
[19:01 25/2/2012 Bioinformatics-bts038.tex] Page: 815 815–822

BIOINFORMATICS ORIGINAL PAPER Vol. 28 no. 6 2012, pages 815–822
doi:10.1093/bioinformatics/bts038

Gene expression Advance Access publication January 23, 2012

Using biologically interrelated experiments to identify pathway
genes in Arabidopsis
Kyungpil Kim1,†, Keni Jiang2,†, Siew Leng Teng3,†, Lewis J. Feldman2,∗ and Haiyan
Huang4,∗
1Division of Biostatistics, University of California, Berkeley, 2Department of Plant and Microbial Biology, University of
California, Berkeley, CA 94720, 3Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, and 4Department of
Statistics, University of California, Berkeley, CA 94720, USA
Associate Editor: David Rocke

ABSTRACT

Motivation: Pathway genes are considered as a group of genes that
work cooperatively in the same pathway constituting a fundamental
functional grouping in a biological process. Identifying pathway
genes has been one of the major tasks in understanding biological
processes. However, due to the difficulty in characterizing/inferring
different types of biological gene relationships, as well as several
computational issues arising from dealing with high-dimensional
biological data, deducing genes in pathways remain challenging.
Results: In this work, we elucidate higher level gene–gene
interactions by evaluating the conditional dependencies between
genes, i.e. the relationships between genes after removing the
influences of a set of previously known pathway genes. These
previously known pathway genes serve as seed genes in our model
and will guide the detection of other genes involved in the same
pathway. The detailed statistical techniques involve the estimation
of a precision matrix whose elements are known to be proportional
to partial correlations (i.e. conditional dependencies) between genes
under appropriate normality assumptions. Likelihood ratio tests on
two forms of precision matrices are further performed to see if
a candidate pathway gene is conditionally independent of all the
previously known pathway genes. When used effectively, this is a
promising approach to recover gene relationships that would have
otherwise been missed by standard methods. The advantage of the
proposed method is demonstrated using both simulation studies and
real datasets. We also demonstrated the importance of taking into
account experimental dependencies in the simulation and real data
studies.
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Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
A biological pathway is a series of chemical reactions that form
an integral and critical part of every biological process. Pathway
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genes, or genes involved in the same biological pathway, constitute
a fundamental functional grouping in a biological process. A major
task in understanding biological processes is to identify a set of genes
in the same biological pathways and elucidating the relationships
between them.

Using gene expression data, there have been two popular
computational approaches for finding pathway genes: clustering
analysis and network models. Clustering analysis uses a
co-expression measure to quantify similarities in gene expressions
and then assigns similar genes into clusters (Eisen et al., 1998).
Genes in each cluster are considered to be functionally related, and
thus likely to be in the same pathway. This approach works when
the pathway genes exhibit strong co-expressions with one another.
Network models generally model a pathway as a network, with the
genes represented as nodes and the gene relationships represented
as edges linking the nodes, e.g. the work in Friedman et al. (2000).
Starting with a full network, a typical pathway can be identified as a
connected (sub)network after all the weak or insignificant edges are
removed by a backward edge exclusion technique. Or alternatively,
starting with an empty network, strong or significant edges can be
added gradually to form a (sub)network using the method of forward
inclusion of edges. Both have been widely used in literature to
construct biological networks (Bolouri and Davidson, 2002; Butte
and Kohane, 2000; De la Fuente et al., 2004; Dobra et al., 2004;
Edwards, 1995; Lauritzen, 1996; Matsuno et al., 2006; Opgen-Rhein
and Strimmer, 2007; Schäfer and Strimmer, 2005a, b; Wille et al.,
2004).

The property of a network mainly relies on how to evaluate the
edges between genes. There are two ways to assign edge weights.
One is based on gene covariance matrix, which measures marginal
similarity/correlation between any two genes. The other is based on
inverse covariance matrix of genes, leading to a graph concerning
conditional independence relationships. The latter is equivalent to
using partial correlations as similarities.

Despite their appealing features, the approaches described above
have limitations. One limitation comes from the high dimensionality
of microarray data. The well-known large p, small n problem can
result in an unreliable co-expression measure and hence a very
high rate of false discoveries in clustering analysis. In the network
models, this raises concern about the stability and accuracy of the
model inference; it is almost impossible to employ the network
models on a genomic scale as the estimation of covariance or its
inverse matrices becomes problematic. Although there has been
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recent work such as regularized network models to overcome this
problem (Schäfer and Strimmer, 2005a, b), the accuracy of the
results remains unclear. As such, in practice, these approaches are
usually applied to a rather small number of genes or among a
small number of clusters of genes preselected based on some prior
knowledge, which as a consequence, makes it difficult for us to
explore the whole genomic scale of information.

