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Geffen School of Medicine at UCLA

Intact phagocytic effector function is fundamental to host defense against microbial pathogens. Concern has

been raised regarding the potential that accumulation of certain agents, including cationic amphiphilic

antibiotics, within macrophages could cause a mixed-lipid storage disorder, resulting in macrophage

dysfunction in recipients. The ability of 2 macrophage cell lines (HL-60; RAW 264.7) to kill archetypal Gram-

positive (Staphylococcus aureus), Gram-negative (Acinetobacter baumannii), and fungal (Candida albicans)

pathogens was tested following exposure of the macrophages to the lipoglycopeptide antibiotic oritavancin.

Oritavancin did not affect killing of C. albicans but markedly enhanced killing of S. aureus by both

macrophages. Oritavancin modestly reduced killing of A. baumannii by HL-60 cells but not by RAW 264.7 cells.

Thus, macrophage killing of microbes remains intact despite substantial intracellular accumulation with

a lipoglycopeptide antibiotic.

Intact phagocytic effector function is fundamental to host

defense against microbial pathogens, such as the Gram-

positive coccus Staphylococcus aureus, the Gram-negative

bacillus Acinetobacter baumannii, and the fungal pathogen

Candida albicans [1–6]. Although many previous studies

have focused on the role of neutrophils, the importance of

macrophages in host defense against such pathogens has

only been recently described [2, 7–9]. These studies are

concordant with older literature confirming the early

and marked clearance of extracellular pathogens, such as

C. albicans, within minutes after bloodstream infection by

phagocytes in the reticuloendothelial system of mammals,

including rodents, lagomorphs, dogs, and humans [10].

One putative mechanism by which macrophage mi-

crobicidal function may be inhibited is the accumulation

of complex lipid or carbohydrate-rich deposits within

the phagocytes, as occurs in genetic metabolic storage

diseases [11]. Oritavancin is an investigational lipogly-

copeptide antibiotic with potent anti–S. aureus activity

[12]. Oritavancin accumulates markedly within macro-

phages, where it causes deposition of concentric lamellar

structures and finely granular material and other mate-

rial, often in giant vesicles, consistent with a mixed-lipid

storage disorder [13]. To determine whether marked

intracellular accumulation of oritavancin alters killing of

microbes, macrophage killing in the presence or absence

of oritavancin was tested against S. aureus, as well as

organisms against which the drug has no activity, in-

cluding C. albicans and A. baumannii.

Human HL-60 cells and murine RAW 264.7 macro-

phage cells (both from American Type Culture Collec-

tion, Rockville, MD) were tested because they are known

to be capable of killing microbes after differentiation

[14–16]. The cells were cultured at 37�C in 5% CO2 in
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Roswell Park Memorial Institute 1640 medium (Irvine Scientific,

Santa Ana, California) with 10% fetal bovine serum, 1% peni-

cillin, streptomycin, and glutamine (Gemini BioProducts), and

50 lmol/L b-mercaptoethanol (Sigma-Aldrich, St. Louis, MO).

HL-60 cells were differentiated into macrophages by 5 days of

growth in the presence of 50 lmol/L recombinant tissue plas-

minogen activator [14]. RAW 274.7 cells were activated by 3 days

of exposure to 100 nmol/L phorbol 12-myristate 13-acetate

(Sigma-Aldrich). Activated HL-60 and RAW 264.7 macrophages

were harvested after scraping with BD Falcon cell scrapers

(Fischer Scientific).

Cellular accumulation of oritavancin was first confirmed in

HL-60 cells at a fixed extracellular concentration (25 lg/mL)

following procedures published elsewhere [17]. This con-

centration was chosen because it is also reflective of the pre-

dicted maximum free drug serum concentration achieved by

administration of a 1200 mg clinical dose of the drug and

approximates the limit of solubility of oritavancin at physi-

ological pH in growth medium [18, 19]. Briefly, cells incu-

bated with [14C]-labeled oritavancin were washed 3 times in

ice-cold phosphate-buffered saline, collected by scraping in

distilled water, and used for radioactivity determination

(liquid scintillation counting) and protein assay. The apparent

cellular-to-extracellular concentration ratio was calculated by

using a conversion factor of 5 lL cell volume per milligram of

cell protein. Oritavancin accumulated substantially in HL-60

cells, reaching intracellular concentrations 200-fold above the

extracellular concentrations after 24 hours incubation (Figure 1).

