
Hindawi Publishing Corporation
Journal of Nutrition and Metabolism
Volume 2012, Article ID 280286, 8 pages
doi:10.1155/2012/280286

Review Article

Dietary Ganglioside Reduces Proinflammatory
Signaling in the Intestine

John Janez Miklavcic,1 Kareena Leanne Schnabl,2 Vera Christine Mazurak,1

Alan Bryan Robert Thomson,3 and Michael Thomas Clandinin1

1 4-002 Li Ka Shing Centre for Health Research Innovation, University of Alberta, Edmonton, AB, Canada T6G 2R1
2 200, 10150-102 street, Dyna LIFE Diagnostics, Edmonton, AB, Canada T5J 5E2
3 Division of Gastroenterology, University of Western Ontario, London, ON, Canada N6A 5A5

Correspondence should be addressed to Michael Thomas Clandinin, tclandin@professorpufa.com

Received 9 August 2011; Revised 7 October 2011; Accepted 7 October 2011

Academic Editor: Phillip B. Hylemon

Copyright © 2012 John Janez Miklavcic et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Gangliosides are integral to the structure and function of cell membranes. Ganglioside composition of the intestinal brush border
and apical surface of the colon influences numerous cell processes including microbial attachment, cell division, differentiation,
and signaling. Accelerated catabolism of ganglioside in intestinal disease results in increased proinflammatory signaling. Restoring
proper structure and function to the diseased intestine can resolve inflammation, increase resistance to infection, and improve gut
integrity to induce remission of conditions like necrotizing enterocolitis (NEC) and Crohn’s disease (CD). Maintaining inactive
state of disease may be achieved by reducing the rate that gangliosides are degraded or by increasing intake of dietary ganglioside.
Collectively, the studies outlined in this paper indicate that the amount of gangliosides GM3 and GD3 in intestinal mucosa is
decreased with inflammation, low level of GM3 is associated with higher production of proinflammatory signals, and ganglioside
content of intestinal mucosa can be increased by dietary ganglioside.

1. Review

Ganglioside refers to a network of sialylated glycosph-
ingolipids, each with independent biologic properties
(Figure 1) [1–3]. Gangliosides are found mainly in the
lipid rafts of the intestinal mucosa [4]. Gangliosides consist
of a charged, hydrophilic region that protrudes from the
membrane surface, and a hydrophobic ceramide anchored in
the cell membrane [5].

1.1. Ganglioside Synthesis and Degradation. In mammalian
cells, ganglioside synthesis commences with ceramide syn-
thesis in the endoplasmic reticulum [7, 8]. Ceramide is
transported to the cytosolic Golgi face for addition of glucose
[9]. From this point, sugar moieties and sialic acids are
added to form one of several gangliosides. These reactions
are accomplished by sialyltransferases, galactosaminyltrans-
ferases, and galactosyltransferases on the luminal face of
the Golgi complex at controlled rates [10]. Ganglioside
catabolism is outlined in Figure 2.

1.2. Ganglioside Content and Composition. The amount and
content of ganglioside varies among species and in tissues
within species [12]. Transcriptional and posttranslational
events regulate the amount and content of ganglioside in cells
[13]. Ganglioside content is particularly high in the central
nervous system, relative to other tissues of the body [14]. The
fatty acid tail of ceramide also varies in length within ganglio-
sides [15], as demonstrated in A2780 ovarian carcinoma cells
[16]. Variability in sialic acid configuration, oligosaccharide
size, and length of ceramide may have consequences that
alter ganglioside localization and functionality [17–19]. It
is unknown whether many of the health benefits attributed
to gangliosides are due to a specific ganglioside species like
GM3 or GD3, or whether the fatty acid component of the
ceramide tail alters the molecular role of the ganglioside.