Another concern is related to the limited biological inference
of these approaches. Cluster methods are based on a marginal
co-expression measure between two genes independent of other
genes. Similarly in a network model using covariance matrix, an
edge only connects genes with strong marginal correlations. Such
approaches potentially expose us to the risk of missing higher level
interactions such as group interactions, i.e. gene A interacts with a
group of genes but it does not possess any strong relationship with
the individual ones. This group interaction is frequently observed
in real biological pathways when a group of genes cooperatively
regulate one gene. Using the inverse covariance matrix of genes in a
network model has a better hope for detecting such kinds of higher
level interactions. The inverse covariance matrix is also known
as the precision matrix, whose elements have an interpretation
in terms of partial correlations (i.e. the correlation between any
two genes conditioned on one or several other genes). However,
in the current literature, partial correlation is mostly calculated
conditioned on either all the available genes or a more-or-less
arbitrary subset of them that likely contain noisy (i.e. non-pathway
or biologically unrelated) genes. It is reported that conditioning
on all genes simultaneously can introduce spurious dependencies
which are not from a direct causal effect or common ancestors
(De la Fuente et al., 2004). This problem may be circumvented
to some extent by considering lower order partial correlations, e.g.
calculating a partial correlation of two genes conditioned on every
other individual variables (first-order partial correlation), and on
every other two variables (second-order partial correlation) (De
la Fuente et al., 2004; Magwene and Kim, 2004; Wille et al.,
2004; Wille and Bühlmann, 2006). However, one concern on lower
order partial correlation is its insensitivity for inferring higher level
gene associations such as group interactions. More importantly, if
the conditioned genes are biologically unrelated, the corresponding
conditional dependence properties would be difficult to interpret
and verifying the biological relevance of the recovered networks
becomes challenging. Further discussions on the adverse effects of
conditioning on noisy genes are given in Sections 2 and 3.

In this article, we introduce a new pathway gene search algorithm,
designed based on evaluating partial correlations between genes, for
a particular biological pathway of interest. The motivation of using
partial correlation is based on its ability to detect complex gene
relationships under appropriate normality assumptions of the data:
(i) a strong partial correlation between two genes suggests a direct
interaction despite a weak marginal correlation; (ii) a negligible
partial correlation suggests no direct relationship after removing
influences from other genes and the two genes are conditionally
independent. To overcome the concerns and limitations of current
methods for using partial correlations, we require a few (e.g. 3–5)
preselected biologically related pathway genes, upon which the
partial correlation is conditioned on, to guide the search. Specifically,
we perform the likelihood ratio tests to see if a candidate gene is
conditionally independent of all the preselected known pathway
genes. The requirement of pre-known pathway genes seems a

limitation of our approach. However, by incorporating this small
amount of biological knowledge, huge advantages on biological
inference can be gained and false positive discoveries have been
reduced dramatically (Section 3). Furthermore, by conditioning
on preselected pathway genes, the resulting partial correlation
coefficients can be directly interpreted as a similarity measure
to the considered pathway. In addition to suggesting satisfying
mathematical and biological properties, the proposed approach
is also advantageous computationally since we only need to
estimate a moderate dimensional precision matrix once for each
candidate gene.

Moreover, we also take into account the presence of experiment
dependencies in the gene expression data when estimating a
precision matrix [elements in a precision matrix are proportional
to partial correlations between genes (Schäfer and Strimmer,
2005a)]. In current studies of gene relationships, the presence of
expression dependencies attributable to the biologically interrelated
experiments has been widely ignored. When unaccounted for
these (experiment) dependencies can result in inaccurate inferences
of functional gene relationships, and hence incorrect biological
conclusions (Teng and Huang, 2009). Our simulation and real data
study supports this conclusion and confirms that considering those
dependencies indeed plays a critical role in correctly inferring
pathway gene relationships.

The rest of the article is organized as follows. In the Section
2, we introduce the mathematical and statistical background of
our approach. In Section 3, we demonstrate the model validity
and evaluate the performance of our approach using extensive
computer simulations and real data applications. In real data
applications, we apply it to genomic scale Arabidopsis thaliana
datasets obtained from four different types of environmental stresses
(oxidation, wounding, UV-B light and drought). We examine the
effects of these stresses by focusing on the genes associated with
the glucosinolate (GSL) and flavonoid biosynthesis (FB) pathways.
Finally, we discuss the advantages as well as potential drawbacks
of our framework and consider further directions for research.

2 METHODS
As we discussed earlier, in contrast to marginal calculation (e.g. the Pearson
correlation), partial correlation can work as a more effective tool for inferring
complex gene interactions in pathways when it is properly computed. Below,
we first provide a brief review on the concept of partial correlation, followed
by a detailed description of a new search strategy, designed based on a
likelihood ratio test on partial correlations, for finding pathway genes.

2.1 Partial correlation
When an expression matrix (with genes in rows and experimental conditions
in columns) is multivariate normally distributed, standard graphical model
theory (Edwards, 1995) shows that the partial correlation between genes can
be equivalently represented by the corresponding elements in the precision
matrix (�G)−1 , where �G is the covariance matrix. That is, for a set of
genes W , the partial correlation between genes i and j can be expressed as

