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Abstract
Since cloning of the ATP-binding cassette (ABC) family member breast cancer resistance protein
(BCRP/ABCG2) and its characterization as a multidrug resistance efflux transporter in 1998,
BCRP has been the subject of more than two thousand scholarly articles. In normal tissues, BCRP
functions as a defense mechanism against toxins and xenobiotics, with expression in the gut, bile
canaliculi, placenta, blood-testis and blood-brain barriers facilitating excretion and limiting
absorption of potentially toxic substrate molecules, including many cancer chemotherapeutic
drugs. BCRP also plays a key role in heme and folate homeostasis, which may help normal cells
survive under conditions of hypoxia. BCRP expression appears to be a characteristic of certain
normal tissue stem cells termed “side population cells,” which are identified on flow cytometric
analysis by their ability to exclude Hoechst 33342, a BCRP substrate fluorescent dye. Hence,
BCRP expression may contribute to the natural resistance and longevity of these normal stem
cells. Malignant tissues can exploit the properties of BCRP to survive hypoxia and to evade
exposure to chemotherapeutic drugs. Evidence is mounting that many cancers display
subpopulations of stem cells that are responsible for tumor self-renewal. Such stem cells
frequently manifest the “side population” phenotype characterized by expression of BCRP and
other ABC transporters. Along with other factors, these transporters may contribute to the inherent
resistance of these neoplasms and their failure to be cured.
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Section 1. Introduction
The influence of ATP-binding cassette (ABC) transporters – and breast cancer resistance
protein (BCRP, ABCG2) in particular – on resistance of human cancers to antineoplastic
pharmaceuticals should be viewed as the combined effects of the role that the transporter
plays in normal tissues to affect drug absorption, distribution, metabolism and excretion
(ADME), and the effects of the expression of the transporter in neoplastic tissues to produce
active efflux of chemotherapeutic molecules. A review of the literature on this subject
through the year 2008 was published by our group in 2010 [1]; the present paper will update
findings on this topic since 2008, but does not include an extensive listing of the many drugs
that are substrates or inhibitors of BCRP/ABCG2; such listings can be found in other recent
reviews of BCRP/ABCG2 [2–9].

Section 2. Background: BCRP in cancer drug resistance
History and nomenclature

In the 1970’s multidrug resistance emerged as a significant cellular mechanism to explain/
account for the clinical resistance of cancer cells to standard cancer chemotherapeutic
agents. Initially P-glycoprotein (Pgp/ABCB1) and later multidrug resistance protein (MRP1/
ABCC1) were identified as drug efflux proteins contributing to the multidrug resistance
phenotype. However, in a subset of leukemia cells from patients, the transport activity of
these two proteins could not account entirely for the efflux of chemotherapeutic agents [10].
Subsequently, generation of a drug-resistant cell line devoid of either Pgp or MRP1
expression [11] prompted investigations in our laboratory that identified a novel ATP-
dependent efflux protein, named the breast cancer resistance protein (BCRP/ABCG2) [12].

BCRP derived its name as a result of its isolation from the drug-resistant breast cancer cell
line MCF-7/AdrVp [12]. In addition to the identification of BCRP in MCF-7/AdrVp cells,
sequences corresponding to BCRP cDNA were also identified in the human placenta and in
a mitoxantrone-resistant cell line by two different groups, leading to the terms ABCP and
MXR, respectively [13, 14]. Since BCRP belongs to the ABC transporter superfamily and is
the second member of the G subfamily of proteins, the gene symbol ABCG2 was assigned
to BCRP, using HUGO nomenclature. Because orthologs of human BCRP are present in
several other species, human BCRP has been designated BCRP/ABCG2 in upper case
letters, while rodent (mouse/rat) BCRP has been designated Bcrp1/Abcg2 with lower case
letters. Additionally, in CD (clusters of differentiation) nomenclature, BCRP was assigned
the term CD338 by the Human Cell Differentiation Molecules organization.

Physical properties
BCRP mRNA encodes a 655-amino acid, 72kDa protein with a single nucleotide binding
domain (NBD) and six transmembrane domains (TMD). BCRP is a half-transporter, and
thus requires at least two NBDs to function as a drug efflux pump. Hence, functional BCRP
exists as either homodimers or homo-multimers [15–17]. Homodimer formation is believed
to involve linkages by disulfide bridges at cysteine 603 [18, 19]. Additionally, recent
crystallization studies suggest a functional tetrameric complex composed of four BCRP
homodimers [20]. During its transit to the plasma membrane via the endoplasmic reticulum-
Golgi pathway, BCRP undergoes N-linked glycosylation at asparagine 596 [21], and
formation of an intramolecular disulfide bond between cysteines 592 and 608 which
maintain its protein stability. Mature oligomeric fully glycosylated BCRP is degraded
mainly via the lysosome, while underglycosylated, misfolded BCRP or BCRP without the
intramolecular disulfide bond is targeted to the proteasome for degradation [19, 22, 23]. The
physical properties and cellular trafficking of BCRP are diagrammed in Figure 1.
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BCRP Substrates / inhibitors
BCRP emerged as an important multidrug resistance protein because it confers cross-
resistance to several structurally unrelated classes of cancer chemotherapeutic agents.
Moreover, the known BCRP substrate spectrum has expanded to include physiological
compounds, a growing list of cancer and noncancer chemotherapeutics, as well as common
dietary xenobiotics. Additionally, the current BCRP substrate list also includes several novel
molecularly-targeted therapeutics, such as the fatty acid amide hydrolase inhibitor URB937
[24] and the tyrosine kinase inhibitor danusertib [25]. Several identified BCRP substrates are
substrates at lower concentrations and inhibitors at higher concentrations. In addition to the
fumitremorgin C (FTC) analogues that were found to be specific inhibitors of BCRP, several
novel classes of compounds such as poloxamines and acrylonitrile derivatives are emerging
as potent BCRP inhibitors [26–29]. In addition, BCRP function is also inhibited by the
tyrosine kinase inhibitor imatinib mesylate [30] but not by phosphodiesterase-5 inhibitors as
is Pgp/ABCB1 [31]. Imatinib is also a substrate for BCRP [32]. Recently a Hedgehog (Hh)
pathway inhibitor, HhAntag691, was identified as a modulator of BCRP[33]. BCRP
modulatory activity of currently approved therapeutic agents opens up the possibility of
overcoming BCRP-mediated drug resistance, but at the same time suggests possible drug-
drug interactions.

Natural functions
BCRP is expressed in a subset of progenitor/stem cells in all of the major tissues of the body
[34–37]. Efflux of Hoechst dye serves as a marker for the side population (SP) subset of
cells that expresses BCRP as analyzed by flow cytometry [38]. SP cells generally possess
stem cell properties such as resistance to chemotherapeutic drugs, self-renewal, enhanced
engraftment capacity, quiescence, and activation of stem cell signaling pathways. A review
of the role of BCRP in chemoresistance of stem cells is found in [39]. In one study,
inhibition or silencing of BCRP suppressed cellular proliferation in cancer cell lines [40].

In addition to its expression in stem cells, BCRP is preferentially localized to the apical
surface of enterocytes, the luminal surface of liver canaliculi, the luminal surface of the
proximal convoluted tubule of the kidneys, and the blood-brain (BBB), blood-testis (BTB),
blood-placental and blood-retinal barriers [41–45]. Because of its localization on the
secretory surface of the major organs involved in drug transport, BCRP alters the ADME of
substrate drugs [46]. BCRP exerts a protective function in human physiology by limiting the
access of pharmaceutical agents to tissues. This protective function extends to endogenous
substrates of BCRP as well.

Identification of the first endogenous BCRP substrate, porphyrin/heme, was based on studies
of BCRP knockout mice [47]. BCRP regulation of heme homeostasis is exemplified under
hypoxic conditions, wherein porphyrins accumulate within the cell and plasma membrane-
localized BCRP effluxes them out of the cell [48]. Self-renewal of embryonic stem (ES)
cells is dependent on BCRP-regulated heme homeostasis in SP cells. Increased porphyrin
levels in ES cells are negatively correlated with expression of the pluripotent gene Nanog
[49]. BCRP interacts with porphyrins via its large extracellular loop (ECL3) [50]. ABCB6,
the only other major known porphyrin transporter, is localized on the outer mitochondrial
cristae, thereby transporting porphyrins into them [51]. Recent localization of BCRP to inner
mitochondrial cristae [52] suggests a hitherto unknown role for BCRP as the porphyrin
transporter into the mitochondrial matrix for subsequent synthesis of heme.

In addition to heme/porphyrins, BCRP also transports endogenous folates, mainly the
mono-, diand tri-glutamates of folic acid [53]. Decreased folic acid levels within the cell in
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turn upregulate BCRP expression and function, but restrict BCRP expression to the
cytoplasm and endoplasmic reticulum [54, 55].

Most recently uric acid was identified as a BCRP substrate. The earliest BCRP localization
and expression studies had revealed high levels of BCRP expression in the kidney [56].
Since BCRP plays a significant role in xenobiotic clearance, its high renal expression was
considered to be related to the extensive number of its substrates cleared in the urine.
Notably, in genome-wide screening of genetic determinants of gout, the Q141K BCRP
single nucleotide polymorphism (SNP) was found to be associated with high uric acid
levels, suggesting that uric acid is a substrate of BCRP [57, 58].

Regulation of BCRP expression and function
BCRP expression is regulated by alternative promoter usage in mice and in humans [59–62].
In humans these promoters are designated E1A and E1B/C; in mice they are termed E1a,
E1b, and E1c. These alternative promoters regulate tissue-specific, disease stage-specific
and tumor-specific expression of BCRP. A very good example is our laboratory’s finding
that the E1b promoter controls Bcrp1 expression in the mouse gut, and that E1b, but no
other mouse alternative promoter, is regulated by cAMP/CREB/CRE [61]. Use of a
multitude of promoters which may be tissue-specific indicates very complex and intricate
transcriptional machinery regulating BCRP expression.

