of treatment on the inactive lever were
observed (F, 55 =2.735, p<0.05), post hoc testing revealed
no significant differences between treatment groups.

In addition, we examined the effect of A,, receptor
blockade on reinstatement induced by the D, agonist,
quinpirole, to determine if removing the tonic inhibition of
the A,, receptor over the D, receptor could enhance
responding to D, receptor stimulation. Animals in these
experiments had an average of 69.92 £4.09 cocaine infu-
sions over the last 5 days of self-administration. Figure 6c
illustrates that an intra-NAc pretreatment of MSX-3
potentiates active lever responding to a sub-threshold dose
of quinpirole (0.1 mg/kg), which alone does not significantly
increase active lever responding when compared with the
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vehicle-saline control. A significant treatment x lever inter-
action (F; ¢,=>5.86; p<0.0001) and main effects of treat-
ment (F; 97 =>5.863; p<0.0001) and lever (F; o;=288.87;
p<0.0001) were observed. A subsequent analysis of the
interaction revealed that an intra-NAc pretreatment of
MSX-3 significantly increased active lever responding to a
sub-threshold dose of quinpirole (F; o; =5.908; p<0.0001).
Again, significant effects of treatment on the inactive lever
were observed (F; o; =2.138; p<0.05); however, subsequent
post hoc testing revealed no significant differences between
treatment groups.

DISCUSSION

We have previously shown that systemic A,, receptor
stimulation attenuates cocaine seeking induced by pharma-
cological stimuli and drug-related cues (Bachtell and Self,
2009). Here we elucidate the NAc as a primary site of action
for these effects. Our findings reveal that pharmacological
manipulation of adenosine A, receptors within the NAc bi-
directionally alters cocaine seeking in extinguished rats. We
show that intra-NAc stimulation of A,, receptors attenuates
cocaine seeking induced by pharmacological stimuli such as
cocaine and quinpirole, suggesting that adenosine A,
receptors represent a potential target for therapies aiming to
curb relapse vulnerability. Because systemic and higher
doses of intra-NAc A,, agonists reduce lever pressing for
sucrose (Font et al, 2008) and reduce locomotor activity
(Barraco et al, 1993, 1994), we examined the effects of the
minimally effective CGS 21680 dose on sucrose seeking. We
show that our effects are specific to cocaine, as A,p
stimulation did not significantly reduce sucrose seeking.

We also demonstrate that intra-NAc blockade of adeno-
sine A, receptors produces modest cocaine seeking alone.
However, combining intra-NAc blockade of adenosine A4
receptors with sub-threshold doses of cocaine and quinpir-
ole results in robust cocaine seeking, suggesting that
removing the inhibitory control that the A,, receptor exerts
over the D, receptor allows a normally ineffectual dose of
cocaine or quinpirole to induce reinstatement. Other
models support this tonic inhibitory role of A, receptors
in behavioral regulation. For example, a recent study
demonstrated that blocking A,, receptors, and hence,
removing the adenosine ‘brake’, produces wakefulness
(Lazarus et al, 2011). Antagonism of A,, receptors also
restores deficits in effort-related behaviors induced by D,
receptor blockade (Nunes et al, 2010; Worden et al, 2009),
suggesting that A,, receptors are a tonic modulator of D,
receptor expressing neurons within the striatum (Harper
et al, 2006; Nagel et al, 2003). Our data provide further
support that A, receptors exert tonic regulation of D,
receptors and suggests that A,, receptors are an important
modulator of DA-mediated behavior (Farrar et al, 2010;
Hakansson et al, 2006; Harper et al, 2006; Nagel et al, 2003;
Weber et al, 2010).