ρij =cor
(
i,j|W\{i,j} )=

{
− ωij√

ωiiωjj
, i �= j

1, i= j
(1)

where ωij are elements in the inverse gene covariance (or inverse gene
correlation) matrix (Edwards, 1995; Schäfer and Strimmer, 2005a). With
the normality assumption on expression measurements, when ρij vanishes,
two genes i and j are conditionally independent given the remaining genes.
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2.2 Method motivation
A negligible element in the precision matrix suggests conditional
independence between two genes. This motivates us to use precision
matrix as a key component in our method for detecting higher level
gene interactions, e.g. group gene interactions in a pathway. However,
the successful use of partial correlation highly relies on two issues. One
issue is about the selection of a proper set of genes upon which the
correlation is conditioned on, i.e. W\i,j in formula (1). When this set of
genes contains noisy (i.e. non-pathway) genes, the derived partial correlation
would be unreliable for detecting gene relationships. We can see this
explicitly through a linear regression interpretation of partial correlation:
the partial correlation ρij between gene i and gene j conditioned on a set
of genes Z is simply the correlation cor(ε1,ε2) of the residuals ε1 and
ε2 resulting from linearly regressing gene i and gene j against the genes
in Z , respectively. Assume we have pre-known pathway genes x and y,
and a non-pathway gene h that is independent of genes x and y in Z .
Now we consider two candidate genes u=x+y and v=δ(x+y)+h (note
that these two equations only represent the expression relationship between
the genes), where δ is small and close to 0. Clearly, u is more likely to
be a pathway gene due to its direct and strong relationship with two pre-
known pathway genes x and y, while v is more likely to be a non-pathway
gene since it is almost a replicate of the non-pathway gene h. However,
the partial correlations cor(u,x|Z\{x})=cor(v,x|Z\{x})=cor(u,y|Z\{y})=
cor(v,y|Z\{y})=1, showing no advantages of gene u over gene v for
their partial correlations with the pathways genes x and y. This undesired
performance is due to the inclusion of noisy genes in the gene set Z upon
which the partial correlation was computed. Recognizing this, we decide
to build up our approach by conditioning only on a small set of pre-
known pathway genes to reduce noise in partial correlation estimation.
We call this set of pre-known pathway genes as seed genes. Though the
requirement of seed genes seems a limitation, only 3–5 seed genes are
really needed for our method to run and generate reliable results. In brief,
by incorporating a small amount of prior biological information, we can
gain huge advantages in detecting genes involved in a particular pathway
(Section 3). Furthermore, in Section 3, by using both simulation and real
data, we additionally demonstrate the adverse effects of having noisy genes
in the set of seed genes in detecting pathways genes. The other issue critical
to the proper use of partial correlation is on the estimation of gene precision
matrix [see Formula (1)]. Given a gene expression matrix with genes in
rows and experiments in columns, an effective estimation of gene precision
matrix is challenging especially when there are experiment dependencies
(or when the row-wise and column-wise dependencies co-exist) in the
original gene expression. Experiment dependencies can be defined as the
dependencies in gene expression between experiments due to the similar
or related cellular states induced by the experiments (Teng and Huang,
2009). Such dependencies cause dependent elements in a gene expression
vector. When unaccounted for, they can result in inaccurate inferences of
gene relationships, and hence incorrect biological conclusions. To take into
account the experiment dependencies in partial correlation estimation, we
adapt a model and an estimation procedure, named Knorm from Teng and
Huang (2009), for inferring gene correlation matrix when there are both
the gene-wise and experiment-wise dependencies in the gene expression
matrix. The main aspect of the framework is the use of a Kronecker product
covariance matrix to model the gene–experiment interactions. The Knorm
estimation is mainly achieved by an iterative estimation of the two covariance
matrices: one covariance matrix is estimated through a weighted correlation
formula assuming the other covariance matrix is known. In addition, a
row subsampling technique (to enable a comparable number of rows and
columns in estimation) and a covariance shrinkage technique (to stabilize the
estimated covariance matrices) are employed to ensure a robust estimation.
Compared with the Pearson coefficient, the Knorm correlation has a smaller
estimation variance when experiment dependencies exist. More details of
incorporating Knorm in our estimation procedure are presented in next
section.

2.3 Likelihood ratio tests for pathway gene search
Let S ={g1,...,gk} denote the set of seed genes for a pathway of interest and G
denote the set of all genes whose expression measurements in T experiments
(each experiment may have >1 replicates) are available. Usually |G|�|S|=
k and T > |S|. Motivated by the arguments in the above section, we formulate
a searching strategy, based on performing likelihood ratio tests, for pathway
genes as follows.

(i) We first estimate the experiment correlation matrix �E using the Knorm
R package provided by Teng and Huang (2009). The input data are the
expression measurements of the |G| genes in T experiments, and there are
>1 replicated samples for each experiment. To generate expression matrices,
we randomly choose one replicate from each experiment to compose a sample
matrix Xb of dimension |G|×T and by repeating this process, we generate B
sample matrices X1,...,XB with B large enough. By the model in Teng and
Huang (2009), Xb is considered to be generated from a multivariate normal
distribution with mean M (a matrix of dimension |G|×T ) and a covariance
matrix �G ⊗�E , where �G represents the gene covariance matrix and �E

is the experiment correlation matrix. The output of the Knorm R package is
the estimated M and �E , denoted as M̂ and �̂E , by an iterative estimation
procedure. More details on the Knorm estimation procedure can be found in
(Teng and Huang, 2009).

(ii) For a candidate gene gc ∈G\S (S is the set of k seed genes), we estimate
the gene covariance matrix for genes in S∪gc by �̂c = 1

B

∑B
b=1 �̂c,b, where

�̂c,b = (Xc,b −M̂)(�̂E )−1(Xc,b −M̂)′

T
. (2)

Xc,b represents one of the sample matrices [of dimension (k+1)×T ]
constructed by bootstrapping the replicates of each experiment for the
expression measurements of the genes in S∪gc (the first k rows correspond
to the k seed genes and the row k+1 corresponds to the candidate gene gc).