The predominant BCRP promoter was characterized by Bailey-Dell et al in our laboratory
[63]. Similar to other MDR protein gene promoters, this E1B/C BCRP promoter is TATA-
less, contains several SP1 sites, and is downstream of a putative CpG island. To date, several
transcription factors and their respective cis-regulatory elements in the BCRP promoter have
been characterized.

The cis and trans regulatory elements currently identified on the BCRP promoter are
displayed in Figure 2. BCRP transcription is increased under hypoxic conditions by binding
of hypoxia-inducible factor 1 (Hif-1α) to a hypoxia response element (HRE) in the BCRP
promoter [64]. Estradiol (E2) activates or represses BCRP expression by binding of estrogen
receptor α (ERα) to an estrogen response element (ERE) [65]. Interleukin-6 as well as
endoplasmic reticulum stress stimulate BCRP expression in plasma cells by binding of
XBP-1 and/or HIF-1α to the BCRP HRE [66]. Also, progesterone receptor isoform B (PRB)
but not PRA binding to the progesterone response element (PRE), overlapping with the ERE
site, enhances BCRP expression [67, 68]. In diffuse large B-cell lymphoma (DLBCL), as a
response to activation of the Hh signaling pathway, Gli transcription factors bind to a Gli
binding site on the BCRP promoter, enhancing BCRP expression [69]. Nrf2, an oxidative
stress sensor, maintains the SP cell phenotype by upregulating BCRP expression through its
direct interaction with an anti-oxidant response element (ARE) on the BCRP promoter [70].
In response to histone deacetylase inhibitor treatments, aryl hydrocarbon receptor (AhR)
dissociates from its binding partner heat shock protein 90 (HSP90), binds to the aryl
hydrocarbon response element (AhRE) and stimulates BCRP transcription [71]. However in
the human colon adenocarcinoma cell line LS174T, AhR binds to a distal AhRE site,
increasing BCRP transcription in response to 3-methylcholanthrene treatment [72]. TGF-β-
induced interaction of smad2/3 with the BCRP promoter represses BCRP expression in SP
cells in diffuse-type gastric carcinoma [73]. Besides binding of individual transcription
factors, binding of ER facilitates co-operative binding and BCRP transcriptional regulation
by p65 (NF-κB) [74]. Also, MSX2 by regulating binding of SP1 transcription factors to their
cis elements on the BCRP promoter, regulates BCRP expression indirectly [75].
Upregulation of both ABCG2 and p50 (NF-κB) is observed when wild-type p53 is inhibited
in MCF-7 cells, while mutant p53 does not alter the expression of BCRP [76]. ABCG2 is
also upregulated during the development of gefitinib resistance and this is attributed to
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nuclear translocation of EGFR, which then interacts with the BCRP promoter, thereby
increasing its expression [77]. Additionally, phospho-cAMP response element binding
protein (p-CREB) and HIF2α binding sites have been identified in the mouse Bcrp1
promoter [61, 78]. Transcription factor overexpression or treatment with transcription
factor-specific ligands further identified PPARγ, PXR, GR and c-Myc as trans-regulatory
elements for BCRP expression [79–82]. Additionally, the stem cell gene SALL4 was
recently shown to enhance BCRP expression indirectly [83].

Binding of c-Myc to the Abcg2 promoter is restricted by the methylation status of the CpG
islands [84]. The CpG islands in the BCRP promoter are hypomethylated or unmethylated in
drug-resistant cell lines in comparison with drug-sensitive cell lines [85, 86]. In the
quiescent state, the CpG islands associate with methylated lysine 9 on histone 3, the methyl
CpG binding domain proteins MBD2 and MECP2, as well as histone deacetylase (HDAC) I
and a co-repressor, mSin3A. In progression to a BCRP+ drug-resistant phenotype, histone
hyperacetylation was frequently observed with CpG island demethylation [87]. Also, histone
modifications in certain cell types subsequent to treatment with HDAC inhibitors were
similar to the histone modifications observed in the development of a drug-resistant
phenotype [88]. During the development of the drug-resistant phenotype after single-dose
chemotherapy treatment, histone hyperacetylation of the BCRP promoter was observed [89].
Therefore the two epigenetic mechanisms appear to co-operatively regulate ABCG2
expression in the drug-resistant phenotype.

In addition to epigenetic and transcriptional regulation of BCRP in drug-resistant cells, a
checkpoint in BCRP translation is also lost. An apparent loss of the BCRP 3’ UTR is
observed in the drugresistant S1M1 colon carcinoma cell line [90]. The 3’ UTR of BCRP
harbors numerous microRNA (miR) binding sites. miRs that bind to the BCRP 3’UTR and
negatively regulate BCRP translation include miR-519c [91], miR-520h [92] and miR-328
[93]. The presence of a proximal response element (MRE) for sha-miR-519c in the truncated
BCRP 3’UTR suggests that, even with 3’ UTR truncations, BCRP expression can still be
regulated by miR binding to the shortened 3’ UTR [94].

Once translated, BCRP has to multimerize as well as translocate to the cell surface to
function as a drug efflux pump. Pim-1 phosphorylation of BCRP at T362 promotes BCRP
dimerization and plasma membrane trafficking [95]. PI3K/Akt pathway signaling is also
essential for plasma membrane localization of BCRP [96, 97]. The PI3K/Akt pathway
couples with the NF-κB pathway in the development of HER2-mediated drug resistance in
MCF7/HER2 cells [98].

Section 3. Influence of BCRP/ABCG2 on cancer drug ADME and
pharmacologic resistance
Summary of findings through 2008 [1]

BCRP expression in normal tissues can affect the ADME of antineoplastic drugs. For
example BCRP expression in the intestine or liver (bile canaliculi) can affect absorption and
elimination of BCRP substrate drugs; BCRP expression in the BBB or BTB can affect
penetration of drugs transported by BCRP as well. The expression and function of
endogenous BCRP can be affected by SNPs of the gene. The most frequently observed non-
synonymous SNPs in the BCRP coding region occur in exon 2 (G34A, resulting in a V to M
mutation in amino acid 12), and in exon 5 (C421A, resulting in a Q141K mutation). The
altered BCRP primary structure resulting from these polymorphisms generally causes loss or
diminution in transporter expression and/or function [1]. A review of the pharmacogenomics
of ABC transporters was also published in 2008 [99].
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Certain SNPs in the promoter region and in other non-coding regions (intron 1) were shown
to alter transcription of BCRP, with both increases and decreases in mRNA observed [1].
Genetic polymorphisms of BCRP were found to alter the pharmacokinetics and
bioavailability of some, but not all, BCRP substrates investigated. Increased toxicity of
gefitinib (diarrhea) or of therapy for childhood acute lymphoblastic leukemia (ALL)
(encephalopathy) were associated with presence of the C421A allele of BCRP; the same
allele was associated with diarrhea in patients undergoing treatment for diffuse large B-cell
lymphoma (DLBCL) with R-CHOP.

A decrease in BCRP function due to allelic variation may place an individual at greater risk
of exposure to dietary/environmental carcinogens. Persons with the G34A or C421A alleles
had an increased incidence of DLBCL; in contrast, the C421A allele was reported to
decrease risk for developing renal cell carcinoma. No increased risk of developing prostate
cancer was observed with carriers of the C421A allele; however, individuals with this allele
were found to have higher intracellular concentrations of the dietary carcinogen PhIP, a
known substrate for BCRP.

Disparate results concerning the influence of BCRP polymorphisms on treatment outcome
were cited in the previous review [1]: one study reported better survival following
docetaxel-based chemotherapy for men with hormone-resistant prostate cancer who carried
the C512A allele; another showed worse overall survival for lung cancer patients with the
C421A allele following treatment with platinum-based regimens.

Update of literature since 2008 [1]
BCRP Polymorphisms—Most of the observed BCRP SNPs are postulated to result in
altered mRNA expression (usually diminished) or in a transporter protein with low or absent
function. Recently, evidence was presented that polymorphisms resulting in the variants
F208S and S441N cause diminished BCRP protein levels by virtue of ubiquitin-mediated
proteasomal degradation [100].

The influence of BCRP polymorphisms on treatment outcome and toxicities has been
investigated recently for acute myeloid leukemia (AML), chronic myelogenous leukemia
(CML), DLBCL, and pancreatic cancer; these findings will be discussed subsequently in
Sections 4 and 5, BCRP effects in hematological malignancies and solid tumors,
respectively. A review of the importance of ABCG2 pharmacogenomics can be found in
[101]. Another review of the pharmacogenomics of intestinal efflux transporters, including
BCRP, is found in [102].

Effect of non-neoplastic expression of BCRP on cancer drug ADME—
Considerable efforts have been made to determine which transporters affect ADME of
antineoplastic drugs. Recent studies have shown that ABC transporters, including BCRP,
profoundly affect the disposition of methotrexate (MTX). Using a knockout mouse model,
Mrp2 (Abcc2), Mrp3 (Abcc3), and Bcrp1 (Abcg2) were found to be primarily responsible
for the clearance of MTX and its primary toxic metabolite 7-hydroxyMTX [103, 104]. Loss
of any one transporter is compensated for by increased activity of the others; however, loss
of all 3 transporters results in a marked decrease in MTX/metabolite clearance. Caution was
advised in patients with inactivating polymorphisms of one or more of these transporters if
co-treatment with possible inhibitors of the remaining unaffected transporters is given [103,
104].

Work by Yang, et al. demonstrated that P-glycoprotein (Pgp, Abcb1a/1b) and Bcrp1 play an
important role in oral absorption, systemic clearance and brain penetration of the
investigational tyrosine kinase inhibitor (TKI) tandutinib in mice [105]. A study by Li, et al
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found that BCRP, Pgp and MRP2 expressed in gut are probably responsible for the low
bioavailability of belotecan and topotecan, based on studies in Caco-2 and MDCKII cells
[106]. Using mice bearing triple knockouts of Mdr1a, Mdr1b and Bcrp1, Pgp (Mdr1a/1b)
and Bcrp1 were found to transport erlotinib (Tarceva®) efficiently and to affect its
bioavailability in these animals [107]. Hence, erlotinib bioavailability may be influenced by
drugs that inhibit Pgp and/or BCRP.

