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Abstract
We present a semi-parametric deconvolution estimator for the density function of a random
variable X that is measured with error, a common challenge in many epidemiological studies.
Traditional deconvolution estimators rely only on assumptions about the distribution of X and the
error in its measurement, and ignore information available in auxiliary variables. Our method
assumes the availability of a covariate vector statistically related to X by a mean–variance function
regression model, where regression errors are normally distributed and independent of the
measurement errors. Simulations suggest that the estimator achieves a much lower integrated
squared error than the observed-data kernel density estimator when models are correctly specified
and the assumption of normal regression errors is met. We illustrate the method using
anthropometric measurements of newborns to estimate the density function of newborn length.
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1. Introduction
In this paper, we present a general class of semi-parametric deconvolution estimators for the
density function of a random variable that is measured with error, and study one member of
this class in detail. Let the random variable X have density function fx, and suppose that X is
observed only as W where

(1)

and U is a standardized random error that is independent of X and has density fu. The density
function of W is given by the convolution of fx and fu,
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The objective is to estimate fx from the random sample W1, …, Wn. It is typically assumed
that fu is known, or can be characterized sufficiently well with additional information such
as replicate measurements or validation data.

This problem arises commonly in epidemiological studies, where the variable of interest
cannot be measured precisely. For example, deconvolution has been used to estimate usual
dietary intake distributions using data from self-report surveys such as 24-h recalls, which
are known to inaccurately measure individuals’ nutritional intake [1, 2]. Our research is
motivated in part by a study to assess error in anthropometric measurements of newborns.
Estimating the density of such measurements is of interest for detecting abnormal fetal
growth.

The deconvolution problem has a long history in the statistical literature. A number of
nonparametric estimators of fx have been suggested. Estimators based on Fourier
transformation of the kernel density estimator of fw were proposed by Stefanski and Carroll
[3] and have received a great deal of attention. A number of recent contributions to this
approach have been presented [4–7, among others]. Other researchers have presented
nonparametric maximum likelihood estimators [8], wavelet estimators [9, 10], and spline-
based estimators [2]. Chen et al. [11] suggest a semi-parametric estimator of fx that assumes
the existence of a transformation that maps X into a normal random variable. Elmore et al.
[12] propose a nonparametric estimator applicable to the deconvolution problem. Their
estimator uses covariate information to calibrate error-prone measurements in the population
of interest from a reference population in which measurements are error-free. Our approach
is closely related to that of Delaigle [13] who presented an estimator of the density of a
variable measured with a mixture of Berkson and classical errors.

For the most part, density deconvolution has been studied in a univariate context in the sense
that modeling assumptions are made only about the distribution of X and the measurement
W given X. For many important cases even the best convergence rates for nonparametric
estimation of fx are slow. For example, when U is known to be normally distributed,
nonparametric deconvolution estimators achieve at best a logarithmic rate of convergence
[14] in general, although faster rates are possible for super-smooth target densities [10].

These results may discourage researchers from using deconvolution estimators in cases
where sample sizes are not large. However, Wand [15] shows that deconvolution can be
beneficial with moderate sample sizes.

Although the objective in a deconvolution problem is estimating the univariate density of X,
in practice most data sets are multivariate and thus often contain covariates that are
correlated with the error-prone variable. The class of estimators we propose assumes the
availability of a covariate vector Z, statistically related to X, but independent of the error in
measuring X. The idea is to exploit the auxiliary information in Z to obtain improved
deconvolution estimators.

Our approach is flexible and relies on procedures familiar to statisticians, namely modeling
the conditional mean and variance of X given Z. The particular estimator we study in detail
assumes that the residual variation in the regression of X on Z is normal, though it need not
be homoscedastic. The utility of this special case derives from two facts: (i) the assumption
of normal residuals, after transformation possibly, is often reasonable, and (ii) statisticians
are adept at detecting non-normality and thus can often determine when the method is not
appropriate. We also make the assumption that measurement errors are normally distributed
with mean zero and known, constant variance.
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Our research is one of the first to investigate the use of covariate information in density
deconvolution problems, and there are many variations to the basic strategy. We describe the
approach in general, but we study only one particular version in detail through a simulation
study and a real-data example estimating the density of newborn length.