(iii) Obtain the precision matrix, �̂∗
c,1 = (�̂c)−1. Note that we usually

require T >1.5k so that �̂c is usually invertible. When �̂c is not invertible,
we use its pseudo inverse. �̂∗

c,1 will be used as an approximate Maximum
Likelihood Estimate (MLE) of the precision matrix under the alternative
model in Equation (3). We further write

�̂∗
c,1 =

⎡
⎢⎢⎢⎣

a1,1 ··· a1,k a1,k+1

.

.

.
. . .

.

.

.
.
.
.

ak,1 ··· ak,k ak,k+1

ak+1,1 ··· ak+1,k ak+1,k+1

⎤
⎥⎥⎥⎦,

where ai,j =aj,i for i=1,...,k+1 and j=1,...,k+1.
(iv) Obtain matrix �̂∗

c,0 from �̂∗
c,1 by replacing the offdiagonal elements

in the bottom row and rightmost column of �̂∗
c,1 by zeros. That is,

�̂∗
c,0 =

⎡
⎢⎢⎢⎣

a1,1 ··· a1,k 0
.
.
.

. . .
.
.
.

.

.

.

ak,1 ··· ak,k 0
0 ··· 0 ak+1,k+1

⎤
⎥⎥⎥⎦.

�̂∗
c,0 will be used as an approximate MLE of the precision matrix under the

null hypothesis in Equation (3).
(v) Perform the following hypothesis test

H0 :�∗ ∈�0 vs H1 :�∗ ∈�\�0,

where �0 is the collection of precision matrices (for the genes in S∪gc) with
zero offdiagonal elements in the bottom row and rightmost column, and � is
the collection of all possible precision matrices. The null hypothesis assumes
conditional independence between the candidate gene and each of the seed
genes given all other seed genes. Then the test statistic is

−2logLR∗

= −2log
sup�∗∈�0 L(�∗;X1,··· ,XB)

sup�∗∈�L(�∗;X1,··· ,XB)

≈ −2(l(�̂∗
c,0;X1,··· ,XB,M̂)−l(�̂∗

c,1;X1,··· ,XB,M̂)), (3)
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where L(·) and l(·) denote the likelihood and the log-likelihood function,
respectively. When a candidate gene has no relationship with the pathway
seed genes, the corresponding elements in a precision matrix will be close
to zeros (i.e. null is true and the test statistic will be small). In contrast, if a
candidate gene has a significant association with the pathway genes, those
values will be far from zero and naturally the test statistic will be large and
declared as significant under the test.

(vi) Repeat steps (ii)–(v) for all candidate genes in G\S. Given the test
statistic values for all the candidate genes, we rank them in decreasing order.
It is a natural interpretation that the higher a candidate gene is ranked in the
list, the more likely that gene is associated with the seed genes. Based on
the list, we can decide how many of them should be declared as pathway
genes using statistical thresholds (see Supplementary Material for p-value
calculations) and/or biological cutoff. We call this method as pwsrc.knorm.

If there are questions on which known pathway genes to include as seed
genes or on which expression datasets to use, an optional method is to
repeatedly run pwsrc.knorm to derive a set of frequently identified pathway
genes under different datasets with different possible sets of seed genes tried
(Supplementary Material for details). The candidate pathway genes identified
this way would be robust against the change of data and the choice of seed
genes.

2.4 Other methods for comparison
For performance comparison, four additional methods, pwsrc.null,
pearson.mean, pearson.max and GLM are considered. The first pwsrc.null is
designed by replacing �̂E in Equation (2) with the identity matrix to represent
the case ignoring experiment dependencies. pearson.mean and pearson.max
adopt the Pearson correlation as a distance measure. Specifically, they
calculate pair-wise correlation coefficients between each candidate gene
and the seed genes and take either mean (pearson.mean) or maximum
(pearson.max) of them. GLM adopts the regression model of the candidate
gene gc on the seed genes in S as follows:

gc =α0 +
|S|∑
j=1

αjgkj +ε, (4)

where ε is assumed to be normally distributed with zero mean. Since a
negligible residue implies a possible interaction between the candidate gene
and the seed genes, naturally we can use the residuals as our test statistics (all
the genes are scaled to have unit norm before doing regression analysis). For
a fair comparison with our method, the experiment dependencies in the gene
expression are removed by projecting the data matrix onto the eigenspace of
�̂E by X∗ = (X−M̂) ·(�̂E )−1/2.

3 RESULTS
We evaluate the performance of the proposed method in identifying
pathway genes using simulation data and real microarray datasets.
In both studies, we calculated precision = TP/(TP+FP) and recall
= TP/(TP+FN) to assess the results from our approach and several
other methods mentioned in Section 2. Here TP is the number of
true positive findings of pathway genes, FP is the number of false
positives and FN is the number of false negatives. Note that precision
and recall are popular measures for evaluation of classification
performance. In the context of this study, they can be regarded
as a measure of exactness and completeness of our pathway gene
searching results, respectively. In the real data analysis, we will
present the strength and usefulness of our approach as a tool for
identifying pathway genes, particularly in glucosinolate (GSL) and
flavonoid biosynthesis (FB) pathways. In our study, the pathway
genes are defined as composed of structural genes that encode an
enzyme, whereas regulator genes are defined as genes controlling
the expression of the structural genes.