2. Ganglioside in Diet

In addition to endogenous ganglioside biosynthesis, gan-
glioside can also be obtained exogenously from diet [20].
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Figure 1: General scheme for ganglioside synthesis. Network of ganglioside synthesis; steps are also reversible. “G” denotes “ganglioside;” “A”
denotes “asialo” or lacking sialic acid; “M” denotes “monosicalo,” “D” denotes “disialo;” numbers denote carbohydrate sequence. Adapted
from Malisan and Testi [6]. Cer: ceramide; GlcCer: glucosylceramide; LacCer: lactosylceramide; GalNac: N-acetylgalactosamine.
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Figure 2: Ganglioside catabolism. Enzyme responsible for catabolic processing step is shown adjacent to arrow. Adapted from Devlin [11].

The milk fat globule membrane is a biological membrane
enriched in ganglioside that protects and stabilizes milk fat
in the aqueous phase [21]. Dietary ganglioside intake is very
low unless consuming whole-organ foods (i.e., brain), whole
milk, buttermilk, or colostrum in high quantities. Several
tissues have been shown to incorporate dietary gangliosides.
Caco-2 cells incorporate GD3 [22] when provided with
ganglioside in vitro [23]. Ganglioside uptake also occurs
in several tissues in vivo. Providing ganglioside in the diet
increases ganglioside content in intestinal mucosa [20]. Pro-
viding GM3 and GD3 in the diet increased total ganglioside
content of epithelial cells within intestine and retina in rats
[20, 24]. The estimated average intake of ganglioside in
a healthy population is well below levels believed to bear
therapeutic benefit [25].

2.1. Fates of Dietary Ganglioside. GD3 is specifically localized
to the basolateral membrane surface, while GM3 is localized
at the brush border membrane of the enterocyte [26].
According to Pagano’s vesicle sorting theory [27], absorbed
gangliosides have three fates: transport back to the plasma
membrane immediately after being endocytosed; endocyto-
sis to the Golgi apparatus for glycosylation to form more
complex ganglioside species; transport by the endosome to
the lysosome for degradation. Metabolic kinetics of GD3
has been described in depth in Caco-2 cells. GD3 taken up
by the brush border membrane is mainly metabolized into
new ganglioside species, with smaller portions being retained
or transferred, whereas GD3 taken up by the basolateral
membrane is not retained or transferred to any significant
degree [22]. These observations suggest that each species of
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ganglioside localizes to particular regions of the enterocyte to
carry out specific functions, which depend on site of uptake.
There is a gap in understanding of how ganglioside uptake by
different cell types and regions of the gut is regulated.

2.2. Ganglioside in Intestinal Health. Important observations
from animal studies show that inflamed intestinal mucosa
has less ganglioside content than healthy intestinal mucosa
[28]. Dietary ganglioside is able to replace mucosal gan-
gliosides that are continually degraded in inflammatory
states. Moreover, increasing ganglioside content through diet
decreases proinflammatory cytokine production in intesti-
nal mucosa [24, 28] and prevents hypoxia-induced bowel
necrosis and cell injury in cultured infant bowel [29]. The
following section summarizes the different modes of action
by which dietary gangliosides promote intestinal health.

3. Mechanisms of Action of Ganglioside

3.1. Gut Integrity. Previous studies indicate that ganglioside
prevents proinflammatory stimuli from disrupting integrity
of tight junctions between enterocytes. Feeding ganglioside
to rats prevented a lipopolysaccharide- (LPS-) stimulated
decrease in cellular tight junction protein occludin [30].
This work indicates that low levels of GM3 in the intestinal
mucosa are associated with degradation of tight junction
proteins. Improving intestinal integrity is important for
management of diarrhea, infection, penetration of allergens,
and malnutrition. Guanylate-binding protein-1 (GBP-1) has
been recently identified as a marker of intestinal integrity.
Downregulation of GBP-1 has been reported to increase
permeability and apoptosis of intestinal cells [31]. The effect
of ganglioside on GBP-1 stability is currently unknown and
is of interest as a potential therapeutic target.