2. The semi-parametric approach

Let X, W, and U be as in equation (1), where U is a N(0,1) random variable and  is known.
Supposethat conditional on Z, the mean and variance of X are

(2)

respectively. We study in detail the case in which the mean and variance functions are
specified parametrically, hence the chosen notation, but in general one or both or these
functions could be estimated nonparametrically. Thus apart from the existence of the
specified moments, the only restrictive modeling assumption is that the conditional variance
of X given Z is a function of the conditional mean. The practical utility of such models in
applications is well documented and methods for fitting them are readily available [16].

The additional assumption that the standardized equation errors are independent and
identically distributed N(0,1) leads to the regression model

(3)

where ε1, …, εn, are the iid errors with common standard normal density φ, independent of
Z1, …, Zn. Under these assumptions the density function of X is

(4)

where fμ(t) is the density function of μx|z(Z, β). We are implicitly assuming that the

covariates are random, not fixed, and that  are independent and identically
distributed for j = 1, …, n.

An estimator of fx(x) is constructed by replacing the unknown components in (4) with
consistent estimates derived from the observed data. Under the assumption that the
measurement error U is independent of Z, it follows from equations (1) and (2) that

(5)

The induced regression model for W given Z is

where the induced equation errors,
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are again iid N(0,1), given Z.

Now consider a random sample of the observed data,  for j = 1, …, n. Mean and
variance function models fit to these data provide the estimates μ̂x|z(Z, β) and

, and hence of  via equation (5)

(6)

In principle any reasonable method of consistent estimation could be employed at this stage.
The key is that the variance is modeled as a function of the mean.

Model predicted values, μ̂x|z(Zj, β ̂), j = 1, …, n, are used to estimate fμ. For example, a kernel
density estimator of fμ is given by

(7)

where λ is the kernel bandwidth. It follows from well-known results that, provided the
model assumptions are valid and that the regression mean function is consistently estimated,
the empirical distribution of the predicted values will converge to the distribution of μx|z(Z,
β). For appropriate bandwidth sequences, therefore, the kernel density estimator will
converge to fμ.

Substituting the variance estimator (6) and the kernel estimator (7) into equation (4) gives

(8)

which we refer to as a regression-assisted deconvolution estimator of fx(x).

The regression-assisted deconvolution estimator is appealing for its reliance on regression
methods that are familiar to statisticians. Modeling the conditional mean of X given Z is
required, but can be done via any method. Modeling the conditional variance of X given Z as
a function of the conditional mean is critical. However, variance function modeling is
common statistical practice with many methods available [16]. The proposed estimator does
not rely on any particular technique for fitting these models. Indeed, models may be fit using
any appropriate regression method, including linear, nonlinear, semi-parametric and
nonparametric methods. Equally important is the assumption that regression errors are
normally distributed. Fortunately, violations of this assumption often can be detected with a
variety of techniques, and model transformations can be employed to yield normally
distributed regression errors.
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An interesting feature of the regression-assisted deconvolution estimator is that in theory, it
does not require estimation of the bandwidth parameter λ. There is no variance penalty for
letting λ shrink to zero, provided the variance function estimate in (6) is bounded away from
zero asymptotically. This is seen by making the change-of-variables with z = {t − μ̂(Zj, β ̂)}/λ
in equation (8), obtaining

Setting λ = 0 and simplifying yields

(9)

This form of the estimator is appealing because it avoids integration and the need to choose
a bandwidth. Note that when the conditional variance of X given Z is constant, i.e.

, equation (8) directly simplifies to

(10)

which, upon setting λ = 0 becomes

(11)

In both cases, the bandwidth is superfluous whenever Var(X|Z) is estimated well enough to
avoid instability caused by values too close to, or less than, zero. For small to moderate
sample sizes, when Var(W|Z) is close to , it is possible that Var(X|Z) estimated from (6)
will be negative, and using a positive value of λ will be necessary. Empirical evidence from
simulations suggests that using a standard bandwidth estimator such as the normal-reference
bandwidth [17] is sufficient to provide stability in these cases.