3.1 Simulation study
We simulate a microarray dataset consisting of 500 genes and 30
experiments, with 5 replicates for each experiment. To make the
approach more realistic, we introduce experiment dependencies,
multiple distinct pathways and some random noise into the simulated
data. The simulation parameters are as follows:

(i) Experiment correlation matrix, �E . This matrix characterizes
the experiment dependencies. For illustrative purposes, we set the
experiment correlation matrix to have various dependencies such
as 10, 33, 50 and 67%. In the case of a 33% dependency, for
example, ∼33% of the experiments have high dependencies while
the remaining experiments are uncorrelated with one another, i.e.
the first 10×10 elements in �E lie between 0.5 and 0.6, with the
rest being zeros. Diagonals on �E are set to 1. Figure 1 shows
the heatmaps for three of the four experiment correlation matrices
mentioned above.

(ii) Gene covariance matrix, �G. This matrix characterizes the
gene dependencies among one another. As an illustrative example,
we introduce two distinct pathways with 15 genes in each pathway;
genes in the same pathway have high correlation while genes not in
the same pathway are uncorrelated. Specifically, in each pathway the
first four genes designated to be seed genes show high correlation
(correlation coefficient changes between 0.5 and 0.6) between each
other. The remaining 11 genes are separated into three subgroups
and are designed to have high correlation with 1, 2 or 4 of the seed
genes, respectively, and low correlation with the others (correlation
coefficient changes between 0.1 and 0.2).

The simulated data is generated as follows. First, we generate
a 500×30 gene expression matrix X, with vec(XT ), from a
multivariate normal distribution with mean X (zero matrix) and
a covariance matrix �G ⊗�E . To make the pathway genes more
realistic, for each pathway two randomly chosen genes in each
subgroup are linearly combined to make a new pathway gene. The
same procedure generated all the final 11 pathway genes for each
pathway (replacing the original 11 pathway genes generated above).
Using the final 500×30 gene expression matrix, we add random
noise with a small SD (e.g. 0.01) to each column (i.e. experiment) to
generate the 5 replicates for each experiment. Repeating this process,
we generate 1000 simulation datasets.

In this analysis, we compare our approach to that of others and
evaluate the performance using precision and recall measures. All
the approaches are implemented as follows: given seed genes, run
the pathway search algorithms as described in Section 2 and rank the
genes by their measured relationships to the seed genes. Calculate
precision and recall for the top n (i.e, n = 1,...,15) genes.

As this is a simulation study and we know the true experiment
correlation matrix, we add one more method pwsrc.true into
the comparison. The only difference between pwsrc.true and
pwsrc.knorm is that pwsrc.true uses the true experiment correlation
matrix (�E

true) instead of the estimated one in Equation (2). We
denote the estimated correlation matrix used by our method as
�̂E

knorm for clarity. The results are summarized in Figure 2. When the
dependencies among experiments are low, pwsrc.knorm performs
worse than pwsrc.null. However, this performance discrepancy
becomes smaller as the experiment dependency increases and
finally pwsrc.knorm outperforms pwsrc.null when the experiment
dependency exceeds 33%. This situation can be easily understood
in Figure 1. When the dependencies among experiments are low,
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Fig. 1. Heatmaps of (Top) true and (Bottom) estimated experiment
correlation matrices of the simulation datasets having different experiment
dependencies (10, 33 and 67%).

the noisy signals in the offdiagonal elements in �̂E
knorm become

non-negligible and so �E
null becomes a better estimate for �E

true
even though it totally misses capturing the experiment dependencies.
However, when the experiment dependency increases up to 33%,
�̂E

knorm estimates �E
true better than �E

null as it is critical to capture
the dependent structure now. These results emphasize the importance
of considering experiment dependencies when they exist at a
non-negligible level in data, which is actually the case in real
applications. Our approach overall achieves higher precision and
recall than pearson.mean and pearson.max (Fig. 2), whereas the
GLM method provides about the same result as our method due to
the way we simulated the data (results are not shown here).

To determine the importance of the seed gene quality, we added
two randomly chosen, non-pathway genes into the seed-gene-set
which is originally composed of four pathway genes. The results
are summarized in Supplementary Figure S1. Regardless of the
experiment dependencies, the performance of pwsrc.knorm becomes
worse when the seed-gene-set contains noisy genes.