BCRP inhibitors as modulators of BCRP-mediated cancer drug ADME—In light
of evidence that ABC transporters affect the clearance of MTX in animal models described
above, it may be critical to consider limiting the concomitant use of drugs that inhibit BCRP
in patients receiving MTX therapy. Benzimidazole proton pump inhibitors (PPIs) have been
known for some time to be BCRP inhibitors [108]; however, studies of their effect on MTX
clearance have shown mixed results [109, 110]. Investigators in Japan studied 74 patients
receiving high dose MTX and found that, in addition to renal and hepatic dysfunction, co-
administration of benzimidazole PPIs was a risk factor for delayed elimination of MTX
[111]. Not every patient receiving PPIs displayed delayed elimination of MTX; BCRP
polymorphisms were not investigated in this study [111]. In addition to PPIs, the BCR-ABL
TKI nilotinib was found to be a potent inhibitor of both Pgp and BCRP. In membrane
vesicles or cells overexpressing BCRP, nilotinib inhibited the transport of MTX and of
mitoxantrone [112].

The list of drugs that inhibit BCRP is continually growing. Many common antipsychotic
drugs inhibit BCRP [113]. Another commonly used drug, sildenafil, inhibits the transporter
function of both Pgp and BCRP [114].

Many of the novel TKIs in use or under development are capable of inhibiting BCRP
transport. Many of these are substrates of BCRP as well. For example, the TKI gefitinib
(Iressa®) is a known inhibitor of BCRP and other ABC transporters [115, 116]. However,
exposure of cells to gefitinib or another TKI, vandetanib, caused upregulation of BCRP and
resistance to SN-38, suggesting that these TKIs may also be substrates of BCRP [117]; in
contrast gefitinib or vandetanib were found only to be inhibitors of Pgp in this study [117].
In addition to being a BCRP substrate [107], erlotinib may also be an inhibitor of BCRP
[118]. Apatinib, another small molecule TKI, was found to inhibit BCRP and Pgp
transporter function [119]. Sunitinib was found to inhibit BCRP- and Pgp-mediated
transport and may thus affect the bioavailability of other BCRP substrate drugs co-
administered with sunitinib [120].

Inhibiting BCRP to allow anticancer drugs to penetrate the BBB—Drug
penetration into the brain is limited by impermeable tight junctions between brain capillary
endothelial cells, and by high expression of drug efflux ABC transporters in the brain
capillary endothelial cells themselves. Although the ABC transporters classically associated
with the BBB are Pgp and MRP (ABCC) family members, expression of BCRP in the BBB
is now clearly and increasingly recognized. A recent review of the impact of BCRP
expression on the BBB is available [121]. Similarly, Pgp, MRP1 and 2, and BCRP have
been implicated in creating the BTB [7, 43]. The following discussion reports recent
evidence that illuminates the extent to which BCRP and other barrier transporters limit
anticancer drug penetration into the brain or testis. Such data may help to improve
pharmacologic strategies to treat brain tumors.

ABC transporter knockout murine models have proven valuable for determining the
contribution of individual ABC transporters to the BBB. A general theme emerging from
these studies is that multiple transporters bestow protection from a given xenobiotic,
providing redundancy to assure that loss of any one particular transporter (e.g., via
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inactivating SNPs or drug inhibition) would not result in the breakdown of the barrier. An
early study with knockout mice found that Pgp and Bcrp1 cooperate to exclude topotecan
from brain tissue [122]. Studies using polarized MDCKII cells transduced to express human
Pgp and BCRP as a model of the BBB and also Mdr1a/Mdr1b/Bcrp1 triple knockout mice,
found that both BCRP/Bcrp1 and Pgp/Mdr1a/1b are involved in the transport of topotecan,
sorafenib, and sunitinib in both models [123]; the contribution of a given transporter in the
barrier was impacted by drug concentration. Sorafenib brain accumulation in Mdr1a/1b or
Bcrp1 knockout mice was studied at the Netherlands Cancer Institute. These investigators
found that although Bcrp1 played a major role in restricting brain penetration, the highest
levels of sorafenib achieved in the brain were in mice lacking both transporters or in mice
treated with elacridar, a potent dual inhibitor of Pgp and BCRP [124]. Another study using
in vitro and knockout models similarly found that Pgp and BCRP cooperate to restrict
sorafenib brain penetration, with BCRP playing the dominant role [125].

Other work has generally but not always shown that Pgp and BCRP act cooperatively to
exclude drugs from the brain in either an additive or a synergistic manner. For example,
gefitinib brain penetration was found to be dependent on both Pgp and BCRP [77]. One
study found BCRP/Abcg2 to be the primary transporter preventing erlotinib and its
metabolite OSI-420 from penetrating mouse brain [126]; In contrast, another group, using
knockout mouse models, found that although both Pgp and Bcrp1 appear to reduce brain
penetration of erlotinib, Pgp is more effective than Bcrp1 in reducing the brain area under
the curve (AUC) of erlotinib, compared to the AUC in mice that lack both transporters
[127]. A study of the role of Pgp and Bcrp1 in the distribution of topotecan into the brain
and CSF compartments of mice found that both Bcrp1 and Pgp transport topotecan into
ventricular CSF and out of brain parenchyma via the BBB [128]. Bcrp1/Abcg2 and Pgp/
Abcb1 were found to work in concert to exclude lapatinib from mouse brain [129]. For
common substrates of Pgp and Bcrp such as flavopiridol, imatinib, and prazosin, these
transporters were found to function synergistically to limit brain penetration [130]. Pgp/
Abcb1 and Bcrp/Abcg2 were found to inhibit the penetration of the novel PI3 kinase
inhibitor GDC-0941 into mouse brain [131], and Pgp and BCRP in the BBB were found to
restrict entry of dasatinib into mouse brain [132]. In contrast to the combined role of
transporters in limiting brain penetration, one study found that Pgp but not Bcrp1 is
responsible for brain exclusion of the novel second-generation VEGF TKI axitinib [133].
Contrary to previous reports of synergism between Pgp and Bcrp1 in preventing drug
penetration across the BBB or BTB, one group of investigators found a purely additive
effect of the two transporters without any interaction between Pgp and Bcrp [134]. A 2009
study found a minimal role for Bcrp1 in BBB for a chemically diverse set of model
compounds [135]. In view of the diverse findings presented, the factors determining the
brain penetration of any given pharmaceutical clearly must be determined experimentally on
a drug-by-drug basis.

The BBB is known to be reduced under inflammatory conditions. A group of investigators
evaluated the effects of IL-1β, IL-6 and TNF-α on BCRP and Pgp expression in human
hCMEC/D3 cells (a human adult brain endothelial cell line) in vitro. Profound suppression
of BCRP mRNA expression by the pro-inflammatory cytokines was observed [136]. This
finding is in contrast to findings in cultured human breast cancer cells where IL-1 and TNF-
α increased BCRP expression [137], which will be discussed in Section 5. A recent review
of redox regulation of MDR-associated proteins including BCRP is found in [138].

BCRP and Pgp expression is decreased in tumor capillary endothelial cells from primary
CNS lymphoma, which may help to explain the chemosensitivity of CNS lymphomas [139].
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Modulating the BBB by BCRP inhibition—In addition to the effects of elacridar in
increasing brain penetration of sorafenib, elacridar was found to improve sunitinib brain
penetration in mice [140]. Interestingly, E2 was found to induce downregulation of Bcrp1
protein and mRNA in rat brain capillaries [141]. We await future clinical trials to see if drug
or hormonal modulation of BCRP and other transporters will improve treatment outcomes
for patients with brain cancers.

Section 4. Recent findings in acute leukemia and other hematological
malignancies
Hematologic and lymphoid malignancies

BCRP has the potential to play an important role in drug resistance in hematologic
malignancies, as it is frequently expressed on malignant hematopoietic and lymphoid cells,
and some of the drugs used to treat these cancers are BCRP substrates. Additionally, BCRP
is expressed on stem cells in leukemias, potentially contributing to their resistance to
eradication by chemotherapy or targeted therapies. Finally, an evolving literature associates
BCRP SNPs not only with treatment response, but with leukemia incidence. Our group
summarized the literature on the significance of BCRP in hematologic and lymphoid
malignancies in 2010 [1]. Here we summarize the salient literature included in that review,
and emphasize more recent work.

Acute myelogenous leukemia (AML)
Detection and measurement of BCRP in AML cells are associated with methodological
issues. A study from the Baer and Ross laboratories found concordance of measurement of
BCRP mRNA by realtime RT-PCR, BCRP protein by flow cytometry using three
antibodies, including BXP21 and BXP34, which label intracellular BCRP epitopes and 5D3,
which labels a cell surface BCRP epitope, and BCRP function by a flow cytometric
functional assay in cell lines, but not in AML blasts, including a lack of expected correlation
between BCRP surface expression and function [142]. Discordance of assays in AML blasts
appears to reflect the complex biology of BCRP in AML. Of note, BCRP expression was
found in small subpopulations of AML blasts [142].

BCRP is prognostic in AML, despite the fact that frontline therapy generally consists of
non-BCRP substrate drugs. All AML patient samples studied to date have had the wild-type
sequence, encoding arginine at codon 482 [142–144], and thus should be resistant to
mitoxantrone, but not to anthracyclines [145]. Moreover, cytarabine, a highly effective drug
for AML treatment, is not a substrate for BCRP [146]. Nevertheless, Steinbach et al. found a
correlation between high BCRP levels and failure to achieve complete remission (CR)
following induction therapy including cytosine arabinoside, an anthracycline and
thioguanine or etoposide [147]. Benderra et al. [148, 149] also found a correlation between
BCRP mRNA expression and lower CR rate and shorter survival, while Uggla et al. found a
correlation with survival, but not CR rate [150]. Thus BCRP may be a marker for, rather
than a mechanism of, resistance in AML.