The scope of this paper is limited to exploring the feasibility of regression-assisted
deconvolution for the case where mean and variance functions are modeled parametrically
(e.g. least squares). We examine its finite-sample performance via simulation and a real-data
example. A discussion of the estimator’s asymptotic properties is provided in [18], where it
is shown that when the estimated mean and variance function parameters are -consistent
for their true values, the regression-assisted density estimator is also pointwise -consistent
and asymptotically normal.

3. Simulations
The regression-assisted deconvolution estimator relies heavily on the regression model
assumptions and normality of the regression errors. We performed a simulation study to
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determine how the success of the method is influenced by three key factors: (i) correct
specification of the mean and variance functions, (ii) precision of model predicted values,
and (iii) normality of the regression errors. As this study represents a first look at the
feasibility of using covariate information in density deconvolution, we restricted our
attention to relatively simple cases. All simulations considered multiple linear regression
models, i.e.

(12)

where ε1, …, εn are independent N(0, 1) random variables and are independent of Z1, …, Zn.
Our first two simulations examined models with constant residual variance,

, while a third examined a model with residual variance equal to an
exponential function of the mean. In each case the observed-data model is

(13)

where Uj is a N(0, 1) measurement error that is independent of both Zj and εj.

Simulations investigated how well the regression-assisted deconvolution estimator uncovers
features such as bimodality and skewness in the true-data density. Each of our three
simulations considered a different density for X: the standard normal density (Simulation 1),
a mixture of normals (Simulation 2), and an unnamed density with a minor right skew
(Simulation 3). In each case, the density of X was standardized to have mean 0 and variance
1.

Our interest is in small to moderate sample sizes, at least relative to the sample sizes needed
for nonparametric deconvolution. Simulated data sets contained n = 100 observations. For
each data set, in addition to computing the regression-assisted deconvolution estimator, we
computed the naive kernel density estimator which ignores the error in measuring X

(14)

as well as the true-data kernel density estimator

For comparison with a traditional nonparametric deconvolution estimator, we computed the
deconvoluting kernel density estimate proposed by Stefanski and Carroll [3]. This estimator
has the form

(15)
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where σ2 is the measurement error variance and ΦQ(t) is the characteristic function of the
kernel function Q(x), taken in these simulations to be Q(x) ∝ {sin(x)/x}4, so that a = 4. To
select bandwidth for this estimator we used the bootstrap procedure described by Delaigle
and Gijbels [19].

The regression-assisted deconvolution estimator requires an estimate of the true-data

variance, , found by subtracting  from the variance function estimated with the
fitted regression model, as in (6). With the sample size n = 100, this variance function is not
estimated well enough to avoid occasional negative values, or values very close to zero, for
the true-data variance. To avoid instability caused by such estimates, we used a version of
our estimator that included a positive bandwidth parameter λ, and set any negative variance
estimates to zero. For Simulations 1 and 2, with constant residual variance, we computed the
regression-assisted deconvolution estimator in equation (10). For Simulation 3, we used a
version of the estimator motivated by (10)

The normal-reference bandwidth was used as the constant for all three simulations, λ = 1.06
σ ̂*n−1/5, where σ ̂* is the sample standard deviation of the data [17]. While these versions of
our estimator are not bound by the same asymptotic behavior referred to in Section 2, they
should provide a good indication of the method’s potential performance in practical
situations.

Several factors were controlled in the study to allow investigation of the regression-assisted
deconvolution estimator’s sensitivity to key components of the regression model. Two
components controlled the precision of the predicted values. The reliability ratio, κ,
describes the ratio of the variance in the true data to the variance in the observed data

(16)

and was varied at two levels, 0.7 and 0.9. The theoretical coefficient of determination of the
regression of X on Z

(17)

was varied at five levels, 0.1, 0.3, 0.5, 0.7, and 0.9.

Perhaps most critical to the performance of the regression-assisted deconvolution estimator
is the assumption that the density of the model errors, fε(ε), is normal. Robustness to this
assumption was checked by generating model errors from non-normal distributions. We
considered skewed error distributions, namely centered Chi-squared(16) and Chi-squared(4).