These findings agree with previous work showing that
stimulation of A, receptors counteracts cocaine-mediated
behaviors, while antagonism augments cocaine-mediated
behaviors. Administration of an A,, agonist attenuates both
the development and expression of behavioral sensitization
to cocaine (Filip et al, 2006), impairs the acquisition of
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cocaine self-administration (Knapp et al, 2001), and reduces
the expression of cocaine conditioned place preference
(Poleszak and Malec, 2002). Blockade of A, receptors, on
the other hand, enhances both acute and sensitized cocaine-
induced locomotor activity (Filip et al, 2006), and enhances
discriminative stimulus effects of both cocaine and
methamphetamine (Justinova et al, 2003). Antagonism of
A,a receptors during withdrawal also has reward-related
effects. Blocking A,, receptors during a brain stimulation
reward task reversed the elevated reward threshold
produced by cocaine withdrawal, suggesting that removing
the tonic activity of A,, receptors enables DA signaling to
restore reward deficits observed during drug withdrawal
(Baldo et al, 1999). This explanation is supported by our
findings that A,, receptor blockade produces cocaine
seeking by enabling DA receptor stimulation at sub-
threshold doses of both cocaine and a D, agonist. Taken
together, these findings indicate that pharmacological
stimulation of A,, receptors opposes the behavioral effects
of cocaine, while pharmacological blockade of A,, receptors
enhances cocaine’s effects.

Studies utilizing genetic deletion of adenosine A,
receptors generally show effects opposite to those reported
with pharmacological blockade of A,, receptors. In fact,
A,, receptor knockout mice display reduced locomotor
activity to acute injections of amphetamine and cocaine
and impaired development of amphetamine sensitization
(Chen et al, 2003). In addition, A,, receptor knockout mice
show reduced responding for cocaine on an FR1, FR3, and
progressive ratio schedule of reinforcement (Chen et al,
2000, 2003; Soria et al, 2006). It is possible that
compensatory changes during development or the lack of
neuroanatomical specificity of the A,, receptor knockout
contribute to these conflicting results between the two
experimental methods. Indeed, a recent study showed that
striatal-specific knockdown of A,, receptors enhances
locomotor activity in response to cocaine, while a fore-
brain-specific knockdown of the A,, receptors reduces
cocaine-induced locomotor activity (Shen et al, 2008). Our
experiments corroborate these findings by demonstrating
that A,, receptor blockade specifically in the NAc enhances
cocaine seeking. Taken together, these findings suggest that
A,, receptors localized in the striatum and NAc provide
inhibitory control over cocaine-mediated behaviors, such as
cocaine seeking as suggested by the pharmacological
manipulations of A,, receptors.

It should be emphasized that the present experiments
targeted the medial division of the NAc core, an area that is
known to be involved in the reinstatement of cocaine
seeking (Bachtell et al, 2005; Ito et al, 2004; McFarland et al,
2003). Recently, the NAc has been discussed in terms of a
medial-lateral continuum based on ‘spiraling’ dopaminer-
gic innervation and functional consequences (Haber et al,
2000; Heimer et al, 1997; Ikemoto et al, 2005). Modulation
of the DA input along this medial-lateral continuum
supports these functional differences in cocaine seeking.
Thus, manipulations of DA receptors in the medial
divisions of the NAc (shell and medial core) induce cocaine
seeking, while similar manipulations in the lateral NAc core
do not regulate cocaine seeking (Bachtell et al, 2005;
Schmidt et al, 2006; Schmidt and Pierce, 2006). Here, we
show that increasing and decreasing adenosine receptor
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activity in the medial NAc core is sufficient to inhibit and
promote cocaine seeking, respectively.

The NAc is comprised primarily of medium spiny
GABAergic neurons that include two distinct subpopula-
tions of neurons that are differentiated by their cellular
peptide expression, receptor subtype expression, and
unique projection targets (Aubert et al, 2000; Steiner and
Gerfen, 1998). DA D; receptors are found mainly on
dynorphin/substance P-expressing neurons that comprise
the direct pathway, while D, receptors occur mainly on
enkephalin-expressing neurons that comprise the indirect
pathway (Lu et al, 1998). DA stimulation of both popula-
tions in the NAc elicits cocaine seeking (Bachtell et al, 2005;
Schmidt et al, 2006; Schmidt and Pierce, 2006). Thus,
tempering DA signaling in the NAc is an ideal way to
prevent relapse. A,, receptors are colocalized with D,
receptors, where they provide reciprocal regulation of D,
receptors making them a suitable target to temper DA
signaling (Canals et al, 2003; Ferre, 1997; Fuxe et al, 2003;
Hillion et al, 2002; Svenningsson et al, 1998, 1999a,b).