Data from several groups support BCRP overexpression in subpopulations of AML cells
likely to contain AML stem cells. In addition to Suvannasankha et al. [142], Abbott et al.
[151] and van der Kolk et al. [152] also found BCRP to be restricted to small subpopulations
of AML cells. van der Kolk et al. found a correlation between high BCRP expression and
CD34 expression on AML blasts [152]. Likewise, Raaijmakers et al. [153] found highest
BCRP expression and function in the CD34+/CD38− cells in AML marrows, and de
Figueriedo-Pontes et al. [154] found that “leukemia stem cells,” defined as CD34+/CD38−/
CD123+ cells, had higher expression of BCRP. Of note, SALL4, a zinc finger transcription
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factor constitutively expressed in AML cells [155] and important in maintaining the stem
cell phenotype [156], was recently reported to be a marker for drug resistance in AML, to be
expressed in the AML side population, and to upregulate expression of BCRP indirectly,
possibly through its effects on Akt signaling [83].

BCRP is frequently co-expressed with Pgp, and their co-expression is associated with
inferior outcomes [154, 157–160]. van den Heuvel-Eibrink et al. [160] found that BCRP and
Pgp co-expression was the most significant poor prognostic indicator for attainment of CR,
and Ho et al. [159] found that non-responders had significantly higher BCRP and/or MDR1
expression in CD34+/CD38− cells. Damiani et al. [157] found a high frequency of BCRP
and Pgp co-expression (p=0.006) in cytogenetically normal de novo AML; Pgp expression
was associated with lower CR rate (p=0.02), while BCRP was associated with shorter
disease-free survival (DFS) (p=0.027).

Tiribelli et al. [161] found a significant positive correlation between BCRP overexpression
and fms-like tyrosine kinase 3 internal tandem duplication (FLT3-ITD) (p=0.002), and while
CR attainment correlated with neither, DFS was shorter in patients with blast BCRP
expression (p=0.046), and shortest in those with both BCRP expression and FLT3-ITD
(p=0.023). FLT3 signaling inhibitors are in clinical trials in AML for patients with a FLT3-
ITD. Among these inhibitors, tandutinib has been found to be a substrate of BCRP as well as
Pgp, affecting its absorption [105] and potentially its anti-tumor efficacy. Additionally,
sorafenib is a Pgp and BCRP substrate [124, 125], while sunitinib is a Pgp and BCRP
inhibitor [120].

Other chemotherapeutic agents have been incorporated into AML therapy to try to improve
outcomes. Fludarabine is a BCRP substrate [162], but did not overcome the negative impact
of BCRP overexpression in AML [163]. Flavopiridol is also a BCRP substrate [164]. In
contrast, amonafide L-malate, a DNA intercalating agent and non-ATP-dependent
topoisomerase 2 inhibitor, is not a Pgp or BCRP substrate [165], but unfortunately did not
improve outcome in a randomized clinical trial in secondary AML [166].

The utility of BCRP modulation has been studied in vitro. Raaijmakers et al. [153] found
that the BCRP inhibitor Ko143 increased mitoxantrone accumulation but not cytotoxicity in
CD34+/CD38− leukemia cells, suggesting that selective modulation of BCRP is not
sufficient to circumvent resistance of leukemic CD34+/CD38− cells, and that other factors
contribute to resistance. Cyclosporine A, an inhibitor of BCRP as well as Pgp [167], has
shown efficacy in some clinical trials [168], but not others, while the Pgp and BCRP
inhibitors tariquidar [169, 170] and elacridar (GF120918, [171, 172]) have not been tested in
AML.

Other agents being tested in AML may alter expression of BCRP and other resistance
proteins. Notably, histone deacetylase inhibitors have been found to induce expression of
multidrug resistanceassociated ATP-binding cassette proteins, including BCRP, in AML
cells [173]. While the effects of hypomethylating agents have not been characterized, CpG
islands in the BCRP promoter are hypomethylated or unmethylated in drug-resistant cell
lines [85, 86], as discussed above.

Finally, BCRP SNPs have been studied. The 34GA/AA variant genotypes were associated
with both improved survival and increased toxicity (OR=8.41, 95%CI= 1.10–64.28) in
relation to the wild type (GG) genotype in one study [174]. Another study found BCRP
mRNA expression to be significantly lower in liver tissue with the G34A variant genotype
[175]. If, as in liver, individuals with the G34A allele have decreased BCRP expression in
AML blast cells, the result may be better antitumor response along with increased toxicity
because of lower BCRP expression in normal tissues. In contrast, Chinese AML patients
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with the 34GG genotype had longer DFS and overall survival than those with the 34GA/AA
genotypes [176]. The reason for the discrepancy in results between the two studies is
unclear.

Acute lymphoblastic leukemia (ALL)
BCRP is expressed in both B-lineage and T-lineage ALL in children and in adults [144, 177,
178]. As in AML, Suvannasankha et al. found poor correlation between BCRP mRNA
expression, staining with three BCRP antibodies (BXP21, BXP34 and 5D3) and BCRP
function in adult ALL [178]. Overall, expression was more common than in AML [178].

Chemotherapy drugs used in the treatment of ALL that are BCRP substrates include the
mainstays of maintenance therapy, 6-mercaptopurine [162] and methotrexate [179, 180]. As
with AML, all cases evaluated have had the wild-type sequence at codon 482 [144, 178],
and thus should not efflux anthracyclines. Stam et al. found that infant ALL blasts with high
BCRP mRNA expression had the highest in vitro resistance to cytarabine despite the fact
that cytarabine is not a BCRP substrate; again, as in AML, this suggests that BCRP is a
marker of, rather than a mechanism of, resistance [146].

Sauerbrey et al. [177] and Kourti et al. [181] found no correlation between BCRP mRNA
expression and outcomes in children, while Suvannasankha et al. found a correlation
between BXP21 antibody staining and short DFS in adults [178]. More recently, Cortez et
al. [182] found that higher BCRP mRNA levels were associated with better, rather than
worse, 5-year event-free survival in childhood ALL, with an association between lower
BCRP mRNA levels and higher incidence of toxic deaths. Similarly, Fedasenka et al. [183]
found a trend toward a correlation between lower BCRP expression and residual disease by
flow cytometry. The discrepant findings between adult and childhood ALL likely reflect the
markedly better clinical outcomes in childhood than in adult ALL, in turn likely reflecting
greater chemosensitivity.

Considerations with regard to BCR-ABL inhibitors and BCRP are relevant to Philadelphia
chromosome-positive (Ph+) ALL as well as chronic myelogenous leukemia (CML), and are
discussed under CML below.

There is currently no evidence for a correlation between BCRP SNPs and the incidence of
ALL [184].

Chronic myelogenous leukemia (CML)
BCR-ABL inhibitors have revolutionized treatment of CML and also significantly improved
outcomes in Ph+ ALL, but CML stem cells in patient samples have been found to be
insensitive to imatinib mesylate [185], which is likely the reason for persistent molecular
disease in most patients treated with this drug. BCRP was found to be expressed on CD34+
CML cells [186], and in another study, lineage−/CD34+/CD38− cells from CML patients
were found to express functional BCRP, as well as Pgp, and to also have low expression of
human organic cation transporter 1 (OCT1), which transports imatinib into cells [187]. Of
note, SALL4, discussed above, has also been implicated in CML cell proliferation and
survival [188].

Imatinib and newer BCR-ABL inhibitors were found to be both substrates and inhibitors of
both BCRP and Pgp. A number of studies demonstrated that imatinib is an inhibitor and/or a
substrate of BCRP [30, 32, 189–192]. With regard to newer-generation BCR-ABL
inhibitors, nilotinib was found to be both a substrate [192] and an inhibitor [112] of BCRP,
and dasatinib was found to be a substrate of BCRP, as well as Pgp [193]. Dohse et al. [194]
compared imatinib, nilotinib and dasatinib interactions with BCRP, and found that all three
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were both substrates and inhibitors, and that nilotinib was the most potent inhibitor,
followed by imatinib, then dasatinib. All three BCR-ABL inhibitors were also shown to
inhibit both BCRP and Pgp in murine and human hematopoietic stem cells, also with the
potency order of nilotinib, then imatinib, then dasatinib. Thus BCR-ABL inhibitors may
lessen the potential of BCRP and Pgp both to limit their oral absorption and confer
resistance. The magnitude of these effects is difficult to quantify [46]. BCR-ABL inhibitors
may have a more important effect in increasing absorption of co-administered oral
medications, and possibly sensitivity of malignant cells to co-administered
chemotherapeutic agents, whether parenteral or oral.

Two additional BCR-ABL inhibitors in current development were also studied. Bosutinib
was found not to be a substrate of BCRP, nor of Pgp [195]. However, BCRP was reported to
cause resistance to danusertib, which is a recently characterized inhibitor active against
BCR-ABL with many active-site mutations including T315I, which confers resistance to
imatinib, nilotinib, dasatinib and bosutinib. Danusertib is also a pan-aurora kinase inhibitor
[25].

BCRP SNPs have also been studied in relation to imatinib dosing and response in CML. It
was recently reported that to attain the plasma threshold of approximately 1,000 ng/ml, the
daily dose for patients with the ABCG2 421C/C genotype should be 400 mg, and for
patients with the 421C/A or 421A/A genotype, it should be 300 mg, an effect attributed to
variability in BCRP excretion into bile [196]. In another study, the GG genotype of BCRP
rs2231137, in relation to the heterozygous (AG) (G34A, encoding V12M) or homozygous
(AA) variant genotypes, was significantly associated with a lower rate of complete
cytogenetic response to imatinib [197]. As noted above, the GG genotype has been
associated with higher BCRP levels in tissues [175].

Multiple myeloma
BCRP does not appear to play an important role in multiple myeloma drug resistance at
presentation [198], but is regulated by promoter methylation and is up-regulated in response
to chemotherapy [86]. Recently a myeloma side population with BCRP expression and
functional activity was found to be a target of the immunomodulatory agents lenalidomide
and thalidomide [199].