Because the assumption of normal errors plays such an important role in the regression-
assisted estimator, we investigated the likelihood that departures from normality could be
detected in practice. As part of our simulation we included a study of the power of a
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common test for detecting non-normality of residuals. Our intent was to determine whether
it would be possible to detect non-normal regression residuals in those cases where the
extent of non-normality adversely affects the performance of the estimator. The regression
errors from the fit of the observed-data model in equation (13) have density function defined
by the convolution of fε(ε) and the  density. Residuals were tested for normality with
the D’Agostino–Pearson K2 statistic [20], which has higher power than many others for
detecting non-normal skewness and kurtosis in data.

An additional factor included in the simulations was determined to have limited effects on
the performance of the estimator. Model mis-specification due to over-fitting and under-
fitting had no significant effect on the estimator’s performance in those simulations where
residual variance was constant (Simulations 1 and 2). For these simulations we report results
for the correctly specified model only.

3.1. Simulation 1: estimation when fx (x) is the standard normal density
This simulation examined the performance of the regression-assisted deconvolution
estimator when fx(x) is the N(0, 1) density. We considered the linear model in (12) where Zj
is a 4 × 1, N(0,I4) random vector independent of εj. For the case where the model
assumptions are met, and εj is a N(0, 1) random variable, it follows that X1, …, Xn is a

random sample from the normal distribution with mean 0 and variance . Adding the
constraint

(18)

results in the sample X1, …, Xn of independent standardized normal random variables. Note
from equations (17) and (18) that this implies

(19)

Data were generated for each level of R2, κ, and fε(ε) as follows. Covariate vectors, Z1, …,
Zn, were generated as independent N(0,I4) random vectors. Regression errors, ε1, …, εn,

were generated from their standardized density and were scaled by . For β satisfying
equation (19), a true-data sample was computed from equation (12). Standard normal
measurement errors were generated and scaled by , and added to the true data to
form an observed-data sample as in equation (13).

Average integrated squared errors are plotted in Figure 1. In the case of normal regression
errors, the regression-assisted deconvolution estimator yields a significantly smaller
integrated squared error than both the naive estimator and the Stefanski–Carroll estimator. It
is even superior to the true-data estimator for small values of R2. This seemingly anomalous
finding is explained by the fact that the true-data kernel density estimator does not make use
of any assumptions about the distribution of X. Underlying the construction of the
regression-assisted estimator is the implicit assumption that the density of X has a
component that is normal. The regression-assisted estimator exploits this assumption and
thus it is not surprising that it can beat the true-data estimator when the assumption is
satisfied.

That the regression-assisted deconvolution estimator performs well when the assumption of
normal model errors is met is not surprising. However, our results suggest that it should be
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used cautiously when regression errors are determined to be far from normal. Note from
equation (12) that in these cases, the density function of X is the convolution of a

 and a Chi-squared density centered at 0 and scaled to have variance . From
equation (19) it is seen that fx(x) changes with R2, its skewness increasing as R2 decreases.
Indeed, Figure 1 shows that the integrated squared error of the regression-assisted estimator
is most strongly influenced by non-normality when R2 is small and the distribution of the
model errors is highly skewed. However, non-normality in the residuals from the fit of the
observed-data model was detected consistently in these cases with the D’Agostino–Pearson
K2 test. The power of this test is summarized in Table I.

3.2. Simulation 2: estimation when fx (x) is a normal mixture density
The aim of this simulation was to investigate how well the regression-assisted deconvolution
estimator uncovers bimodal features in the true-data density. We generated X from a mixture
of two normal densities. For clarity, we rewrite the linear model in equation (12) as

(20)

where Z1, j is a Bernoulli(α) random variable, Z2, j is a 3 × 1, N(0,I3) random vector, Z1, j,

Z2, j, and εj are mutually independent, and the residual variance  is again constant. When
model assumptions are met and εj is a N(0, 1) random variable, it follows that X1, …, Xn is a
random sample from an {α:(1−α)} mixture of normals having means β1(1− β) and − β1α

respectively, and common variances . Standardizing X required that

(21)

Note from (19) that this induces the constraint that . The parameters β1 and α
determine the appearance of distinct modes in fx(x), and for small values of R2, the modes of
densities that satisfy this constraint are obscured. In this simulation, we allowed the true-data
density to vary with R2. We fixed α = 0.7 and chose β1 close to its maximum value for each
R2, resulting in the variety of shapes for the true-data density displayed in Figure 2.
Although this complicates comparisons of estimators among levels of R2, comparisons
within levels of R2 are straightforward.