This value is similar to what was observed earlier for murine J774

macrophages [20], which suggests that it corresponds to an in-

trinsic property of oritavancin in macrophages.

To test impact on cidal activity, HL-60 and RAW 264.7 cells

were loaded with oritavancin (25 lg/mL) over 24 hours; as

a negative control, other cells were loaded with azithromycin at

10 lg/mL, as described elsewhere [17]. After drug loading, the

adherent cells were scraped and rinsed 3 times in Hanks Balanced

Salt Solution (HBSS). As a positive control to suppress macro-

phage killing of microbes by inhibiting superoxide production,

some cells were exposed to 1 nmol/L diphenylene iodonium

(DPI) for 1 hour prior to cell harvesting [21–25].

To test macrophage killing, S. aureus strain LAC (methicillin-

resistant clinical isolate) andA. baumanniiHUMC1 (carbapenem-

resistant, clinical bloodstream isolate) were cultured overnight in

tryptic soy broth at 37�C, and C. albicans 15563 (clinical blood-

stream isolate) was cultured overnight at 30�C in yeast peptone

dextrose (YPD). The overnight cultures were passaged and or-

ganisms grown to mid log-phase prior to use in the killing assay.

The killing assay was based on a modification of a method used

elsewhere [26, 27]. In brief, macrophages were scraped and rinsed

in HBSS as above. Microbes were cocultured in polystyrene snap

cap tubes in a rotating drum at 37�C. On the basis of pilot studies,

HL-60 cells were cultured at a 200:1 ratio of macrophages to

microbes, and RAW 264.7 cells were cultured at a 20:1 ratio. After

a 1-hour incubation, the tubes were sonicated and quantitatively

plated in tryptic soy agar for S. aureus and A. baumannii or YPD

agar for C. albicans. Colony-forming units (CFUs) of the cocul-

tured tubes were compared with CFUs of growth control tubes

containing only microbes with no macrophages. Percent of killing

was calculated as [12(CFUs from coculture tubes/CFUs from

growth control tubes)].

Both HL-60 and RAW 264.7 macrophages killed all 3 tested

pathogens. Macrophage killing of C. albicans was not affected

by oritavancin, whereas killing of S. aureus was substantially

enhanced (Figure 2A). Oritavancin modestly reduced killing

of A. baumannii by HL-60 cells (median [interquartile range

(IQR)] killing 5 24% [21%–28%] vs 16% [13%–18%],

P , .01) but not by RAW 264.7 cells (median [IQR]

killing 5 37% [27%–52%] vs 35% [18%–50%], P 5 .8). DPI

significantly reduced killing of all 3 organisms by both HL-60 and

RAW 264.7 cells, including those compared with oritavancin-

preloaded macrophages (Figure 2B).

Thus, in contrast to DPI, which suppressed production of

reactive oxygen intermediates and which inhibited macrophage

killing of all 3 extracellular pathogens, killing of C. albicans or

A. baumannii remained intact after loading of macrophages

with substantial levels of oritavancin or azithromycin. Altho-

ugh oritavancin mediated a modest reduction in killing of

A. baumannii by HL-60 cells, the killing was similar to that fol-

lowing azithromycin; no similar reduction was seen with RAW

cells, and there was no reduction against other pathogens. These
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Figure 1. Influence of time on the cellular accumulation of oritavancin in
HL-60 cells. Kinetics of the cellular accumulation of oritavancin (25 lg/mL)
in HL-60 cells (complete culture medium, 10% fetal bovine serum). Results
are shown as the apparent cellular to extracellular concentration ratio.
Data are means 6 standard deviations of 3 independent experiments.
Abbreviation: Cc/Ce, cellular-to-extracellular concentration ratio.
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data indicate that accumulation of lipoglycopeptides in macro-

phages does not necessarily correspond with dysfunction of

macrophage killing of microbes, and provide reassurance that

oritavancin accumulation does not prevent phagocytic killing of

key pathogens.
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