Lymphoma
The importance of BCRP in lymphoma subtypes is not well defined. In one recent study,
BCRP was detected by immunohistochemistry in 78% of mature T/NK cell lymphoma cases
[200]. BCRP has also recently been found to transport chemotherapy drugs used to treat
lymphomas, including fludarabine and cladribine [162].

With regard to BCRP SNPs, among 145 Korean patients with DLBCL treated with the R-
CHOP regimen, there was no influence of BCRP SNPs on clinical characteristics or
treatment outcomes, but patients with the Q141K polymorphism (QK or KK), but not the
V12M polymorphism discussed above for AML and CML, had more chemotherapy-related
diarrhea [201].

Section 5. Recent findings in solid tumors
Summary of findings through 2008 [1]

As with the hematologic malignancies, our last review found data emerging in solid tumors
associating BCRP expression with adverse outcomes. At that time, it was not known
whether the adverse outcome caused by BCRP expression was directly related to resistance
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mediated by the efflux function of BCRP or whether BCRP expression served as a marker
for the presence of other mediators of poor-risk cancers such as activity of signaling
pathways controlling cellular proliferation, self-renewal, metastasis, genomic instability, and
down-regulation of programmed cell death.

Update of literature since 2008
The past three years have seen a rise in the number of papers concerning BCRP expression
in solid tumors in subpopulations of cells with “stem-like” properties: quiescence, drug
resistance, enhanced self-renewal capacity and tumorigenicity, and expression of other
markers characteristic of stem cells. The extent to which BCRP contributes to drug
resistance in these subpopulations is currently under active investigation.

Cancer stem cells
Frequently, normal and/or cancer stem cells can be identified as side population (SP) cells
based on their low accumulation of Hoechst 33342 dye. SP cells can be identified in many
primary tumors obtained from patients, and in certain cancer cell lines grown in vitro.
BCRP/ABCG2 is a major component of the ABC transporters responsible for the SP
phenotype in a variety of cancers and cancer cell lines. Not all cancer stem cells manifest a
SP, however [202]. Interestingly, human embryonic stem cells do not display a SP, nor do
they exhibit BCRP/ABCG2 protein expression or function [203].

Dofequidar, an oral quinolone ABC-transporter inhibitor, inhibits ABCB1 (Pgp), ABCC1
(MRP1), and ABCG2 (BCRP). In a variety of cultured cancer cell lines, including cervical,
breast, pancreatic, colon, and gastric carcinoma, dofequidar was observed to reduce the SP
and to diminish in vivo SP-derived tumor growth following treatment with irinotecan [204].
These investigators found that amongst the three transporters ABCB1, ABCC1 and ABCG2,
BCRP/ABCG2 had the highest expression in SP cells.

Many of the recent reports of BCRP expression in solid tumors found BCRP expression in
SP cells and/or in cells with increased self-renewal capacity and tumorigenicity that also co-
expressed other stem cell markers such as CD133, Nrf2, Notch1, and Oct-4. Subpopulations
of stem-like cells expressing BCRP were found in cell lines or primary tumor samples from
a wide assortment of solid tumors, including head and neck cancer [205–207], breast
carcinoma [202], small cell and non-small cell lung cancer [208–212], gastrointestinal
cancers including pancreatic [213, 214], colon [215, 216] and hepatocellular [217–219],
ovarian cancer [220], gliomas [221, 222], malignant peripheral nerve sheath tumors [223],
osteosarcoma [224, 225], prostate cancer [226], Ewing’s sarcoma [227], odontogenic tumors
[228], transitional cell carcinoma of the bladder [229], and neuroblastoma [230]. Details of
these findings will be discussed within individual tumor types in the ensuing paragraphs.

Head and neck carcinomas
The human oral squamous cell carcinoma cell line Ho-1-N-1 was found to have a SP that
comprised approximately 3% of the total cells. The SP cells had self-renewal properties,
displayed upregulation of BCRP as well as the anti-apoptotic proteins CFLAR, Bcl2, and
Bcl2A1, and were resistant to chemotherapeutic agents such as 5-fluorouracil and
carboplatin [206].

CD133 is a membrane-bound glycoprotein of unknown function that is expressed in a
variety of stem cells and in tumors. There is some evidence that CD133 may be a marker for
cancer stem cells in laryngeal carcinoma, based on its expression in a small subpopulation of
cells with enhanced tumorigenicity in the human laryngeal epidermoid carcinoma cell line
Hep-2 [231]. Analysis of the CD133+ subset of Hep-2 cells revealed that this subset has
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enhanced chemoresistance, tumorigenicity, invasiveness, and higher expression of BCRP
compared to CD133-negative cells [205].

Akt kinase activity is often high in head and neck cancers [232]. Imatinib was found to
diminish phospho-Akt levels and Akt kinase activity in the head and neck squamous cell
carcinoma cell lines UMSCC10B and HN30 [207]. Imatinib treatment also diminished the
SP in these cells, and reduced efflux and enhanced cytotoxicity of doxorubicin. This effect
was attributed to reduction in BCRP function caused by loss of Akt pathway activity;
however, a contributing factor to the effect on the SP and doxorubicin cytotoxicity could be
that imatinib is also known to be potent inhibitor of BCRP-mediated transport [30]. BCRP
protein levels were not affected by imatinib treatment; however, the treated cells showed
localization of BCRP in an inactive (cytoplasmic) location [207]. Akt pathway involvement
in the cellular localization of BCRP was first observed in Akt knockout mice, which despite
having normal protein levels of BCRP, do not display a SP and express BCRP in a
cytoplasmic distribution [233]. An exception to this phenomenon was seen in our own
studies In K562 cells, where imatinib or LY294002 treatment diminished phospho-Akt,
which in turn decreased BCRP protein expression by a post-transcriptional mechanism
[190].

Breast cancer
Typically, BCRP must have plasma membrane residence to be an effective efflux pump;
there is also evidence that its expression in cytoplasmic vesicles can result in drug
sequestration and cancer drug resistance [234]. Recent work finds that multidrug resistant
MCF-7 breast cancer cells generate extracellular vesicles containing ABCG2, ABCB1 and
ABCC2 which sequester anticancer drugs, preventing them from reaching their intracellular
targets. This represents a new modality of anticancer drug compartmentalization [235–237].
The extracellular vesicles were found mostly in cell-to-cell attachment zones between
adjacent cells. These vesicles accumulate a green fluorescent substance [236] which was
subsequently found to be riboflavin [237]. Whether this phenomenon occurs in primary
breast cancer patient tumor samples awaits further study.

A number of studies examined BCRP effects on drugs used to treat breast cancer. The
EGFR/HER2 blocker lapatinib (Tykerb®) used for treatment of advanced breast cancer was
found to inhibit BCRP/ABCG2-mediated efflux of doxorubicin, another drug used for breast
cancer chemotherapy [238]; lapatinib also inhibits Pgp and MRP7/ABCC10 [239, 240].
BCRP was implicated in resistance to 5-fluorouracil (5-FU) treatment in a Chinese breast
cancer patient population (140 tissue specimens) [241]. Forty seven percent of the sampled
breast cancers had detectable BCRP mRNA or protein expression as measured by RT-PCR
or immunohistochemistry, respectively. Low intracellular retention of 5-FU measured by
high-performance liquid chromatography (HPLC) correlated with expression of BCRP.
Other investigators examined 5-FU intracellular uptake and retention by HPLC in BCRP-
expressing cell lines [242] and found that 5-FU is indeed a substrate for BCRP. BCRP was
also implicated in causing resistance to 5-FU in colon cancer cells, as will be discussed
[215].

BCRP polymorphisms were not found to alter breast cancer treatment in recent literature;
however, polymorphisms of other genes were found to affect BCRP expression. For
example, polymorphism of codon 72 of the p53 gene affects breast cancer treatment
outcomes. Patients with metastatic breast cancer homozygous for the arginine allele (72AA)
had significantly lower progression-free survival and overall survival than did patients
homozygous for the proline allele (72PP)[243]. In vitro transfection of p53-null breast
cancer cells with the arginine allele resulted in better survival under hypoxic conditions than
cells transfected with the proline allele. A factor contributing to enhanced survival of the
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72AA-transfected cells under hypoxia was at least partially ascribed to upregulation of
BCRP [243]. In other investigations, allelic polymorphisms of CYP2D6 and MRP2
(ABCC2), but not of MDR1 (ABCB1) or BCRP, were found to affect clinical outcomes of
adjuvant tamoxifen treatment for breast cancer [244].

A variety of biologic factors have been found to alter BCRP function or expression in breast
cancer. Mosaffa et al. studied the effects of pro-inflammatory cytokines IL-1β, TNF-α, and
IL-6 on BCRP expression in MCF-7 cells. IL-1β and TNF-α increased BCRP mRNA and
protein expression and function. IL-6 increased BCRP protein but not mRNA expression in
these cells. In mitoxantrone-selected MCF-7/MX cells which have overexpression of BCRP,
IL-1β and TNF-α increased BCRP protein expression and activity without a further increase
in mRNA expression [137]. These findings contrast with a study by Poller et al. cited earlier
(Section 3) which presented evidence that inflammation in the brain decreases ABCG2
expression in the BBB [136]. Pradhan and coworkers in Chicago studied the ability of E2 to
increase BCRP mRNA and protein levels in MCF-7 cells [74]. They found that
proinflammatory cytokines (TNF-α, IL-1β) could markedly potentiate the E2-stimulated
increase in BCRP expression, but did not affect BCRP expression in the absence of E2. This
effect was found to be mediated by cytokine activation of NF-κB. The presence of ER at the
ERE in the BCRP promoter allows recruitment of the NF-κB family member p65 to a latent
NF-κB response element (NFκBRE) adjacent to and upstream of the ERE. The combined
binding of ER and p65 to the ERE and NFκBRE respectively resulted in markedly enhanced
transcription of BCRP [74]. Interestingly, at approximately the same time Wang and
colleagues in China [76] identified an NFκBRE in the BCRP promoter at essentially the
same location as was reported by the Chicago group. The Chinese investigators found that
occupancy of this NFκBRE by NFκB-p50 (activated by transfection of wild-type p53)
suppressed BCRP expression in MCF-7 cells [76]. E2 treatment does not always increase
BCRP mRNA or protein levels, however. For example, recent work described in Section 3
by Mahringer et al [141], found that E2 decreased Bcrp1 expression and increased Bcrp1
protein degradation in rat BBB.