3.2. Immune Cell Targeting. Chemokine receptor type 9
(CCR9) enables immune cells to target the gut [32]. While
CCR9-positive immune cells are found mainly in small
intestine, integrin α4β7-positive cells tend to home to both
small intestine and colon [33]. Integrin-mediated binding
may be indirectly influenced by ganglioside. In the plasma
membrane, gangliosides are known to localize with proteins
which bear specific amino acid sequences [34]. GD3 has been
shown to cluster with β1 integrin and affect properties con-
trolled by integrin-mediated signalling [35]. The interactions
between gangliosides and integrins have not received much
attention, but may provide important insights into homing
of immune cells to gut in conditions like inflammatory bowel
disease (IBD).

3.3. Immune Cell Signaling. Gangliosides are organized into
microdomains termed lipid rafts that float freely in the lipid
bilayer [36] and serve as organizing centers for assembly
of signaling molecules and receptor trafficking [37, 38].
Organization of signaling molecules into lipid rafts is vital
for regulation of T-lymphocyte activation pathways that play
a major role in pathology of IBD [39, 40]. Disruption of
lipid rafts displaces cellular signaling molecules and alters

immunoreceptor signal transduction [41–43]. Specifically,
sphingolipid depletion inhibits glycophosphatidylinositol-
anchored protein trafficking in microdomains [44]. Absence
or increased catabolism of ganglioside adversely affects lipid
raft trafficking and signaling functions and promotes an
inflammatory environment. Gangliosides are imperative for
proper structure and function of lipid rafts and dietary gan-
glioside may disrupt constitutive activation of inflammatory
pathways that are hallmark of intestinal disease.

3.4. Proinflammatory Mediators. Inflammation characterizes
several chronic diseases including cardiovascular disease,
cancer, NEC, and IBD. In culture, inflamed intestinal mucosa
has significantly decreased ganglioside content [28]. Changes
in ganglioside content and composition also occur in the
oncogenic transformation of tissue. Undifferentiated Caco-
2 cells have lower total GD3 and polar gangliosides than
differentiated Caco-2 model intestinal epithelial cells [45].
It is unknown whether ganglioside catabolism precedes the
proinflammatory signals and subsequent inflamed state,
or whether inflammation induces ganglioside catabolism.
Enrichment of intestinal mucosa with ganglioside causes a
reduction in cholesterol content [28]. Cholesterol depletion
disrupts membrane microdomain structure and inhibits
generation of proinflammatory mediators [46, 47]. In pre-
clinical studies, ganglioside treatment increases ganglioside
content and inhibits signals caused by proinflammatory
stimuli tumour necrosis factor-α and interleukin- (IL-) 1β
in rats [28]. Similarly, ganglioside reduces IL-6 and IL-8
production in cultured infant bowel when exposed to LPS
under hypoxic conditions [29]. Replacing ganglioside that is
degraded protects the gut by attenuating proinflammatory
signals.

3.5. Anti-Inflammatory Mediators. Previous studies have
shown enhanced production of IL-10 with dietary ganglio-
side treatment [30]. IL-10 is an anti-inflammatory cytokine
and may be involved in resolution of inflammation. Polyun-
saturated docosahexaenoic-acid-derived resolvins and pro-
tectins have recently been discovered as having anti-
inflammatory properties [48]. Production of resolvin D3
and protectin 1/D1 may be responsible for blocking dextran
sodium sulfate-induced colitis in mice [49]. Therefore,
resolvins and protectins have been suggested as novel candi-
dates for IBD therapy [50]. Ganglioside in the diet increases
the amount of polyunsaturated fat relative to saturated fat in
weanling rat intestine [51] and, thus, may enable enhanced
production of resolvins and protectins.