3.2 Application to real datasets
We next test the validity of our approach by applying it to biological
pathways composed of genes that are known to operate in tandem.
For this test set, we selected two secondary metabolic pathways
from the model plant A.thaliana: the pathway leading to GSLs,
sulfur-rich amino acid-containing compounds which become active
in response to tissue damage, and believed to offer a protective
function (Hammond-Kosack and Jones, 2001; Sønderby et al.,
2010; Verkerk et al., 2009; Yan and Chen, 2007), and the pathway
leading to flavonoids, compounds of diverse biological activities
such as anti-oxidants, functioning in UV protection, in defense, in
auxin transport inhibition, and in flower colouring (Gachon et al.,
2005; Naoumkina et al., 2010; Taylor and Grotewold, 2005; Woo
et al., 2005). In Arabidopsis, the regulators and structural genes in
glucosinolate (GSL) and flavonoid biosynthesis (FB) pathways have
been extensively characterized. A considerable number of genes in
both pathways are induced by broad environmental stresses, and
regulated at the transcriptional level. Furthermore, several research
groups have applied transcriptome co-expression to analyze the
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Fig. 2. Graphical summary of the simulation study. Simulation datasets are
generated with different experiment dependencies (a) 10%, (b) 33%, (c) 50%
and (d) 67%. For each plot, precision and recall are calculated from the top
n(n=1,...,15) genes in the list obtained by five different methods.

two pathways (Gachon et al., 2005; Hirai et al., 2007; Yonekura-
Sakakibara et al., 2008), thus providing us with a rich source of data
for validating our results.

Known genes in each pathway were selected and their
conditional dependencies examined using the approach outlined
in Section 2. For this effort, we used public ATH1 microarray
datasets from the AtGenExpress consortium (www.arabidopsis.org/
portals/expression/microarray/ATGenExpress.jsp). Among stress
serial microarray experiments, we selected four datasets for analysis.
A summary of the experimental sets used is listed in Table 1,
whereas a detailed description of their experimental parameters is
provided in Supplementary Table S1. We then asked, under these
varied conditions whether we could recover these known pathway
genes by our approach. Finally, having investigated the validity of
this approach, and demonstrating that our approach is much more
effective than any previous approaches for detecting the known
pathway genes, we asked whether we could identify other possible
candidate pathway (new) genes. Initially, we investigated the two
pathways gene sets in shoot tissue only, but then later expanded the
study to include root tissue.

3.2.1 Studies on GSL pathway Based on an extensive literature
search, we determined 64 genes that can be associated with the
GSL pathway (Supplementary Table S2). These 64 genes include,
in addition to core genes involved in GSL biosynthesis, regulators of
this biosynthesis, early steps of side chain elongation/modification
and late steps of catabolism (Supplementary Fig. S2 in detail). For
our study, two seed-gene-sets are proposed: (i) seed-gene-set I:
AT5G60890 (ATR1), AT4G39950 (CYP79B2), AT2G20610 (SUR1),
AT4G31500 (CYP83B1) and (ii) seed-gene-set II: AT5G60890
(ATR1), AT5g07690 (MYB29), AT5g61420 (MYB28), AT4G39940
(AKN2). In seed-gene-set I, only ATR1 encodes a transcription factor
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Table 1. Description of the A.thaliana microarray datasets with four different types of stress

Oxidation Wounding UV-B light Drought

Data counts (biosamples/ 52 (26/26) 60 (30/30) 60 (30/30) 60 (30/30)
replicate sets)

Number of genes 22 810 22 810 22 810 22 810
Experimental variables MVa, time, shoot, root Wounding, time, shoot, root UV-B lightb, time, shoot, root Drought, time, shoot, root
Submission number ME00340 ME00330 ME00329 ME00338

aMethyl viologen.
bUV-B light: ultraviolet radiation with a range of 280–320 nm.

(TF), whereas three other genes encode enzymes. In contrast to seed-
gene-set I (composed of the core pathway genes), seed-gene-set II
is composed of four regulatory genes (Supplementary Fig. S2).

Using two seed-gene-sets, we first analyzed only the shoot tissue
dataset from tissues subjected to oxidative stress. This dataset is
composed of 22 810 genes and 13 experiments with two biological
replicates for each experiment. The number of identified GSL
pathway genes is summarized in Table 2(a)–(b) for the top 10, 20,
30 and 50 genes from the list obtained by pwsrc.knorm, pwsrc.null,
pearson.mean, pearson.max and GLM. With seed-gene-set I in
Table 2(a), pwsrc.knorm works best, finding 4, 6, 7 and 8 pathway
genes out of the top 10, 20, 30 and 50 genes, respectively. With
seed-gene-set II in Table 2(b), a significant increase is observed in
the number of identified pathway genes, especially for pwsrc.knorm.
For example, among the top 30 genes in the list, pwsrc.knorm finds 7
more pathway genes, while pwsrc.null, pearson.mean, pearson.max
and GLM find 2, 2, 1 and 4 more genes compared to Table
2(a), respectively. This increase demonstrates that seed-gene-set II
indeed carries more influential information than seed-gene-set I,
which enables us to examine the GSL pathway more thoroughly.
Furthermore, our method pushes the pathway genes to rank higher
positions in the list so that the final precision becomes 60, 55 and
47%, respectively, for the top 10, 20 and 30 genes.

Next, the dataset is expanded to include the root tissue as well,
so now the dataset consists of 26 experiments with two replicates
each. Again, the combined dataset is analyzed with the two seed
sets as above and the results are summarized in Table 2(c)–(d). For
pwsrc.knorm, a dramatic increase is observed with the seed-gene-
set I [compare Table 2(a) and (c)], in contrast to the seed-gene-set
II [compare Table 2(b) and (d)]. This finding emphasizes the
importance of designing the seed-gene-set. When the seed set is
appropriately designed for the pathway of our interest, i.e. seed-
gene-set II, pathway searches could proceed more efficiently with
a smaller set of data, but if not, more information (a larger dataset)
would be needed to achieve the same performance. pwsrc.null
finds no pathway genes in this data, which demonstrates the
importance of considering experiment dependency, especially as the
dataset dimension expands. Different to pwsrc.null and the Pearson
correlation-based measures, GLM shows a prominent increase, and
we believe that the extra information added by the root tissue helps
GLM perform better. The graphical summary of Table 2 is given in
Supplementary Figure S3. For each method, precision and recall are
calculated for the top 10, 20, 30, 50 and 100 gene lists and plotted
accordingly.