Liu and associates found that human MCF-7/MX cells (BCRP overexpressing cells selected
with mitoxantrone) hyperexpress cytokeratin 8 (CK8). Enforced expression of CK8 or
BCRP in NIH3T3 fibroblasts conferred resistance to mitoxantrone, but expression of both
caused even greater resistance. Hence, CK8 may cooperate with BCRP in causing resistance
[245].

Nakanishi and colleagues in our laboratories observed that HER2 signaling upregulates
BCRP expression and expands the side population in luminal type breast cancer cells [202].
In contrast to luminal type cancers in which stem cells predominantly displayed the SP
phenotype, basal type breast cancers had generally lower levels of SP cell subpopulations;
stem cells in basal type cancers were more often SP-negative, CD44-, CD24-, and
Aldefluor®-positive [202]. Murine breast tumors with a basal molecular signature can,
however, upregulate Bcrp1/Abcg2 when challenged with topotecan, a BCRP substrate [246].

BCRP expression has been studied in mammary adenocarcinomas of dogs. The canine
homologue of BCRP (cBCRP) was detected immunohistochemically in over 85% (36 cases)
of canine mammary adenocarcinomas; a moderate correlation (r=0.35, p<0.05) was found
between BCRP expression and grade of adenocarcinoma [247]. Another study of 103 canine
mammary tumors using RT-PCR found expression of canine MRP1, MRP3, MRP6, MRP7
and cBCRP mRNA in most tumor samples; cBCRP function was demonstrated by resistance
to doxorubicin in cells transfected to express cBCRP [248].

Natarajan et al. Page 15

Biochem Pharmacol. Author manuscript; available in PMC 2013 April 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Lung Cancer
Small cell lung cancer - SCLC—In our previous review, there were reports cited that
found an association of high BCRP expression prior to treatment with platinum-containing
regimens with poor response to therapy and lower progression-free survival in 130 patients
with SCLC [249], and with lower overall survival in 156 non-small cell lung cancer
(NSCLC) patients with stage IV disease [250]. It is of interest that of the platinum agents
currently approved for clinical use, only oxaliplatin may have an interaction with BCRP
[242, 251].

Polymorphisms of the ABCG2 (G34A and C421A), ABCC3 and CNT1 genes were studied
in 349 Caucasian patients with primary lung cancer (161 with SCLC, 187 with NSCLC, and
1 mixed) and were correlated with treatment outcome. Drug regimens varied, but primarily
included platinum-based drugs (for both SCLC and NSCLC), gemcitabine (for NSCLC
patients) and etoposide (for SCLC patients). None of the polymorphisms altered treatment
response after 2 courses of treatment. However, worse overall survival was observed for
patients with the BCRP C421A allele in a subset of 256 patients treated with platinum-
containing regimens (hazard ratio: 1.6) [252].

In a variety of SCLC cell lines in vitro, SP stem cells were identified by Salcido and
associates that have increased self-renewal capacity and overexpress genes typically found
in primitive or stem cell populations, including BCRP [208]. Investigators in China found
SP cells in H446 SCLC cells, which expressed CD133 and BCRP, showed enhanced
tumorigenic and stem cell properties. It was suggested that CD133 and BCRP may serve as
markers for stem cells in SCLC [209].

Non-small cell lung cancer - NSCLC—Mutations of the epithelial growth factor
receptor (EGFR) in NSCLC have been associated with resistance to gefitinib. However,
BCRP upregulation was reported to be associated with acquired resistance to gefitinib in a
case of NSCLC in a non-smoking woman without evidence of a mutation in EGFR [253].
The mechanism of acquired resistance to gefitinib in cells with wild-type EGFR was
examined recently in human epidermoid carcinoma A431 cells [254]. In these studies, Akt-
mediated translocation of EGFR to the nucleus was observed in the resistant cells, resulting
in enhanced transcription of BCRP [254]. In contrast to these studies, the EGFR tyrosine
kinase inhibitor AG1478 caused downregulation of BCRP expression in AG1478-resistant
cells, along with collateral sensitivity to a topoisomerase I inhibiting agent, Hoechst 33342
[255].

The abstracts of two papers from a group in China (we were unable to obtain the full articles
at this writing) did not report an association of BCRP mRNA expression (using
semiquantitative RT-PCR) with response to chemotherapy (platinum-based) or survival in
patients with advanced or locally advanced NSCLC [256, 257]. These reports contrast with
two earlier studies cited in our previous review [1]. The first, by Yoh et al. published in
2004, found that BCRP protein expression (measured by immunohistochemistry) correlated
with lower response rate, shorter overall survival and progression-free survival following
treatment with platinum-based regimens [258]. The second work, published in 2009 by Ota
et al. and mentioned above in the section for SCLC, found that BCRP protein expression
measured by immunohistochemistry had adverse impact on survival in 156 Japanese
NSCLC patients treated with platinum-based therapy [250].

BCRP affected the outcome of photodynamic therapy with Photofrin-PDT but not the
secondgeneration photosensitizer NPe6-PDT in tumor samples from 81 patients with early
centrally located lung cancers [259].
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In a study of xenografts from 26 well characterized patient-derived NSCLCs, the known
chemosensitivity of these tumors to etoposide, carboplatin, gemcitabine, paclitaxel and
erlotinib was compared with mRNA expression of BCRP, LRP, MDR1 and MRP1. Only a
borderline correlation of chemosensitivity to etoposide with BCRP mRNA expression was
found. The conclusion was that the “MDR proteins” do not play an important role in
chemoresistance of NSCLC in vivo [260].

As found for specimens of SCLC, subpopulations of cells with a stem cell gene expression
signature, including expression of BCRP, have been found in NCLC cell lines and patient
samples. Primary NCLC cell lines treated in vitro with cisplatin showed enriched
populations of highly tumorigenic CD133+/BCRP+/CXCR4+ cells [210]. A trend to lower
progression-free survival was seen in patients with CD133+ tumors (N=32 CD133-, N=10
CD133+ patients) [210]. A study of CD133 expression in tumor samples from 10 NSCLC
patients and in 5 NSCLC cell lines found high expression of Oct-4 and BCRP to be
associated with chemotherapeutic drug resistance, and self-renewal capacity. Knockdown of
Oct-4 caused the lung cancer cells to lose tumorigenicity and drug resistance [211]. SP cells
with a stem cell-like phenotype including BCRP/ABCG2 expression were found in human
NSCLC-derived A549 cells [212].

GI cancers
Pancreatic cancer—The association of SNPs in multidrug resistance transporter genes
with clinical outcome in patients with potentially resectable pancreatic cancers was
evaluated by a group at the MD Anderson Cancer Center. The study included SNPs of 7
ABC transporters: MDR1/ABCB1, MRP1–5, and the BCRP exon 5 (C421A/Q141K) SNP.
Only the MRP5 A-2G AA genotype had a significant association with overall survival; the
MRP2 G40A AA genotype was weakly associated with lower overall survival. The BCRP
exon 5 SNP did not alter clinical outcomes in this study [261].

Many of the investigations probing the influence of BCRP expression on pancreatic cancer
have centered on its role in cancer stem cells. The expression of the homeobox gene MSX2
is known to induce epithelial-mesenchymal transition in human pancreatic cells. MSX2 was
found to correlate with resistance to chemotherapeutic agents and presence of a SP in a
variety of human pancreatic cell lines. As mentioned in Section 2, MSX2 expression led to
enhanced transcription of BCRP in these lines via recruitment of SP1 to its response element
in the BCRP promoter [262]. Investigators in China found that nuclear factor (erythroid-
derived 2)-like 2 (Nrf2) and BCRP expression correlated with drug resistance in a number of
pancreatic cancer cell lines [213]. Another study from China characterized the SP cells in
the PANC-1 cell line. The SP cells displayed stem-like characteristics including
upregulation of BCRP, CD133, Notch1, increased tumorigenicity, and drug resistance in
vitro [214].

Colon carcinoma—As with pancreatic cancers, a number of studies investigated BCRP in
terms of its role in the cancer stem cell phenotype. For example, Wnt signaling was found to
expand the SP in SW480 colon cancer cells in vitro. These SP cells expressed Pgp and
BCRP and displayed resistance to 5-FU and irinotecan, two BCRP substrates [215].
Inhibition of Wnt signaling diminished SP cells. The authors concluded that targeting the
Wnt pathway may reduce chemotherapy resistance in colon cancer [215]. Colon cancer cells
derived from 13 patient biopsy or resection samples were propagated as solid tumor
spheroids in vitro. These spheroids display cancer stem cell properties, including self-
renewal, resistance to irinotecan, and expression of BCRP/ABCG2, CD133 and CD44 [216].

A study of the effects of FOLFOX regimen components (folinic acid, 5-FU, and oxaliplatin)
on expression of multidrug resistance transporters in LS180 colorectal cells grown in vitro
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revealed that 5-FU suppressed expression of ATP7B and human organic cation transporter
2, but increased expression of MRP2. This alteration sensitized the cells to oxaliplatin.
Furthermore, upregulation of ABCG2 (and MRP2, MRP3) was found to enhance the
cytotoxic efficacy of oxaliplatin [263]. In this study, an 8–10 fold increase in resistance to 5-
FU was seen in MDCKII cells transfected to overexpress BCRP or MRP1 or 2. In contrast,
the enforced expression of BCRP, MRP2 or MRP3 in MDCKII cells sensitized these cells to
the cytotoxic effects of oxaliplatin [264]. These investigators did not do studies with the
combination of folinic acid + 5-FU, which has previously been reported to be synergistic
because folinic acid stabilizes the 5-FdUMP-thymidylate synthase enzyme-inhibitor
complex [265].