Data for this simulation were generated as follows for each level of R2, κ, and fε(ε). First,
Z1, 1 …, Z1, n were generated as independent Bernoulli(0.7) random variables, and Z2,1, …,
Z2, n were generated as independent N(0,I3) random vectors. Second, model errors, ε1, …,

εn, were generated from fε(ε) and scaled by . With β1 determined by the level of
R2, and β2 satisfying equation (21), these components were combined according to equation
(20) to form the true-data sample. Finally, N(0,1) measurement errors with variances

, were added to the true data to produce the observed-data sample.

Average integrated squared errors are displayed in Figure 3. When model errors are
normally distributed, the regression-assisted deconvolution estimator is superior to the naive
and Stefanski–Carroll [3] estimators for all values of R2 and κ, and performs at least as well
as the true-data estimator. It is less effective when model errors are Chi-squared distributed,
particularly when errors are highly skewed and R2 is small. We note that as in Simulation 1,
fx(x) becomes increasingly skewed with the density of the regression errors. Our estimator
performed significantly worse than the naive estimator when errors were Chi-squared(4)
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distributed, R2 was equal to 0.1, and κ was equal to 0.9. In general, the D’Agostino–Pearson
K2 statistic was effective in detecting non-normality in the residuals from the regression of
W on Z in the situations where the regression-assisted deconvolution estimator performed
weakly. The power of this test is summarized in Table II.

3.3. Simulation 3: estimation of fx(x) under non-constant residual variance
Our objective in this simulation was to determine how well our estimator performs when
regression errors are heteroscedastic. We assumed the conditional mean of X is given by the
linear model in (12), and the conditional variance by an exponential function of the mean.
Specifically

(22)

As in Simulation 1, Zj was taken to be a N(0,I4) random vector, independent of εj. For the
case where model assumptions are met and εj is a N(0, 1) random variable, the resulting
distribution for X is non-standard, and from (4) is seen to be

(23)

It is straightforward to show that E(X)= 0 and Var(X)= ξ2eβTβ/2 + βTβ. Equation (17) and the
requirement that Var(X)= 1 impose the constraint

(24)

There is a slight left skew in the density function which depends on the value of R2. For the
values considered in our simulation study, the skew is most pronounced for R2 = 0.5 and
least pronounced for R2 = 0.1 or 0.9.

Simulated data sets were generated as follows. Covariates Z1, …, Zn were generated as
independent N(0,I4) random vectors. For each level of R2, β was chosen to satisfy (17), and
ξ computed using (24). Regression errors were generated from their standardized density
fε(ε) and scaled by the variance function in (22). A true-data sample was then constructed
with (12). Standard normal measurement errors were scaled by  and added to the
true data, resulting in the observed-data sample. Parameters for the mean and variance
functions were estimated using iteratively reweighted least squares.

Two incorrectly specified models were also fit to each simulated data set. This was done as
follows. For each data set, eight additional covariate vectors were generated, each
uncorrelated with the observed response. The observed data were regressed on all 12
covariates. An under-fit model was estimated by selecting the two covariates whose
estimated parameters had the largest absolute t-statistics. Similarly, an over-fit model was
estimated by selecting the eight covariates whose estimated parameters had the largest
absolute t-statistics.

We again used the D’Agostino–Pearson K2 test to test for normality of residuals in those
cases where regression errors were generated from Chi-squared distributions. Regression
errors for this model have non-constant variance that is a function of unknown parameters.
Therefore, we standardized residuals using the estimated parameters in the variance
function. The test was performed only using residuals from the correctly specified model.
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Average integrated squared errors are plotted in Figure 4. We note that due to the non-
standard form of fx(x) in this simulation, e.g. equation (23) for the case of normal errors, we
determined this density via a kernel density estimate based on a Monte Carlo sample of size
one million. The most striking result here is the obvious effect of model mis-specification,
particularly in terms of over-fitting, and for small values of R2. A likely explanation is the
increased variability caused by over-fitting, which will have a larger impact for this model
than one with constant residual variance. Conversely it appears that under-fitting is a greater
problem for larger values of R2, when the introduced bias becomes more obvious. For the
correctly specified model, however, the average ISE is generally smaller than that of the
naive estimator when regression errors are normal or even Chi-squared(16) distributed. The
effect of the highly skewed Chi-squared(4) errors is substantial even when the model is
correctly specified. Here our estimator does as well as the naive estimator only for the
largest values of R2.