3.6. Prevention of Infection. Provision of dietary ganglio-
side known to have antibacterial properties increases the
resistance of an individual to negative effects of microbial
pathogens. Evidence suggests that patients with IBD may
be more prone to infection than healthy individuals [52].
In a Spanish population, mutation in authophagy related
16-like 1 (ATG16L1) is associated with prevalence of CD
[53]. ATG16L1 is part of a group of proteins involved
in autophagy [54]. Defects in ATG16L1 may allow for
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Figure 3: Inflammatory signaling cascade and mechanisms by
which ganglioside protects the intestine from inflammation and
injury. There are at least four possible mechanisms by which
ganglioside protects intestine from injury: (1) gangliosides prevent
proliferation, maturation and targeting of immune cells; (2) gan-
gliosides bind enterotoxic LPS and prevent interaction with TLR4;
(3) gangliosides inhibit NFκB activation; and (4) gangliosides
prevent production of LTB4 and PGE2. Adapted from Schnabl et al.
[29]. COX-2 = cyclooxygenase-2; cPLA2 = cytosolic phospholipase
A2; LTB4 = leukotriene B4; LPS = lipopolysaccharide; 5 LOX = 5
lipoxygenase; PGE2 = prostaglandin E2; PL = phospholipid; ROS =
reactive oxygen species; 1, 2, 3, 4 = steps inhibited by ganglioside;
TLR4 = toll-like receptor-4.

infectious organisms to persist, triggering an exacerbated
immune response in the gut. Toll-like receptor-4 (TLR4)
was found to be higher in intestinal mucosa of children
with IBD than healthy controls [55]. Upon stimulation
of TLR4 by pathogens or enterotoxins (Figure 3), immune
cells produce reactive oxygen species that lead to activation
of nuclear transcription factor-kappaB (NFκB) pathway
and production of inflammatory mediators. Ganglioside
inhibits binding, toxin production, and infectivity of several
intestinal pathogens [56, 57], thereby attenuating NFκB
inflammatory signaling pathways. Ganglioside may play a
critical role in supporting gut health by preventing secondary
infection and the associated inflammatory signaling cascade.

3.7. NFκB Pathway. CARD15 (nucleotide-oligomerization
domain-containing protein 2 (NOD2)) polymorphism has
most consistently arisen as a genetic risk factor for CD
[58, 59]. The normal function of CARD15 is to suppress
NFκB stimulation [60]. Defects in CARD15 allow constitu-
tive activation of NFκB, resulting in chronic inflammation
and injury to intestinal mucosa. Nucleotide-oligomerization
domain-containing protein 1 (NOD1) is an activator of
NFκB and wild-type NOD1 is associated with increased risk
of CD [61]. Ganglioside may attenuate NFκB signaling as

a previous study showed that GD3 prevented activation of
NFκB in mitogen-stimulated T cells [62]. This is particularly
important since cyclooxygenase (COX) and lipoxygenase
(LOX) enzyme production is increased by stimulation of
NFκB pathway [63]. COX and LOX metabolize arachidonic
acid (AA) into proinflammatory mediators leukotriene B4

(LTB4) and prostaglandin E2 (PGE2). It has been shown that
ganglioside prevents production of LTB4 and PGE2 in infant
bowel when cultured with LPS [29]. Ganglioside appears to
inhibit production of LTB4 and PGE2 in intestine by blocking
nuclear translocation of NFκB [64].

4. IBD Background

Ganglioside has shown therapeutic benefit in models of
proinflammatory diseases that have common features with
IBD. Collectively known as IBD, CD and ulcerative colitis
(UC) severely impede quality of life in afflicted individuals.
IBD presents with abdominal pain, gastrointestinal bleed-
ing, diarrhea, weight loss, and malnutrition; all of which
negatively impact social and emotional welfare. IBD can
be associated with development of joint, liver, and kidney
diseases, and an elevated risk of lymphoma and colorectal
cancer. Disease management is difficult and may consist
of costly drug treatment including steroids, immunosup-
pressants [65], or antibiotics [66]. Some individuals with
IBD do not respond to standard drug treatment, while
others experience negative or toxic adverse effects [67].
Administration of prednisolone has been shown as a risk
factor for development osteoporosis in older patients with
IBD [68]. Severe cases require surgery to remove the affected
bowel, and psychological factors including stress may trigger
disease flares [69]. The etiologies of CD and UC are poorly
understood and there is no cure for IBD.