Hepatocellular carcinoma (HCC)—Recent reports of BCRP expression in HCC have
primarily concerned cancer stem cells. SP stem cells expressing BCRP were reported in a
variety of HCC cell lines [219]. Oct-4, a transcription factor associated with stem cells and
self-renewal, was found to be expressed in tumor samples from 60 HCC patients; Oct-4
expression correlated strongly with BCRP and phospho-Akt protein expression. It was
proposed that Oct-4 increases BCRP expression by activation of the Akt pathway [217].
Other investigators found a SP in the HCC cell line MHCC-97L; this SP and ABCG2
expression were regulated by Akt signaling [218].

In our previous review [1], we cited a report that in hepatoblastoma, 7/7 biopsy specimens
had increased BCRP expression following chemotherapy treatment [266].

Gastric cancer—In the gastric cancer cell line SGC7901, siRNAs were used to identify
genes whose suppression led to resistance to epirubicin. This approach identified the GAS1
gene (growth arrest-specific 1) as playing a key role in epirubicin resistance. Enforced
expression of GAS1 resulted in upregulation of Bcl-2, Pgp, and BCRP, but not MRP1 [267].

Esophageal cancer—Cancer stem-like cells were isolated and characterized in the
esophageal carcinoma cell lines EC9706 and ED109. The stem-like cells displayed a SP
phenotype, including expression of BCRP and ABCA5, expression of Oct-4, SOX2, BMI-1,
ZFX, notch pathway genes, and increased tumorigenicity in NOD/SCID mice [268].

Brain Tumors
Much of the recent work in brain tumors concerns studies designed to understand how
BCRP expressed in brain capillary endothelial cells plays a role in the BBB, preventing
penetration of chemotherapeutic drugs into brain tumor tissue. The bulk of this work was
discussed in Section 3. In addition to studies of the BBB, there is ongoing research focusing
on how BCRP expression in brain tumors themselves, and particularly in cancer stem cell
populations, results in drug resistance. The discussion here will center on this latter aspect.

Evidence is accumulating that murine and human gliomas are propagated by a stem cell
population characterized as a highly tumorigenic, BCRP-expressing SP. Chua and
colleagues identified SP cells in two glioma cell lines (U87MG AND T98G); the SP cells
were tumorigenic and displayed stem cell markers such as nestin and BCRP, and were
resistant to temozolomide. Furthermore, temozolomide treatment caused an increase in the
SP. Knockdown of ABCG2 did not alter the SP response to temozolomide, suggesting
coexistence of other forms of chemoresistance [221]. In human and mouse gliomas, Bleau et
al. found that BCRP function was diminished in glioma capillary endothelial cells,
consistent with disruption of the BBB within the tumors; however, SP cells isolated from the
gliomas formed highly tumorigenic neurospheres, and expressed stem cell markers. BCRP
activity in the neurospheres was driven by the PI3K/Akt pathway, independent of mTOR.
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Treatment with temozolomide and/or loss of the tumor suppressor gene PTEN resulted in
augmentation of the SP phenotype [269]. Using immunostaining, Jin and coworkers found
BCRP expression to increase with increasing grade of glioma (68 cases studied, 31 grade I-
II, 37 high grade III-IV). ABCG2 expression also correlated with expression of the stem cell
marker CD133, and with resistance to mitoxantrone [270]. The role of BCRP in resistance in
glioblastoma is summarized in a review paper entitled “The ABCG2 resistance network of
glioblastoma” [271].

Brain tumors with high expression of the angiopoietin receptor tyrosine kinase Tie2 display
a high malignant potential [272]. Angiopoietin 1 (Ang1) is highly expressed in malignant
gliomas. Glioma cell lines with high Tie2 expression become chemoresistant when treated
with Ang 1, and upregulate ABCG2 and ABCC2 [273].

In diffuse pontine gliomas and spinal cord astrocytomas, hyaluronan, an extracellular
glycosaminoglycan, was found to potentiate drug resistance and invasiveness. Hyaluronan
interacts with BCRP, extracellular matrix metalloproteinase inducer, and CD44 (the
hyaluronan receptor, a stem cell marker often associated with breast cancer). It was
suggested that hyaluronan may be a useful target to attenuate brain tumor resistance/
aggressiveness [222]. Similar findings were observed in a malignant peripheral nerve sheath
tumor cell line, which is discussed below.

A study demonstrating that dexamethasone induces functional upregulation of Bcrp1 and
Abcb1 in primary rat brain microvascular endothelial cells via pathways involving the
glucocorticoid receptor and PXR raises concern that dexamethasone, commonly used to
control cerebral edema in brain tumor patients, may increase drug resistance and prevent
BBB penetration by chemotherapeutics in such patients [274]. In some brain tumors, BCRP
expression appears confined to microvasculature. For example, in ependymoma, Pgp and
BCRP appear to localize in microvessels [275].

Other cancers
Malignant peripheral nerve sheath tumors (MPNSTs) are a major cause of mortality and
morbidity in patients with neurofibromatosis type-1 (von Recklinghausen’s disease).
MPNSTs exhibit multidrug resistance, with a poor response to chemotherapy. In human
MPNST cell lines, CD44 (the hyaluronan receptor) forms complexes with ABCG2 and
ABCB1. Treatment with hyaluronan oligomers causes disruption of these complexes, with
inactivation (internalization) of the ABC transporters, and sensitization to doxorubicin. In
vivo, the hyaluronan oligomers inhibited growth of MPNST xenografts. Since CD44 is
frequently expressed in cancer stem cells, hyaluronan oligomers may be useful in cancer
therapy [223].

In osteosarcomas, tumor-initiating cells with high tumor forming and metastatic potential
were identified in both human and murine osteosarcoma cells which express the
mesenchymal stem cell markers CD117 and Stro-1; these tumor-initiating cells also
upregulate ABCG2/Abcg2 and were doxorubicin-resistant [224]. A cancer stem-like cell
line was produced by culturing human osteosarcoma MG-63 cells with 3-aminobenzamide.
These cells showed high expression of stem cell markers (Oct-3/4, hTERT, Nanog), CD133,
and ABCG2 [225].

Highly tumorigenic stem-like cells were identified in a subpopulation of the prostate cancer
cell line 22RV1 that have high surface expression of CD117 and ABCG2. This
subpopulation expresses other stem cell markers, and is resistant to taxol, platinum,
doxorubicin, and methotrexate [226]. BCRP and Pgp can transport biclutamide and cause
resistance to this drug in prostate cancer cell lines [276].
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SP cells were identified in the Ewing’s sarcoma cell line SK-ES-1 [227]. In malignant
amelioblastic (odontogenic) tumors, CD133, BMI-1 and ABCG2 were found to be
expressed; BCRP expression was higher in the neoplastic tissue than in tooth germ tissues
[228]. Evidence for SP cells that overexpress BCRP/ABCG2 was found in the bladder
transitional cell carcinoma cell line T24 [229]. Evidence for a stem cell population was
found in 4 of 8 neuroblastoma cell lines which expressed the stem cell markers CD133,
ABCG2 and nestin [230]. Self-renewing, tumorigenic, drug-resistant SP cells with increased
BCRP expression were observed in ascites from patients and in ovarian cancer cell lines
[220].

Section 6. Final discussion
The past three years have seen significant strides in elucidating the role of BCRP in cancer
drug resistance. It is clear that BCRP exerts a negative effect on cancer treatment outcomes
both at the level of the neoplastic cell itself and by virtue of its effects on anticancer drug
ADME in the host.

Data are starting to accumulate defining the role that common polymorphisms of BCRP play
in the toxicity of antineoplastic drugs and treatment outcome; although some studies found
enhanced drug toxicity or more favorable tumor response in patients with certain BCRP
alleles [174, 175], other studies did not substantiate these findings [176]. Further work in
this area is clearly needed. Given this, in the foreseeable future, drug treatment may be
guided by individualized genotype databases – which include BCRP polymorphisms – that
can enable customized drug dosing to minimize toxicity and to enhance therapeutic effect.

One area that has undergone intense scrutiny in the past three years is detailed evaluation of
the role that BCRP and other ABC transporters play in maintenance of the BBB. Indeed,
BCRP is evolving as a major contributor to this barrier. Hence, future use of BCRP as a
therapeutic target may involve BCRP inhibitors to allow/enhance chemotherapeutic drug
penetration into brain tumors.

With regard to the influence of BCRP expression within tumor cells themselves, the last
three years have produced a marked increase in reports of the expression of BCRP as a
manifestation of the presence of self-renewing, highly drug-resistant cell populations –
putative cancer stem cells – amongst cells derived from a wide variety of malignancies.
Targeted inhibition of BCRP as a means of sensitizing cancer stem cells to cancer
therapeutics is currently an experimental approach under investigation; such studies must
consider the effects of BCRP reversal on toxicity to normal tissue stem cells.

The past three years have provided mounting evidence for expression of BCRP in
hematologic malignancies and a wide variety of solid tumors; in these studies, BCRP
expression frequently correlates with chemotherapy-resistant disease, or poor outcomes in
terms of shortened survival. In some cases, BCRP expression predicted poor outcome for
chemotherapeutics that were not known substrates for the transporter, leading to the notion
that BCRP expression may indicate the presence of a host of other cellular xenobiotic
defenses that result in failure to cure. Such cells with redundant xenobiotic defense
mechanisms could be cancer stem cells.