In contrast to and different from the oxidative stress, wounding
stress is known to induce the expression of MYB28 and MYB29

(Gigolashvili et al., 2009), which are the two of four seed genes in
seed-gene-set II and which regulate Met-derived GSL biosynthesis.
Based on our success in finding additional GSL pathway genes using
seed-gene-set II and oxidative stress as the environmental input,
we predicted that we would have similar success using wounding
as the environmental input. We expected under wounding stress
conditions, that structural genes in the GSL pathway would have
stronger association with seed-gene-set II than under oxidative stress
condition. Data from the shoot only subjected to wounding are
first analyzed by considering 22 810 genes, and 15 experiments,
each with two biological replicates. The results are summarized
in Table 3(a)–(b). Again, a significant increase in the number of
identified pathway genes is observed from seed-gene-set I [Table
3(a)] to seed-gene-set II [Table 3(b)]. Next, the dataset from the
root portion is also included, now comprising 30 experiments in
total, with two biological replicates for each experiment. No matter
what seed-gene-set we use, pwsrc.knorm works best [Table 4(c)–
(d)]. The precisions for the top 10, 20 and 30 ranked genes are
100, 70, 50% with the seed-gene-set I, and 90, 65, 60% with
the seed-gene-set II. It is also noteworthy that with seed-gene-set
I and II, pwsrc.knorm finds 10 and 9 genes to be in the same
biological pathway from the top 10 genes, respectively. A graphical
summary of Table 3 is given in Supplementary Figure S4. The
performances in the analysis of the last two A.thaliana microarray
datasets from plants subjected to UV-B light and drought stresses
are about the same, compared to the previous results with oxidative
and wounding stresses (summarized in Supplementary Tables S3
and S4, respectively, and the corresponding graphical summaries
are also provided in Supplementary Figs S5 and S6).

3.2.2 Studies of the FB pathway The flavonoid pathway is
derived from the upstream phenylpropanoid pathway, beginning at
coumaroyl-CoA (Supplementary Fig. S7). Based on an extensive
literature search, we found that at least 26 genes can be associated
with the FB pathway (Supplementary Table S5). Genes encoding
enzymes in this pathway are regulated by at least 12 TFs belonging
to different families, including bZIP WD40, WRKY, MADS-
box, R2R3-MYB, and the basic helix–loop–helix (bHLH) family
(Yonekura-Sakakibara et al., 2008). It is also worth noting that the
genes we considered for the two pathways (GSL and flavonoid) are
exclusive to each other, and thus there is no overlap in the genes of
the pathways we consider.

It is reported that structural genes (encoding enzymes) in the
FB pathway are regulated at the transcriptional level, suggesting
that the regulation genes would be good candidates as seed genes,
as indicated by the result of GSL pathway study in Section 3.2.1.
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Table 2. The number of identified GSL pathway genes in the A.thaliana
microarray dataset from tissues subjected to oxidative stress using (a) shoot
tissue only, seed-gene-set I; (b) shoot tissue only, seed-gene-set II; (c) shoot
and root tissues, seed-gene-set I; (d) shoot and root tissues, seed-gene-set II

Top pwsrc.knorm pwsrc.null pearson.mean pearson.max GLM

(a) 10 4 0 2 1 0
20 6 1 3 4 0
30 7 1 3 5 0
50 8 1 4 7 0

(b) 10 6 0 4 2 2
20 11 3 4 4 3
30 14 3 5 6 4
50 14 5 8 8 5

(c) 10 9 0 3 0 3
20 11 0 3 0 5
30 12 0 3 1 7
50 12 0 3 2 10

(d) 10 6 0 5 1 4
20 10 0 7 1 5
30 13 0 9 1 9
50 19 0 9 1 12

Table 3. The number of identified GSL pathway genes in the A.thaliana
microarray dataset from tissues subjected to wounding stress using (a) shoot
tissue only, seed-gene-set I; (b) shoot tissue only, seed-gene-set II; (c) shoot
and root tissues, seed-gene-set I; (d) shoot and root tissues, seed-gene-set II

Top pwsrc.knorm pwsrc.null pearson.mean pearson.max GLM

(a) 10 3 1 2 3 0
20 4 1 2 3 0
30 4 1 3 3 0
50 4 1 3 6 0

(b) 10 4 0 6 4 0
20 8 0 9 5 1
30 11 2 13 5 1
50 12 5 15 8 1

(c) 10 10 3 3 0 6
20 14 4 3 1 10
30 15 5 3 1 12
50 16 5 3 2 14

(d) 10 9 0 6 0 7
20 13 0 7 0 8
30 18 0 8 0 10
50 22 2 10 1 16

Then we selected two different seed-gene-sets from four different
types of TFs [AT4G09820 (TT8), AT5G23260 (TT16), AT5G24520
(TTG1), AT2G37260 (TTG2)] and one structural gene [AT5G08640
(FLS)]: (i) seed-gene-set III: AT4G09820 (TT8), AT5G23260