Adenosine A,, and DA D, receptors interact to alter
signaling of medium spiny GABAergic neurons within the
striatum through several mechanisms. For example, these
receptors form heteromeric receptor complexes through
electrostatic interactions (Canals et al, 2003; Fuxe et al,
2003; Hillion et al, 2002). Heteromeric formation of A,,-D,
receptors allows A, receptor stimulation to inhibit ligand
binding to D, receptors and decrease G-protein coupling at
the D, receptor (Ferre et al, 1991a; Fuxe et al, 1998; Hillion
et al, 2002; Torvinen et al, 2005). As mentioned previously,
cocaine reduces the expression of the A,,-D, heteromer
(Marcellino et al, 2010), which may underlie some of the
changes in behavioral responses following chronic cocaine
intake. It is possible that stimulation of the A,, receptor
facilitates the coupling of A,, and D, receptors, ultimately
restoring the behavioral changes following chronic cocaine
administration. It remains unclear whether heteromeric
Ay4-D, receptor complexes or another interactive mechan-
ism mediate our effects, as receptors that are not in
heteromeric complexes still play an antagonistic and
reciprocal role in modulating cellular function (Ferre,
1997, 1991a). It will be critical for future studies to
determine the impact of chronic cocaine intake on
heteromeric A,5-D, receptor expression and how selective
pharmacological targeting of these heteromers may be
relevant behaviorally.

In addition to the contribution of the A,,-D, receptor
heteromers, A,, and D, receptors are coupled to excitatory
and inhibitory G proteins, respectively. For example,
stimulation of A,, receptors counteracts the effects of D,
receptor stimulation on immediate-early gene expression
(Morelli et al, 1994; Svenningsson et al, 1999a) and opposes
D, receptor-mediated signal transduction in the striatum
(Yang et al, 1995). Their complementary intracellular
signaling also has profound effects on cAMP production
and neuronal excitability (Schiffmann et al, 2007;
Svenningsson et al, 1999a; Tozzi et al, 2007), suggesting
that reciprocal regulation of downstream targets of cAMP
(eg, PKA-mediated phosphorylation targets) may play a role
in the modulation of cocaine seeking. While A,, receptors
obviously play a significant role in modulating DA neuro-
transmission within the striatum, the cellular mechanisms



of our effects on cocaine seeking remain obscure. Although
it is likely that both A,,-D, heteromeric receptors and A4
receptor intracellular signaling contribute to the modula-
tion of these behaviors, future studies should focus on the
independent contributions in determining their role in
modulating cocaine-mediated behaviors.