Unfortunately, as shown in Table III, the power to detect non-normality is small for almost
every case considered here. This simulation suggests that our estimator be used cautiously
with a more complex mean–variance function model when regression errors may be non-
normal.

4. Application
We illustrate our deconvolution estimator on data from a study conducted at the Magee
Womens Hospital in Pittsburgh, PA to assess error in anthropometric measurements of
newborns. Anthropometric measurements are used to identify abnormal fetal growth, which
can indicate an elevated risk of cardiovascular disease in adulthood. Measurements are
typically taken by clinical staff immediately following delivery, and are known to be subject
to error. Clinical measurements of length (cm), weight (g), and head circumference (cm)
were obtained on 354 infants within two hours of birth. Measurements were repeated on all
newborns by trained research staff within five days of the clinical measurement. Additional
covariates including race, sex, and gestational age were recorded for each infant.

We used these data to estimate the density function of newborn length. We took the view
that measurements taken by trained research staff were error-free, and used them as
validation data. The estimated reliability ratio for the clinical length measurements was 0.66,
and measurement errors had an estimated standard deviation of 1.73 cm. Errors also had a
slight positive bias of 1.03 cm, which was subtracted from the data before analysis. The
hypothesis that measurement errors were normally distributed was not rejected with the
D’Agostino–Pearson K2 test (p = 0.40).

We fit a multiple linear regression model to the clinical length measurements. The validation
data showed that clinical measurements of infant weight were relatively precise, with an
estimated reliability ratio of 0.98. We assumed that measurement error in this variable was
negligible and included it as a covariate in the regression. Our regression model included
terms for weight, sex, and a weight–sex interaction, and resulted in an R2 of 0.47. Model
MSE was 3.57, which with equation (6) resulted in an estimate of 0.57 for the conditional
true-data variance. Residuals showed weak evidence of non-normality with the D’Agostino–
Pearson K2 test (p = 0.10).

The regression-assisted estimate was computed from equation (11) and is plotted in Figure
5. Also plotted are kernel density estimates computed from both the clinical and research
staff measurements, using the normal-reference bandwidth [17], as well as the Stefanski–
Carroll [3] estimator in equation (15) with bandwidth chosen as the value that minimized the
ISE between f̂sc(x) and the kernel density estimate from the research measurements.
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The regression-assisted estimate agrees well with the estimate computed from the research
staff measurements. An important difference appears in the tails of the four estimated
densities. Tail probabilities are of particular interest in this application for identifying
newborns at risk for health complications. Judging from the research data, the regression-
assisted estimate underestimates the density in the tails, corresponding to smaller estimated
tail probabilities. We note that the estimate computed from the research data indicates that
the true length density is not far from normal. Part of the success of our estimator in this
example likely comes from this fact. The marginal R2 value for our regression model means
that our estimator models a large portion of the density as normal, and thus has a relatively
easy time approximating that shape.

5. Discussion
Our results indicate that the regression-assisted deconvolution estimator is a potentially
powerful tool for density deconvolution. Although departures from assumptions are clearly
problematic for more complicated mean–variance function models.