Table 4. The number of pathway genes identified from FB and
phenylpropanoid biosynthesis pathways by (a) seed-gene-set III and (b) seed-
gene-set IV in the A.thaliana microarray dataset from shoot and root tissues
subjected to drought stress

Top pwsrc.knorm pwsrc.null pearson.mean pearson.max GLM

(a) 10 6 (2) 0 0 2 4 (1)
20 9 (3) 1 0 3 5 (1)
30 10 (3) 1 0 4 6 (2)
50 11 (3) 1 0 4 6 (2)

(b) 10 6 (2) 2 1 4 5 (1)
20 9 (3) 2 2 4 5 (1)
30 10 (3) 2 2 4 6 (2)
50 13 (4) 2 2 4 6 (2)

For complete results, see Supplementary Table S6. The number of identified genes from
phenylpropanoid pathways is designated in the parenthesis adjacent to the total number
of identified genes.

(TT16), AT5G24520 (TTG1), AT5G08640 (FLS) and (ii) seed-gene-
set IV:AT4G09820 (TT8),AT5G23260 (TT16),AT2G37260 (TTG2),
AT5G08640 (FLS).

In this FB pathway study, we present the results using both
shoot and root tissues. The number of genes identified by
seed-gene-set III and IV using four different datasets is similar, with
the results from drought stress summarized for brevity in Table 4
(see Supplementary Table S6 for the complete results). Overall,
pwsrc.knorm outperforms other methods regardless of seed-gene-
sets and stress types. It is worth noting that both seed-gene-sets
detected several genes from the upstream phenylpropanoid pathway
by pwsrc.knorm and GLM. To elucidate the cooperative nature
of these pathways, we designate the number of identified genes
from the upstream pathways (phenylpropanoid pathway) in the
parenthesis adjacent to the total number of identified genes (Table 4).
For example, the dataset with drought stress 33% (by pwsrc.knorm),
and 20% (by GLM) of the identified genes from top 20 derive
from the upstream pathways. Supplementary Table S7 lists all the
identified drought stress pathway genes from the top 20 list, and
designates the original pathway to which each gene belongs. In
Supplementary Figure S7, all the identified genes in Table 4 by
pwsrc.knorm are visualized. It is noteworthy that pwsrc.knorm not
only detects six core genes [AT3G51240 (F3H), AT3G55120 (CHI),
AT5G13930 (CHS), AT5G07990 (F3′H), AT5G17050 (UGT78D2),
AT1G78570 (RHM1)] in the FB pathway, but additionally finds
three more genes, AT1G65050 (4CL3), AT2G23910 (CCR6) and
AT2G37040 (PAL1), located at the branch points of phenylpropanoid
pathway to the FB pathway or to the lignin biosynthesis pathway at
coumaroyl-CoA (Supplementary Fig. S7). Among those additionally
found genes, CCR6 and PAL1 are uniquely detected by our
method. Thus, in contrast to, and differing from the other methods,
pwsrc.knorm enables us to find additional genes from closely related
pathways by considering the indirect relationships between genes.
This finding can be useful for future studies targeted to discovering
the cooperative nature of genes in the FB pathways.

We also compared our results with the seed-gene-sets containing
some noisy genes. For example, we applied our method to the
dataset with drought stress with the seed-gene-set composed of seed-
genes-set III and two of GSL pathway genes. As summarized in
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Supplementary Table S8, the number of pathway genes identified
decreased which implies that the pathway gene search becomes
less efficient when the seed-gene-set contains noisy genes not
biologically related to the pathway of our interest.

Finally, we compared our results with other literatures on the
discovery of GSL and FB pathway genes. See the Supplementary
Material for details.

4 DISCUSSION
We have proposed a novel approach to identify genes associated with
a pathway specified by a set of seed genes. This approach considers
the space of pathway genes as a span generated by its pathway
genes and uses partial correlation as a distance measure to determine
genes interacting with the previously identified pathway genes. This
approach differs from many existing approaches in the following
aspects: (i) it uses the partial correlation conditioned upon identified
pathway genes, not on all genes; (ii) it enables us to identify genes
having higher level interaction (i.e. group interaction) although
their pair-wise marginal correlations are weak; (iii) it considers
experiment dependencies when inferring gene relationships; (iv) its
computational workload is less demanding.

The first aspect above implies our method is pathway specific. It
focuses its search only on a particular pathway among all existing
multiple (unknown) pathways in a dataset. This is a limitation of
our approach. But we note that this specific search has shown
huge advantages in reducing false positive discoveries in both our
simulation and real data studies, and has also led to a deeper and
insightful biological interpretation of the results. This approach can
potentially be extended to the situation that the seed genes or target
pathways are not available, if the seed genes for different pathways
can be originated from analysis of other sources of biological data.

Although our approach has yielded encouraging biological results
in a real dataset application, there is still room for further
improvement, including exploration of properties of this approach
to answer questions like, ‘What are the biological properties of the
identified genes?’ and, ‘How reliable is the set of identified genes?’.
Further biological understanding of the identified pathway genes
would give us deeper insights into the biological process under
consideration.
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