DA receptor stimulation in the NAc alters signaling in
both the direct- and indirect-projecting subpopulations of
medium spiny GABAergic neurons. The main projection
target of the direct pathway is the VTA, whereas the indirect
pathway targets the ventral pallidum (Aubert et al, 2000;
Steiner and Gerfen, 1998). Stimulation of A,, receptors
activates enkephalin-containing neurons in the striatum,
which form the indirect pathway (Karcz-Kubicha et al,
2006; Svenningsson et al, 1999a), while stimulation of D,
receptors inhibits activity at these same neurons (Sven-
ningsson et al, 1999a). Decreased GABA release in the
ventral pallidum is associated with cocaine seeking (Tang
et al, 2005). Likewise, D, receptor stimulation in the NAc
results in decreased GABA in the ventral pallidum through
the indirect pathway (Floran et al, 1997). Interestingly,
stimulation of A,, receptors in the ventral striatum results
in enhanced GABA input to downstream structures like the
ventral pallidum (Mingote et al, 2008; Ochi et al, 2000).
Taken together, these findings suggest that the reduction in
cocaine seeking seen with A,, stimulation in the accumbens
may be mediated by restoring cocaine (or D,)-induced
decreases in GABA release in the ventral pallidum. It is
possible that this increase in GABA is a result of the ability
for A, receptor stimulation to reduce the heightened
sensitivity of D, receptors in the striatum resulting from
chronic stimulant administration (Seeman et al, 2002).
Thus, stimulation of the A,, receptor functions similarly to
a D, receptor antagonist and reverses the inhibition of
GABA output from the indirect pathway of the striatum
(Ferre et al, 1994; Floran et al, 1997) potentially caused by
sensitized D, receptors. Similarly, blocking the tonic
inhibition of A,, receptors on D, receptors allows minor
stimulation of D, receptors to further decrease GABA in the
ventral pallidum and potentially drive cocaine-seeking
behaviors.

A, 4 receptors are expressed on other cell types in the NAc
providing other possible explanations for our results. For
example, expression of A,, receptors on presynaptic
glutamatergic terminals is involved in modulating striatal
glutamate release and synaptic plasticity (Hettinger et al,
2001; Quiroz et al, 2009; Rodrigues et al, 2005). Thus,
stimulation of presynaptic A,, receptors increases striatal
glutamate release and blockade of A,, receptors produces
the opposite effect (Corsi et al, 2000, 1999). It seems
unlikely that our findings would result from A,,-induced
increases in glutamate release as stimulation of AMPA
receptors in the NAc induces cocaine seeking, and blockade
of AMPA receptors prevents both cocaine- and cue-
induced drug seeking (Cornish et al, 1999). There is also
evidence that A,, receptors are expressed on cholinergic
interneurons (Tozzi et al, 2011), although this report
conflicts with a previous study where A,, receptor mRNA
was absent in cholinergic interneurons (Svenningsson et al,
1997). Cholinergic interneurons make up a small percentage
(<5%) of the cell types in the NAc, but have significant
effects on modulating both direct and indirect output
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pathways from the NAc (Kawaguichi et al, 1995; Tepper
and Bolam, 2004). It was recently shown that simultaneous
blockade of A,, receptors and stimulation of D, receptors
decreases firing of cholinergic interneurons, which conse-
quently reduces the muscarinic M,; receptor activity on
medium spiny GABAergic neurons of the striatum (Tozzi
et al, 2011). Thus, our findings that an A,, antagonist
enhances cocaine seeking may result from reduced muscari-
nic activity. Recent work does not support this notion as
blockade of muscarinic receptors in the NAc attenuates
cocaine seeking (Mark et al, 2006; Yee et al, 2011). Thus, it is
unclear whether our manipulations on A,, receptors within
the NAc are having a large effect on cholinergic interneurons.
Future studies will help to elucidate the interactions between
A, 4 and D, receptors on additional cell types in the NAc.

Overall, the results of these experiments suggest an
important role of adenosine A,, receptors in the modula-
tion of cocaine seeking in an animal model of relapse. We
demonstrate that intra-NAc stimulation of A,, receptors
blocks both cocaine- and quinpirole-induced drug seeking,
while intra-NAc A, receptor blockade enhances cocaine
seeking. While the antagonistic interaction between A,, and
D, receptors on striatal neuronal transmission is supported
by these experiments, the relative contribution of hetero-
meric and non-heteromeric complexes is unknown. Taken
together, our results suggest that interactions between A,
and D, receptors influence striatal signaling that mediates
cocaine seeking, but future studies should examine the
specific cellular mechanisms by which A,, stimulation
reduces D, receptor-mediated behaviors. Finally, the results
of this study illuminate the potential for A, receptor
stimulation as an effective strategy for reducing the relapse
susceptibility.
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