4.1. IBD Epidemiology. At a rate of 0.60% of the population
[70], prevalence of IBD is particularly high in Canada [71]
compared to the rest of the world [72–74]. Prevalence
of IBD is also high in the United States, where reported
incidence is approximately 1.1 million people per year
[72]. IBD is a considerable economic burden. In 2008,
economic cost per patient with IBD was estimated above
$9,000/year in Canada [70]. Another study reported direct
healthcare costs greater than $18,000/patient-year in the
United States [75]. There is a clear need for knowledge of
disease mechanisms to develop novel cost-effective treatment
strategies for sustained remission of disease.

4.2. IBD Pathology. CD is chronic enteritis that can occur
at any site along the gastrointestinal tract. Initial lesions are
characterized by tiny mucosal defects termed aphthous ulcers
[76]. There is an infiltration of macrophages that release
proinflammatory mediators and perpetuate the inflam-
matory process. This process contributes to development
of fibrotic bands and granulomas. Ulcers grow in size
and, as submusoca thickens, fistulae may develop. While
inflammation associated with CD occurs in a transmural
fashion in the colonic wall, UC-associated inflammation
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is present superficially at the level of mucosa [77]. With
respect to immune system involvement, UC is characterized
by Th1 cells and CD by Th2, Th17, and cells involved
in innate immunity. There is a strong genetic component
that contributes to IBD risk, particularly CD [78]. While
a number of genes have been linked to aspects of IBD,
environment also plays a large role in active disease. IBD rates
are very high in industrialized countries like Canada and
the USA. Studies have linked urban environment, smoking,
diet high in sugar or total fat, antibiotic use in childhood,
nonsteroidal anti-inflammatory use, and many other factors
to IBD risk [79]. IBD is a multifactorial disorder of complex
origin that appears to stem from changes initially occurring
at the cell membrane.

4.3. Ganglioside in IBD Pathology. Ganglioside species com-
positions differ among several disease states. For example,
Sandhoff ’s, Gaucher, and Tay Sach’s diseases are charac-
terized by abnormal sphingolipid metabolism due to gene
deficiencies for catabolic enzymes and accumulation of gan-
gliosides [80]. A few studies have delved into the relationship
between genes that regulate ganglioside metabolism and IBD.
A genetic variant of lysosomal sialidase is associated with
CD [81], but this study did not assess whether ganglioside
content correlates with sialidase genotype. Another study
showed that there was no difference in β-galactosidase
enzyme activity between LPS-stimulated mononuclear cells
from IBD patients and healthy controls [82]. In the same
study, β-hexosaminidase enzyme activity was higher in
peripheral blood monocytes of patients with IBD than in
healthy control subjects when incubated with LPS. Since
β-hexosaminidase generates GM3 from GM2, accelerated
ganglioside catabolism contributes to pathogenesis of IBD.

5. Conclusions

IBD is a disorder influenced by many environmental and
genetic factors. Signs regularly present in individuals with
IBD include chronic inflammation, overactive immune
response, and impaired integrity and permeability of gut.
While signs and symptoms may subside for short periods
of time, recurrence of IBD-related episodes is regular.
There is appreciable cost associated with treating IBD. As
surgical intervention or drug administration does not result
in a cure, there is demand for new treatment initiatives.
Emerging evidence shows the critical role of ganglioside in
supporting intestinal health. Ganglioside metabolism in the
intestinal mucosa is fundamental to the etiology of IBD.
Studies show that low levels of ganglioside in the intestinal
mucosa are associated with increased levels of inflammatory
markers, susceptibility to pathogens, and poor gut integrity.
Dietary ganglioside constitutes an exciting new therapeutic
agent which targets intestinal cells and associated immune
surveillance by interrupting the inflammatory cascade and
subsequently alleviating signs and symptoms of inflamma-
tory intestinal diseases. Dietary ganglioside consumption
alleviates many of the burdensome processes in models of
intestinal disease that are also characteristic of IBD and, thus,
may provide benefit to afflicted individuals.
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