Our initial investigation of regression-assisted deconvolution considered only parametric
regression models. For the method to achieve its full potential nonparametric (or semi-
parametric) mean and variance function modeling will likely be necessary. Of course then
the  convergence rates obtained with parametric modeling will likely not hold. We
conjecture that in general, the regression-assisted estimator will inherit the minimum of the
convergence rates of the mean and variance function estimates. The slower rates associated
with nonparametric function estimation would come as the trade-off for a more robust
estimator. Still, the rates of convergence associated with fully nonparametric mean and
variance function estimation are typically faster than those associated with deconvolution
[10, 14], and thus the proposed approach offers a substantial improvement over standard
deconvolution estimators.
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Figure 1.
Average ISE for Simulation 1. Circle: f̂true(x); triangle: f̂naive(x); square: f̂sc(x); star: f̂x(x).
Top: N(0,1) errors; middle: standardized Chi-squared(16) errors; bottom: standardized Chi-
squared(4) errors. Pooled standard error of mean ISE is 0.00024 for N(0,1) errors, 0.00021
for Chi-squared(16) errors and 0.00033 for Chi-squared(4) errors. Sample size for all
simulations is n = 100.
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Figure 2.
70–30 normal mixture densities with means ±β1 for different values of R2. A: R2 = 0.1, β1 =
0.6; B: R2 = 0.3, β1 = 1.1; C: R2 = 0.5, β1 = 1.5; D: R2 = 0.7, β1 = 1.8; E: R2 = 0.9, β1 = 1.9.
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Figure 3.
Average ISE for Simulation 2. Circle: f̂true(x); triangle: f̂naive(x); square: f̂sc; star: f̂x(x). Top:
N(0,1) errors; middle: standardized Chi-squared(16) errors; bottom: standardized Chi-
squared(4) errors. Pooled standard error of mean ISE is 0.00033 for N(0,1) errors, 0.00047
for Chi-squared(16) errors and 0.00059 for Chi-squared(4) errors. Sample size for all
simulations is n = 100.
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Figure 4.
Average ISE for Simulation 3. Circle: f̂true(x); triangle: f̂naive(x); square: f̂sc; star, solid line:
f̂x(x) with correctly specified model; star, dotted line: f̂x(x) with under-fit model; star, dashed
line: f̂x(x) with over-fit model. Top: N(0,1) errors; middle: standardized Chi-squared (16)
errors; bottom: standardized Chi-squared (4) errors. Pooled standard error of mean ISE is
0.0079 for N(0,1) errors, 0.0074 for Chi-squared(16) errors and 0.0102 for Chi-squared(4)
errors. Sample size for all simulations was n = 100.
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Figure 5.
Density estimates of newborn lengths. Solid line: kernel density estimate computed from
research measurements; dotted line: kernel density estimate computed from clinical
measurements; dashed line: regression-assisted estimate; dot–dash: Stefanski–Carroll
estimate.
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Table I

Power of the D’Agostino–Pearson K2 test in Simulation 1 to detect non-normality in observed-data regression
residuals when true model errors are standardized Chi-square(4) and Chi-square(16) random variables.

R2

Chi-square(4) Chi-square(16)

κ = 0.7 κ = 0.9 κ = 0.7 κ = 0.9

0.1 0.54 0.87 0.24 0.40

0.3 0.47 0.82 0.18 0.36

0.5 0.36 0.75 0.15 0.33

0.7 0.26 0.63 0.10 0.27

0.9 0.10 0.31 0.06 0.14

Stat Med. Author manuscript; available in PMC 2012 March 19.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

McIntyre and Stefanski Page 20

Table II

Power of the D’Agostino–Pearson K2 test in Simulation 2 to detect non-normality in observed-data regression
residuals when true model errors are standardized Chi-square(4) and Chi-square(16) random variables.

R2

Chi-square(4) Chi-square(16)

κ = 0.7 κ = 0.9 κ = 0.7 κ = 0.9

0.1 0.64 0.90 0.23 0.43

0.3 0.56 0.87 0.25 0.39

0.5 0.41 0.83 0.16 0.33

0.7 0.26 0.70 0.09 0.25

0.9 0.09 0.33 0.07 0.11
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Table III

Power of the D’Agostino–Pearson K2 test in Simulation 3 to detect non-normality in observed-data regression
residuals when true model errors are standardized Chi-square(4) and Chi-square(16) random variables.

R2

Chi-square(4) Chi-square(16)

κ = 0.7 κ = 0.9 κ = 0.7 κ = 0.9

0.1 0.61 0.89 0.32 0.48

0.3 0.48 0.85 0.25 0.41

0.5 0.43 0.77 0.26 0.34

0.7 0.38 0.57 0.30 0.25

0.9 0.52 0.40 0.49 0.34
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