List of Abbreviations

ABC ATP binding cassette family of transporter proteins. This superfamily
consists of seven subgroups, designated A–G
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ABCB1 The first member of the B subgroup of human ABC transporter
proteins, also known as P-glycoprotein

Abcb1a/1b Murine equivalent of P glycoprotein, encoded by the Mdr1a and
Mdr1b genes, also known as Abcb1/b2

ABCB6 The 6th member of the C subgroup of human ABC transporter
proteins

ABCC1 The first member of the C subgroup of human ABC transport
proteins, also known as MRP1

ABCC10 The 10th member of the C subgroup of ABC transporters; also known
as MRP7

Abcc2 Murine Abcc2; also known as Mrp2

Abcc3 Murine Abcc3; also known as Mrp3

ABCC3 The 3rd member of the C subgroup of ABC transporters, also known
as MRP 3

Abcg2 The murine orthologue of ABCG2 (BCRP), also known as Bcrp1

ABCG2 The second member of the G subgroup of human ABC transporter
proteins, also known as BCRP

ADME Absorption, Distribution, Metabolism and Excretion

AhR Aryl hydrocarbon receptor

AhRE Aryl hydrocarbon response element

Akt A family of serine-threonine protein kinases that regulate downstream
effectors controlling cell survival, protein and glucose metabolism.
Akts can be activated by phosphorylation by phosphatidylinositol-3-
kinases

Aldefluor® A fluorometric method for assessing for stem cells based on their
content of aldehyde dehydrogenase

ALL Acute lymphoblastic leukemia

AML Acute myelogenous leukemia

Ang1 Angiopoietin 1

ARE Anti-oxidant response element

AUC Area under the concentration-time curve

BBB Blood brain barrier

Bcl-2 B-cell lymphoma 2 protein. An apoptosis regulating protein that
opposes caspase activation

Bcl-2A1 Bcl-2-related protein A1: A Bcl-2 family member that can block
caspase activation

BCR-ABL A chimeric tyrosine kinase oncogene commonly found in chronic
myelogenous leukemias and sometimes in acute lymphocytic and
acute myelogenous leukemias

BCRP Breast Cancer Resistance Protein, ABCG2
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Bcrp1 The murine orthologue of BCRP

BMI-1 gene B lymphoma Mo-MLV insertion region 1 homolog gene. The gene
product is an oncogene that plays a crucial role in stem cell self-
renewal

BTB Blood testis barrier

cAMP Cyclic AMP

CD Clusters of differentiation

CFLAR CASP8 and FADD-like apoptosis regulator. It is also known as
FLICE-like inhibitory protein (FLIP). A gene product involved in the
regulation of apoptosis

CK8 Cytokeratin 8

CML Chronic myelogenous leukemia

c-Myc A transcription factor that regulates many genes by altering chromatin
structure by recruiting histone acetyltransferases to DNA

CNS Central nervous system

CNT1 gene Concentrative nucleoside transporter 1

CpG islands Regions of DNA rich in cytosine and guanine often located in the
promoter of a gene; Methylation of the cytosine residues in the CpG
island results in gene repression

CR Complete remission

CRE Cyclic-AMP response element

CREB Cyclic-AMP response element binding (protein)

CSF Cerebrospinal fluid

DFS Disease-free survival

DLBCL Diffuse large B cell lymphoma

E2 Estradiol

EGFR Epithelial growth factor receptor

ERE Estrogen response element

ERα Estrogen receptor α, a transcription factor

ES cells Embryonic stem cells

5-FU 5-fluorouracil, a chemotherapeutic drug

FLT3-ITD Fms-like tyrosine kinase 3 internal tandem duplication

FTC Fumitremorgin C

GAS1 gene A gene that encodes the growth arrest-specific protein 1

Gli Zinc finger transcription factors that are effectors of Hedgehog
signaling

GR Glucocorticoid receptor, a transcription factor activated by cortisol

HDAC Histone deacetylase
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HER2 Human epidermal growth factor receptor 2; its expression is
associated with aggressiveness in breast cancers

Hh Hedgehog

Hif-1α Hypoxia-inducible factor 1 transcription factor

HIF2α Hypoxia inducible factor 2 alpha, a transcription factor

HPLC High-performance liquid chromatography

HRE Hypoxia response element

HSP90 Heat shock protein 90

hTERT Human telomerase reverse transcriptase

HUGO Human Genome Organization

IL-1, IL-1β,
IL-6

Interleukins 1, 1β and 6, respectively

LRP Lung resistance protein, also known as the major vault protein. It is
not an ABC transporter

MBD2, MECP2 Methyl [CpG] binding domain protein 2: Members of a family of
proteins that bind specifically to methylated DNA; can repress
transcription in methylated gene promoters

MDR1 The gene which encodes human P-glycoprotein (ABCB1)

Mdr1a/1b Murine equivalent of P glycoprotein, encoded by the Mdr1a and
Mdr1b genes, also known as Abcb1/b2

miR Micro RNA: RNAs that bind to sequences in the 3' untranslated
region of mRNA and affect mRNA stability or interfere with RNA
translation

MPNST Malignant peripheral nerve sheath tumor

MRE Micro RNA response element

MRP1 Human Multidrug Resistance-associated Protein 1, also known as
ABCC1

Mrp2 Murine multidrug resistance protein 2, also known as Abcc2

Mrp3 Murine multidrug resistance protein 3, also known as Abcc3

MRP7 Multidrug resistance-associated protein 7; also known as ABCC10

mSin3A A co-repressor protein that interacts with methyl binding domain
proteins, histone deacetylase I and other proteins to repress
transcription of genes with methylated promoters

MSX2 A homeobox protein that serves as a transcriptional repressor by
regulating the binding of other transcription factors

mTOR Mammalian target of rapamycin, a serine-threonine kinase that is
involved with regulation of cell nutrition, proliferation and survival

MTX Methotrexate

Nanog A transcription factor that is involved with self-renewal of stem cells

NBD Nucleotide binding domain
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NF-κB Nuclear factor kappa-light-chain-enhancer of activated B cells: a
heterodimers transcription factor that often is involved in the cellular
response to stress

NF-κBRE NF-κB response element

NOD/SCID mice Non-obese diabetic severe combined immunodeficient mice

Notch1 A cell membrane localized receptor involved with developmental
processes; may be expressed in stem cells

Nrf2 Also known as nuclear factor (erythroid-derived 2)-like 2: a
transcription factor that may play a role in the regulation of oxidative
stress

NSCLC Non-small cell lung cancer

OCT1 Human organic cation transporter 1

Oct-4 Octamer-binding transcription factor 4. This protein is involved with
control of self-renewal; often expressed in embryonic stem cells; can
be a marker for primitive undifferentiated cells

OS Overall survival

p50 A 50 kilodalton protein that sometimes is a component of the NF-κB
heterodimer

p53 A53 kilodalton tumor suppressor protein that plays a central role in
regulation of the cell cycle

p65 A 65 kilodalton protein that sometimes is a component of the NF-κB
heterodimer

p-CREB Phospho-cAMP response element binding protein

PFS Progression-free survival

Pgp P-glycoprotein

Ph Philadelphia chromosome

PhIP 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine, a carcinogen
commonly found in cooked meat

PI3K Phosphatidyl inositol-3-kinase. A family of proteins involved in
regulation of cell growth, survival, differentiation and motility

Pim-1 A serine-threonine protein kinase protooncogene encoded by the
PIM1 gene

PPARγ Peroxisome proliferator-activated receptor gamma, a transcription
factor that forms a heterodimer with the retinoid X receptor (RXR)

PPIs Proton pump inhibitors

PRA Progesterone receptor isoform A

PRB Progesterone receptor isoform B

PRE Progesterone response element

PTEN Phosphatase and tensin homolog protein. A phosphatase that acts as a
tumor suppressor by inactivating pro-proliferative signaling effectors
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by dephosphorylation, such as dephosphorylating phosphatidylinositol
(3,4,5)-trisphosphate

PXR Pregnane X receptor, a nuclear transcription factor activated by
steroids or xenobiotics; Forms a heterodimer with the retinoid X
receptor

R-CHOP A chemotherapy regimen commonly used for B-cell lymphomas
comprised of rituxan, cyclophosphamide, doxorubicin, vincristine,
and prednisone

SALL4 Sal-like protein 4, a putative zinc-finger transcription factor

SCLC Small cell lung cancer

smad2/3 Intracellular proteins involved in transduction of signals from TGF-β
ligands to the nucleus

SNP Single nucleotide polymorphism

SOX2 gene Also known as the SRY (sex determining region Y)-box 2) gene,
SOX2 is a transcription factor essential for maintaining self-renewal
in stem cells

SP Side population

SP1 Specificity protein 1, a transcription factor; it interacts with MSX2

TGF-β Transforming growth factor beta

Tie2 Angiopoietin receptor tyrosine kinase 2

TKI Tyrosine kinase inhibitor

TMD Transmembrane binding domain

TNF-α Tumor necrosis factor alpha

UTR Untranslated region

VEGF Vascular endothelial growth factor

ZFX gene Encodes the zinc finger X-chromosomal protein, which regulates
transcription in embryonic and hematopoietic stem cells
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Figure 1.
Schematic of the physical properties of BCRP. BCRP is translated in the ER as a
nonfunctional monomer consisting of one NBD and six TMDs. After proper protein folding
and glycosylation of asparagine 596 in the ER, BCRP is transported through the Golgi to the
plasma membrane where it localizes as a functional oligomer comprised of four homodimers
joined by disulfide linkages involving cysteine 603. The exact site and sequence of
homodimerization and oligomerization of BCRP is still unclear. Subsequent to its function,
oligomeric BCRP is degraded in the lysosome. Any misfolded BCRP is recognized early on
in the ER and is targeted to the proteasome for degradation.
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Figure 2.
Schematic representation of transcriptional regulation of BCRP expression. Transcription
factors that bind to cis elements upstream of the BCRP E1B/C promoter with subsequent
activation or repression of the promoter are depicted diagrammatically. Signaling pathways
and extracellular stimuli that stimulate binding of the transcription factors are also shown.
The position of the various experimentally verified BCRP cis regulatory elements in relation
to the transcription start site of the BCRP E1B/C first exon are also shown. The trans and cis
regulatory elements were compiled from the literature cited in Section 2e, “Regulation of
BCRP expression and function” of this review.
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